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Abstract: This research aims to provide insights into the biological efficacy of a newly formed
hydrophobic deep eutectic solvent (DES). A DES based on menthol was successfully synthesized with
fatty acids. The DESs’ properties as enzyme activators were examined against a neat counterpart.
The menthol:decanoic acid (1:1) combination showed improved thermal stability, strong catalytic
activity, and reusability for up to four subsequent cycles under ideal conditions (pH 7.0, 40 ◦C for
2 h). The hydrophobic DES replaced hexane in ester synthesis, where RNL@DES5 showed better
fatty acid conversion compared to neat RNL. This study demonstrated promising applications of
hydrophobic DESs in non-aqueous organic reactions.

Keywords: fatty acid; natural deep eutectic solvents; hydrophobic agent; enzyme kinetics;
hydrogen-bonding

1. Introduction

Green solvents that satisfy green chemistry standards have long been debated in
the chemical community. In addition, in order to protect the environment, industries are
focusing on green innovative practices (GIPs) [1] and achieving sustainable development
goals (SDGs) [2]. Interestingly, a new class of solvents has been reported [3] which emerges
as a replacement for typical organic solvents. A large number of known deep eutectic
solvents (DESs) do not require sophisticated preparation. They are non-volatile, low cost
(compared to some ionic liquids), biodegradable, sustainable, and non-toxic, defying most
conventional solvent characteristics [4]. A DES is produced as a result of a notably lower
melting point of the constituents when two or more elements are combined in a specified
molar ratio, resulting in a homogenous liquid-state component at room temperature [5,6].
According to Pereira et al. [7], a certain combination of at least two solid components, called
a eutectic mixture, causes a shift in phase from solid to liquid at a particular temperature.
This temperature, also known as the eutectic point temperature, is the minimal melting
point for all possible compositions. As a result, pure components have a greater melting
point than a eutectic mixture. Typically, this mixture is correlated and distinguished by a
decline in freezing point compared to the actual compounds [6]. This phenomenon occurs
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because of the hydrogen bond interaction among the acceptor (HBA) and donor (HBD) of
the hydrogen bond.

There are limitless designations of a DES as it has tunable physicochemical traits that
may be altered to produce diverse groups of DESs, thus expanding their applicability in
both academic and industrial fields. He et al. [8] reported that a DES can increase biodiesel
output (98.5%), resulting in a more thorough completion of the transesterification cycle.
Moreover, Lynam et al. [9] found that a DES may dissolve lignin at 60 ◦C, increasing the
glucose yield following enzymatic hydrolysis to more than seven times that of raw or
glycerol-pretreated pine. A further discovery reported by Piemontese et al. [10] was that a
DES can be utilized as an extraction media for Ochratoxin A (OTA), which is found in wheat
and its derivatives. They showed that the DES mixture with the immunoaffinity column’s
antibodies was outstanding since it could hold onto up to 96% of the OTA and produced
better accuracy (70–88%) and precision (2–7%) results. Thus, DESs perform well, being
adaptable for broad applications in various fields [11]. Hence, a wide array of DESs have
been used in other applications such as extraction media for bioactive compounds [12–14],
electrochemical processes [15], and molecular sensing [16]. DESs have also been portrayed
as having high enzyme stability in lipase-catalyzed processes. For example, Putra et al. [17]
found that enzyme immobilization with DES can enhance lipase catalytic activity, thermal
stability, and reusability for up to seven cycles. Furthermore, Shehata et al. [18] offered
suggestions for tailoring water-in-DES for the best possible stability and activity of the
enzyme while also offering insights into designing effective lipase applications in DES-
based reaction media. Furthermore, DESs as green reaction media can provide guidance for
improving the catalytic performance of enzymes as reported by Cao et al. [19]. According
to a study by Hayyan et al. [20], the association between the DES parameter combination
and lipase activity can be explained by the impact of the DES mixture’s intrinsic features.

The stability limitation of chemicals based on hydrophilic ammonium salts when
mixed with water has recently driven the discovery of hydrophobic DESs as an environ-
mentally suitable substitute for conventional organic solvents [21]. Despite the fact that
the DESs reported have been mentioned in previous publications [17,22], their biolog-
ical activity was not assessed and their usage with recycled industrial enzymes using
hydrophobic fatty acid-based DESs has not been addressed. Therefore, various chain fatty
acids (Figure 1) such as butanoic, decanoic, propionic, octanoic, and hexanoic acids were
utilized in this study and combined with menthol, as they have many numerous benefits
for a broad range of applications. Most fatty acids exhibit a wide range of activities, and
the mechanisms are non-specific, giving them the advantage in numerous fields such as
cosmetics [23], nutraceuticals, agriculture, medicine [24], and, especially, food preservation.
However, the choice of fatty acid is essentially dependent on the application and varies
according to the process specifications. Unique mixtures that are finely tuned for potency
and specifically tailored for target application could be generated. These may be combined
with solvents, stabilizers, or other compounds, resulting in infinite mixtures.

In this study, menthol is used as a hydrogen bond acceptor or basic compound for
naturally hydrophobic DESs. The terpene recognized as menthol, which is known to be
derived from the Mentha species, has already been combined with a variety of chemicals for
DES formulation [25]. It is a simple compound that can be obtained from natural sources
(peppermint oil) or synthetically prepared by the hydrogenation of thymol. In general,
it has been found that using an active, selective, and recyclable bifunctional (metal-acid)
catalyst with selective features may result in a high yield of menthol synthesis by citral
hydrogenation [26]. Their significance is mostly attributable to factors such as a high
melting point and latent heat fusion within the ideal working range, minimal volume
change during phase transition, and a good chemical stability [27]. Because hydrophobic
DESs can increase the stability of DESs in water, the synthesized hydrophobic DESs can
significantly broaden the range of biological applications.

In this paper, we examined the biological perspective of menthol-based hydrophobic
DESs towards enzymatic activity by assessing the synergistic effect of fatty acids and men-
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thol. The solvent miscibility test confirmed the presence of the menthol-based hydrophobic
DESs and their thermal analysis was investigated using differential scanning calorimetry
(DSC). The properties of all hydrophobic DES as enzyme activators were investigated and
contrasted with their free enzyme counterparts. The enzymatic activity with different
lipases and DESs was evaluated and the kinetic performance of DESs was determined at
different substrate concentrations. A comparison of the enzymatic activity in the presence
of natural deep eutectic solvents (NADESs) and ionic liquids (ILs) was also performed.
Fourier-transformed infrared (FTIR) and scanning electron microscopy (SEM) analyses
were used to further characterize the functional groups and morphology of the free and acti-
vated lipase, respectively. Therefore, the outcomes demonstrate the potential acquired DESs
as new enzyme activators in numerous fields, especially in non-aqueous organic reactions.
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Figure 1. Chemical compositions of different fatty acids (decanoic acid, butanoic acid, octanoic acid,
hexanoic acid, and propionic acid) as the hydrogen bond donors required to synthesize hydrophobic
deep eutectic solvents (DESs) with menthol (hydrogen bond acceptor).

2. Results and Discussion

This research demonstrates the biological perspective of fatty acids and menthol in a
DES system due to the probable synergistic impacts between their components. Although
recent, there has been insufficient research examining the interaction between menthol and
antimicrobial fatty acids. In addition, there are also minimum studies exploring the effect
of hydrophobic DESs on enzymes in the literature. The results obtained on the DESs are
portrayed as follows.

2.1. DES Preparation and the Visual Aspect

Different types of fatty acids were used as HBAs, and menthol was used as an HBD
to synthesize five samples of DESs. All L-menthol-based DESs were prepared with five
different types of carboxylic acids (propionic acid, butanoic acid, hexanoic acid, octanoic
acid, and decanoic acid), namely, DES 1, DES 2, DES 3, DES 4, and DES 5, respectively.
With a one-to-one molar ratio, the mixture of menthol and chosen fatty acids successfully
formed a transparent liquid that did not change upon cooling as seen in Figure 2.
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Figure 2. Hydrophobic DESs are obtained when menthol and various fatty acids (a) propanoic acid,
(b) butanoic acid, (c) hexanoic acid, (d) octanoic acid, and (e) decanoic acid are combined in an
equimolar ratio of 1:1.

From the observations throughout the preparation process, the liquid aspect is gradu-
ally obtained for menthol mixtures with all fatty acids. The colorless liquid form of DES
1 to 5 persisted even after cooling. This is because the ratio of fatty acids and menthol used
is appropriate, as well as the temperature and duration of heating. The equivalent amount
of HBA and HBD has formed a homogenous mixture as there is enough hydrogen bonding
formed, causing a sudden drop in the melting point. If the amount of the HBD exceeded
the HBA amount; even after prolonged shaking at a high temperature, no DES would form
and the mixture would remain heterogeneous. The study by Hayyan et al. [28] confirms
this case, demonstrating that when the amount of glucose exceeded the amount of choline
chloride, a solid mixture resulted.

2.1.1. Solvent Miscibility Test Analyses

According to McGaughy and Reza [29], HBA and HBD can be changed to modify and
enhance the physical properties of the DES, including substantially varying miscibility and
solubility in water in contrast to the DESs’ individual components.

Therefore, in this study, hydrophobic DESs were produced as lipase enhancers. All
DESs were observed to have a phase separation between the water (bottom layer) and
the DES (top layer). We predicted that as the temperature changes, the ionic state would
drastically change, thus prompting the transition from a hydrophilic to a hydrophobic
state [30]. Indeed, the DESs created by combining menthol as a base with fatty acids have
already been identified as hydrophobic DESs, forming H-bonds between a covalent organic
compound and the carboxylic acid.

Miscibility is an absolute characteristic that is not expressed in numbers. Visual
assessment is the most frequent determination of miscibility. When a mixture is miscible,
there is no partial mixing, no layers or precipitates are formed, and no separation occurs.
Miscibility can be defined using the same system as solubility, i.e., unlike dissolves unlike
and like dissolves like. If a mixture is immiscible, it will form layers. Liquids have a
tendency to be miscible with liquids of equal polarity. This works the same for nonpolar
materials; the attractive or repulsive forces between molecules in the mixture will be
almost the same even if other molecules have been included. A liquid with a different
polarity to water would be immiscible in water. For example, hexane will not be miscible
in water. This also applied to the five DESs that did not mix with water, demonstrating
their hydrophobicity for further use as lipase enhancers.

2.1.2. Thermal Analysis

L-menthol melts at 42.96 ◦C. This is in agreement with a study by Schmitz et al. [31].
The melting temperatures in Table 1 clearly show that the solvents’ melting points varied
from that of the initial pure components. From the thermogram obtained, all peaks are
endothermic, implying a fusion method.
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Table 1. Melting points for menthol and DESs determined throughout the study.

HBD, HBA/DES Tm (◦C)

Menthol 42.96
Propanoic acid −21.00
Butanoic acid −7.90
Hexanoic acid −3.40
Octanoic acid 16.70
Decanoic acid 31.60

DES 1 1.37
DES 2 133.90
DES 3 152.44
DES 4 −14.61
DES 5 −5.72

One of the most used thermal analysis methods is differential scanning calorimetry
(DSC), which measures the energy and temperature correlated with thermal events such as
glass transitions, crystallization, and melting. This technique has been used in several works
to examine the thermal changes that occur in the DESs [5]. When a material undergoes
a thermal event, known as an endothermic reaction, the material effectively absorbs the
energy. L-menthol is reported as a component with low melting enthalpy, suggesting
that L-menthol is a good contender for formulating deep eutectic systems. When the
compounds are in DES form, the peaks observed are different from those of the individual
components, which shows a supramolecular transformation. This also confirms that these
DESs are supramolecular complexes, ranging over a broad temperature spectrum in the
liquid state. Less pure compounds will consequently exhibit a prolonged melting peak that
starts at a lower temperature as compared to a pure compound. The charge delocalization
caused by the hydrogen bonding between a chloride ion and molecules of fatty acids
may be the cause of the melting point drop; a melting point depression occurs in all the
DESs. Ribeiro et al. [11] reported similar trends for L-menthol DESs at the same ratio,
where L-menthol:Octanoic acid and L-menthol:decanoic acid Tm were −10.35 and 14.35,
respectively. We suggest that differences in readings could be due to systematic errors.

2.2. Screening of Lipases in Different Types of DESs

Four different types of lipases (RNL, CRL, AML, and PPL) were selected in this
study due to their versatility and because they are widely used in the aroma and flavor
industry, the fat and oil industry, and the pharmaceutical industry, and are applicable as
biosensors that display a particularly wide substrate specificity on both triglycerides and
sterol esters. For example, Hümmer et al. [32] reported hydrophobic DESs as reaction
media for the lipase-catalyzed esterification to synthesize menthol fatty acid esters. They
observed that the established DES reaction systems are pristine reactant mixtures that allow
for solvent-free lipase-catalyzed esterification.

Therefore, this study demonstrates the fluctuation of lipase activity in the different
hydrophobic DESs (Figure 3). The free lipase (control) corresponded to 100% of relative
activity for all lipases. After being activated with different types of hydrophobic DESs, the
relative activity of each lipase (RNL, CRL, AML, and PPL) was observed. In general, it
was found that the long-chain fatty acid DESs used in this work were more stable than
the other DESs. Similarities were observed in RNL and AML, as they both exhibited the
highest activity in DES 5. This finding was in agreement with Hollenbach et al. [33], as
DES 5 can result in the highest initial velocity reaction during the enzymatic synthesis of
glucose monodecanoate.

Lipase from PPL demonstrated a lower relative activity compared to the control (free
lipase) when activated with different types of hydrophobic DESs (DES1–DES5). On the
other hand, DES 3 caused a severe loss of activity in both AML and RNL, where only AML
was negatively affected by DES 4 and RNL in DES 3. In DES 3, the CRL activity was seen



Processes 2023, 11, 547 6 of 21

to slightly decrease (an approximate 10% reduction in activity), whereas 38% of the activity
was lost in DES2.
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2.3. Comparison of Lipase Activity in Menthol-Based DESs and Other Solvents

The relative activities of lipases were assessed in different solvents based on the
statistical analyses. Figure 4 depicts the relative lipase activity of the solvents and co-
solvents used. The AML@DES-5 has the significantly (p < 0.05) highest lipase activity,
followed by RNI-DES 4 and RNI-DES 5. The ranking of lipase activity as affected by
the solvents and co-solvents is as follows: AML-DES 5 > RNL-DES 4 > RNI-DES 5 >
PPL-NADES 2 > RNI-DES 1, where the lipase activity of these solvents and co-solvents
was significantly different (p < 0.05). Figure 5 arranges the solvents and co-solvents into
decreasing ranking indicators: from the highest lipase activity to the lowest lipase activity
by computing the least (LS) means of the lipase activity. The RNL-DES 5, PPL-NADES 2,
and PPL-NADES 1, which had the highest lipase activities with insignificant differences
of means, were the most suitable reaction media, while AML-DES 3, AML-DES 4, and
RNL-DES 3 were the least suitable reaction media for hydrolysis in this study.

Based on this analysis, we examined both RNL and AML with DES 4 and 5 to validate
the statistical findings. The results can be seen in Figure 6, where the data revealed that
RNL in DES 5 as a reaction medium shows outstanding performance in terms of enhancing
lipase activity; hence, it was selected as the study case.

2.4. Activated Lipase Enzymatic Activity and Adsorption

The adsorption capacity of free and activated lipase with DES5 is presented in Table 2
along with their enzymatic activity. The outcome demonstrates that, compared to free
RNL, the RNL@DES-5 specific activity increases by 1.18-fold. This result is in accordance
with Cao et al. [34], who reported that the hydrophobic DES suspension (L-menthol:oleic
acid) shows an increase in specific activity of 1.96 times and a higher release yield of
intracellular enzyme of up to 114.58%. Remarkably, an increase of over 60% was observed
in RNL@DES-5 activity. Lipase activity yields of free RNL and enhanced RNL@DES-5 were
at 93.47% and 167.58%, respectively. Fungal lipases have received a lot of attention due to
their well-known ability to be produced by local microorganisms and their distinct catalytic
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characteristics. Among those, lipase-producing fungi belong to the genera of Rhizopus
sp. [35]. The unique stability of the RNL is demonstrated in these results. Lipases can
be maintained in a DES mixture or be activated because of the hydrogen bond formation
between HBD and salt, according to a study by Elgharbawy et al. [36]. This results in a
major alteration in the DES chemical composition which increases the activity of enzymes
by increasing the interaction of hydrogen bonds and lowering the thermodynamic water
reaction medium of activity.
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The higher specific activity of RNL@DES-5 could be attributed to increased density
and, hence, increased specific gravity, as it signifies how heavy the fluid is. With the
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incorporation of the DES, the density and viscosity rise. These outcomes are in accordance
with our earlier research in which IL was used as an extractant [37]. Because of this,
compared to free RNL (6.09%), the RNL@DES-5 (30.03%) has a higher rate of desorption.
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Figure 6. Relative lipase activity in the presence of DES 4 and DES 5. AML = Amano lipase PS, from
Burkholderia cepacian, ≥30,000 U g−1) and RNL = Rhizopus niveus lipase, ≥1.5 U mg−1). Means with
different superscript alphabets differ considerably (p < 0.05). DES4 = Menthol:Octanoic acid and
DES5 = menthol:decanoic acid (1:1). Conditions: concentration of lipase: 1 mg mL−1, 2 h, 300 rpm,
40 ◦C, and pH 7.0.

Table 2. Measurements of lipase activity and efficiency when DES 5 is present.

Sample Specific Activity
U. mg−1 Protein

Activity Yield
(%)

Absorption
mg mL−1

Desorption
mg mL−1

Desorption
(%)

* Free RNL (Control) 6.17 ± 0.05 93.47 ± 1.2 50.22 ± 3.5 47.16 ± 3.5 6.09 ± 1.0
RNL@DES-5 7.30 ± 0.04 167.58 ± 2.5 125.75 ± 5.6 87.99 ± 5.5 30.03 ± 2.5

* RNL = Rhizopus niveus lipase. RNL@DES-5 = RNL in menthol:decanoic acid (1:1), Conditions: concentration of
lipase: 1 mg mL−1, 300 rpm, 2 h, pH 7.0, and 40 ◦C.

2.5. Half-Life (t1/2) and Stability of Free and Activated Lipase in the Presence of DES

The stability of the lipase was measured by monitoring the activity experimentally
over time until it reached 50% of the initial value (A = 0.5A0). The half-life (t1/2) was
calculated using the exponential decay model and refers to the rate at which the activity
is proportional to the value remaining; in other words, 50% of the initial value. The
experimental results revealed that the half-life for free and activated lipase (RNL@DES-5)
was approximately 9 and 29 days, respectively. The experimental results are in line with
the model presented in Table 3.

The half-life of RNL was extended by 14 days when DES5 was used to activate it.
The potential for an enzyme to be used in industry rises with a longer half-life since it is
stable for a prolonged period of time. The free and activated lipase rate constant (k) for
lipase activity is indicated in reference to how long that enzyme has been stored (days).
Since lipase storage time is calculated as the reciprocal of k, the activated lipase tau value
was larger than that of the free lipase. Tau is a constant time that is stated as storage time
units. Additionally, compared to free lipase, the difference range between the plateau and
Y0, which is represented in the same units as the relative activity of lipase, is greater. The
one-phase non-linear decay model findings demonstrate that activated lipase has a longer
half-life than free lipase. This can further be explained by the molecular interaction that
enhances the stability and, hence, activity of lipase. When the DES is in contact with an
enzyme, a hydrogen bond is formed between the two. The hydrogen bonding imparts
stability and thus a greater half-life. Further, it can be caused by the hydroxy functionality
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presence in fatty acids and DES, enabling additional hydrogen bond donor/acceptor sites,
and maximizing stability and lipase activity. The functionalization of IL for the activation
of enzymes is well supported by these findings [38]. A study by Pätzold et al. [39] also
demonstrated lipase-catalyzed esterification in a menthol and lauric acid (LA)-based DES.
They found that the lipase-catalyzed with the DES could achieve a higher stability, up to
2.25 days, compared to LA (one day) substrates only. Hence, it indicates that hydrophobic
DESs can enhance lipase stability.

Table 3. One phase non-linear decay model of free and activated lipase.

Free RNL RNL@DES-5

Best-fit values
* Y0 98.50 108.30

* Plateau −710.30 −39,281
k 0.03952 1.765 × 10−5

Half-life (days) 9 29
Tau 25.30 56,671

Span 142.6 202,937

Goodness of Fit
R squared 0.9780 0.8909

Sum of squares 287.4 1366
RNL = Rhizopus niveus lipase. RNL@DES-5 = RNL in menthol:decanoic acid (1:1), Conditions: concentration of
lipase: 1 mg mL−1, 300 rpm, 2 h, pH 7.0, and 40 ◦C. * The relative lipase activity at zero time (Y0) and infinite
times (plateau). Constraints; k > 0.

2.6. Recyclability of Activated Lipase and Total Protein Recyclability

When compared to free lipase, activated RNL@DES-5 is observed to be more recyclable.
By evaluating the lipase relative activity following recovery, it is possible to determine the
lipase reusability (Figure 7) and total protein (Figure 8). Over two cycles, the remaining
enhanced RNL (124%) is seen to be higher than free lipase (98%), whereas both samples
retained 40% and 32%, respectively, by the 5th cycle. After the 5th cycle, the total protein
is greater (~46%) than the free lipase (41%). These findings show that the hydrogen
bonds provided by the DES in the reaction medium have improved the activated lipase
(RNL@DES-5) stability.
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Figure 7. Recyclability of RNL (control) and RNL@DES-5 (sample). DES5 = menthol:decanoic acid
(1:1) and RNL = Rhizopus niveus lipase. Conditions: concentration of lipase: 1 mg mL−1, 2 h, 300 rpm,
40 ◦C, and pH 7.0.
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Figure 8. Total protein recyclability of RNL (control) and RNL@DES-5 (sample). DES5 = menthol:decanoic
acid (1:1) and RNL = Rhizopus niveus lipase. Conditions: concentration of lipase: 1 mg mL−1, 2 h, 300 rpm,
40 ◦C, and pH 7.0.

From the third to the fifth cycle, the RNL@DES-5 activity was observed to gradually
decrease. A strong correlation of a gradual decrease from the fourth to the fifth cycle may
be seen in the total protein reusability. The activity of RNL@DES-5 drops by 10% after
the first reuse. This could be attributed to the slow enzyme denaturation during process-
ing [40]. In addition, continuous recycling causes the DES amount to reduce and hence the
reduced activity.

2.7. Kinetic Parameters of the Enhanced Lipase

To further prove the effectiveness of the tested menthol-based DESs, kinetics param-
eters were calculated, and the obtained data are presented in Table 4. Since KM values
represent the affinity of the enzymes, it was seen that lipases, in general, had lower KM
values in menthol-based DESs compared to the control samples (in the range of 6 to 16 times
lower), which implies greater affinity. Furthermore, the values of Vmax were higher than
the control samples, implying higher activity. In addition, the presence of menthol-based
DESs increases the lipases’ catalytic efficiency, as suggested by the kcat values. The kcat/KM
value represents the enzyme specificity for each substrate when the enzyme holds more
than one possible substrate. The larger values of kcat/KM signify higher specificity of the
lipases in the DESs, except for AML in DES 4. The value of kcat increased in the range of
2-fold to 5-fold for the lipases tested. In general, enzymes possess values of kcat/KM close
to 1.67 × 1011–1.67 × 1012 mM−1 min−1 (108–109 M−1 s−1), implying that the reaction
occurs as soon as the substrate and the enzyme colloid. When the KM is low and kcat is
high, the best substrates are anticipated [41].

Table 4. Lipase kinetic parameters when hydrophobic DESs are present.

Lipase Reaction Medium KM
(mM)

Vmax
(mM min−1)

kcat
min–1

kcat/KM
(min mM–1)

RNL

Control 1.27 3.39 12.69 9.99

DES 4 0.27 59.56 21.71 80.41

DES 5 0.078 22.61 25.98 333.08
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The increased water content corresponded with polarity changes, which may influence
the lipase selectivity towards the substrate, pNPP, which might be the reason for the
inhibitory effect of DES 3. However, since the majority of the DESs used activated the
lipases, we can assume the formation of the double layer, where the enzyme performed in
the minimum amount of water needed. This could be due to the hydrophobic nature of
the DESs; hence, lipases could function in the hydrophobic DESs by initiating the bonding
of hydrogen with the carboxylic group of fatty acids or menthol hydroxy group [23].
The increased alkyl chain length of the HBD and fatty acids could be one reason for the
activation of lipases as the molecule became larger and thus had a stronger intermolecular
attraction. A large chain-length molecule experiences stronger London dispersion forces
(part of van der Waals forces). This is because longer molecules possess more sites to be
attracted to other molecules [42,43]. Therefore, it is expected that the lipase molecules have
more places to locate and function within the DES layer rather than the buffer solution.
Furthermore, the lipase structure contains both hydrophilic and hydrophobic surfaces.

The activation of some lipase surfaces suggests enzyme conformational changes in
which a surface domain known as the lid shifts and displays the active site region. Com-
pared to the enzyme’s closed state, this active lipase conformation is more hydrophobic.
The individual enzyme mobility at the water-lipid interface is another important character-
istic on the molecular level. If the lipase attaches to the surface in a possessive manner, the
enzyme is considered to be acting in the ‘scooting mode’, whereas the ‘hopping mode’ al-
lows for an interchange between the surface and the solution. By accumulating at interfaces,
DESs might convert characteristics such as surface hydrophobicity and charge. In addi-
tion, protein adsorption might be affected by the presence of surfactants in many means,
starting from completely restricted adsorption to cooperative adsorption, resulting in a
higher adsorbed quantity [44]. Moreover, pre-absorbed proteins might also be displaced
from solid surfaces by the presence of surfactants. This is accomplished by solubilizing
it, either by protein replacement at the protein binding location or surface. In addition,
the conformational stability and the protein surface hydrophobicity are affected by small
complex surfactants of ionic concentrations with most solutions [44]. Based on that, we
assume that the lipase, in this case, is adsorbed on the hydrophobic surface (DES layer), in
which it is further activated (Figure 9).
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layer (DES) and a buffer solution (in water).

Overall, the menthol and fatty acids DESs were suitable enhancers for lipases, although
the effect of hydrophobic DESs on enzymes has not yet been fully explored. Hydrogen
bonding and ionic interactions have been proven to play crucial roles in the structure of IL
toward the activity of lipase. Because they can absorb water molecules in the enzyme area,
they may inhibit lipase activity, causing inactivation due to a dehydrating effect [45]. This
is because the IL network will be stretched and eventually disrupted when it is exposed
to water molecules after dilution [46]. The aqueous solutions of ILs and lipase activity
interactions reveal that anion IL behavior is determined by its water molecules’ interactions,
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supporting the dependency of biological IL activity in the water. A study by Di et al. [47]
shows pretreated activated lipases (Rhizomucor miehei) using 1-butyl-3-methylimidazolium
hexafluorophosphate ([BMIM][PF6]) and an enzymatic IL-strengthened technique. They
found that when lipase was pre-treated with IL, its pH tolerance range decreased, and its
hydrolysis activity was significantly inhibited. According to Bingham and Ballone [48],
small hydrophilic anions such as IL-BC and IL-BIC stay in the lipase solution, while more
hydrophobic solvents such as hydrophobic DESs create a film at the water interface. As
mentioned by Makoś et al. [49], the lower water content in hydrophobic DESs decreases
with the increasing length of the carbon chain, which in turn increases the hydrophobicity
of the HBD. Hence, Hümmer [50] reported that when they examined the esterification of
lipase-catalyzed DES compounds as a reaction medium, CRL was found to be significant
in menthol:fatty acid DESs. Since commercial and natural lipase preparations have been
demonstrated with DES activity, they have been considered environmentally friendly
and cheaper for lipase-catalyzed reaction applications. As observed in the case of DES 3,
increased fluctuations and the loss of the secondary structure, the partial loss of which
was suggested by Shehata et al. [18], of a specific area may describe the lipase activity’s
radical reduction. A recent study reported a successful DES made up of (-)-menthol and
decanoic acid in the glucose mono-decanoate synthesis using iCALB (lipase B from Candida
antarctica, activated on acrylic resin). The recently fabricated hydrophobic DESs show better
yields than hydrophilic DESs. This group has demonstrated that the enzyme possessed
remarkable reusability and stability in a menthol:decanoic acid DES for at least five cycles
of the reaction without an activity loss [33].

2.8. Activated Lipase and DES Fourier Transformed Infrared (FTIR) Spectroscopy

In order to ascertain the relationships between the active lipase and chemical shifts
and infrared bands, FTIR analysis reveals how DES5 affects RNL. Table 5 presents the
analysis. The addition of DES5 is what causes the significant variations in the FTIR spectra
of both free and activated lipase (Figure 10).

Table 5. FTIR spectra of key functional groups and their correspondence wavenumber (cm−1) of free
lipase, DES5, and RNL@DES-5.

Wavenumber (cm−1) Bond/Stretching

3600–3200 O-H stretching vibration
3022–2850 C-H stretching vibration
1712–1700 C=O stretching vibration
1206–1171 C-O stretching vibration
1065–1061 S=O stretching vibration

991–842 C=C stretching vibration

From the spectrum, the free lipase, DES 5, and RNL@DES-5 show a band absorption
between 3200 and 3600 cm−1, which is correlated to O-H vibration stretching. One potential
explanation is that the force constant is significantly reduced when an oxygen atom cloud
point is transferred to a hydrogen bond [50]. Furthermore, the peaks at 3022 and 2850
were observed in free lipase, DES 5, and RNL@DES-5, confirming the existence of a C-H
stretching vibration. The O-H group shift in wavelength number in the RNL@DES-5 as
compared to free lipase is evidence of hydrogen bonding and the synthesis of DES [51].
The peaks that appear at 1700 cm−1 are due to the vibration of C=O bonds stretching,
confirming the existence of menthol-based DESs with decanoic acid (DES 5).

The vibration of the S=O stretching gives rise to an intense stretching peak normally
found between 1065 and 1061 cm−1. The S=O stretching is most likely caused by the DES
components’ robust intramolecular interactions [51]. Additionally, the bending of the C=C
band at 991 and 842 cm−1 of DES 5 demonstrates that DES 5 was successfully activated
with RNL.
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Figure 10. FTIR stacking spectra expressed as a percentage of free lipase (%T), DES5, and RNL@DES-5
after incubation at the following conditions: lipase concentration: 1 mg mL−1, 2 h, 300 rpm, pH 7.00,
and 40 ◦C.

2.9. Morphology of Free and Activated Lipase

The surface morphology of the free and enhanced lipase was observed under scanning
electron microscopy (SEM). The RNL morphology as the control (a) and RNL@DES-5 (b) are
shown in Figure 11, with 10k and 40k magnification, respectively. The SEM images of lipase
molecules (RNL) as the control and RNL@DES-5 were examined; it was seen that polygonal
granules are formed in the RNL morphology. Unlike the control (RNL), the SEM image
revealed that the lipase molecules (RNL) were activated with DES-5, as it demonstrates a
cloud-like appearance upon the introduction of DES 5. The figure shows that some of the
enzyme clumps tend to adhere to the lipase molecules. According to Cao et al. [52], it has
been widely accepted that the almost hydrophobic DESs have a significant impact on the
activity and structure of enzymes. In a study reported by Guajardo et al. [53], the activated
lipases in cross-linked aggregates (CLEA) generate an effective biocatalyst that is extremely
stable in non-traditional, low-viscous DESs. Consequently, the FTIR results were supported
by the morphology of the activated lipase (RNL@DES-5) from the SEM images. On the
other hand, enhancing the enzymatic activity and behavior of enzyme immobilization will
be greatly aided by the changes in the structure of lipases that result from immobilization.
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2.10. Application in Reverse Reactions: Synthesis

To illustrate the possibility of DES as a medium for ester synthesis, RNL was evaluated
for its ability to synthesize esters in the presence of hexane and DES5. The result showed
that the RNL@DES5 was able to catalyze the synthesis of ethyl decanoate (Figure 12). The re-
sults demonstrated that esterification occurs at 40 min. The free fatty acid conversion in the
DES5 medium reached 78%, which is higher than the organic medium (58%) after 60 min.
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Conditions of activated RNL@DES5 = pH 7.0, 40 ◦C for 2 h.

Hümmer et al. [32] produced (-)-menthol fatty acid esters using the lipase-catalyzed
esterification of the DES molecules themselves. DESs based on (-)-menthol and fatty acids
(octanoic, decanoic, and dodecanoic acid) were used as the reaction medium. Without
requiring the addition of a solvent, DES serves as both a reaction medium and substrate pool
simultaneously. Their results showed that DES reaction systems demonstrated esterification
under solvent-free conditions. The results of this study agree with what was reported, as
RNL in DES5 was able to perform the esterification without the addition of organic solvents.

3. Materials and Methods
3.1. Materials

Sodium deoxycholate (purity 97%), isopropanol, and p-nitrophenyl palmitate (pNPP)
were purchased from Sigma-Aldrich (U.S.). Fatty acids, including butanoic acid (Sigma
Aldrich), decanoic acid (R&M, 99%), octanoic acid (R&M, 98%), hexanoic acid (Sigma
Aldrich, 96%), and propionic acid (R&M, 99%), were analytical grade chemicals. All analyt-
ical and synthesis procedures were performed with deionized (DI) water. Descriptions of
the lipases that were used are in Table 6.

Table 6. The study abbreviations of the lipases.

Lipases Description Abbreviation

Lipase from Rhizopus Niveus
(Sigma-Aldrich) ≥1.5 U mg−1 RNL

Lipase from porcine pancreas
(Sigma-Aldrich) 100–500 U mg−1 protein PPL

Lipase from Candida Rugosa
(Sigma-Aldrich) ≥700 U mg−1 solid CRL

Amano lipase PS, from
Burkholderia Cepacia

(Sigma-Aldrich)
≥30,000 U g−1 AML
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3.2. Menthol-Based DESs Preparation

To synthesize DESs with a 1:1 molar ratio, a specific amount of menthol and several
fatty acids (decanoic acid, propionic acid, hexanoic acid, butanoic acid, and octanoic
acid) were combined. Figure 13 demonstrates the procedure to synthesize hydrophobic
deep eutectic solvents (DESs) using menthol as a hydrogen bond acceptor and fatty acids
as hydrogen bond donors. The molar ratio was designated based on the literature by
Tang et al. [54]. Each DES was synthesized by placing the required components into a glass
flask that was completely sealed and heated without stirring for four hours at 70 ◦C. It was
expected that an effective DES would be formed by a homogeneous and transparent liquid.
Prior to storage, the mixture was cooled to room temperature.
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3.2.1. Solvent Miscibility Test of Hydrophobic DESs

To test the DES’s hydrophobicity, 2.5 mL of deionized water was transferred into a
glass container. Then, 1 mL of each DES was transferred into the same container. The
miscibility of the DES with the water was observed.

3.2.2. Thermal Analysis of Hydrophobic DESs

Aluminum cells were heated (10 ◦C min−1) for the differential scanning calorimetry
(DSC) analysis (Mettler Toledo DSC 1, USA). In the liquid aluminum pan, 10–15 mg of the DES
sample was added. Samples were heated to temperatures ranging from −30 to 500 ◦C, and
nitrogen was used for the analysis (50 mL min−1). The methods were executed according
to Aroso et al. [5].

3.3. Assay (Enzyme Substrate Solution) Preparation

The pNPP (7 mg) was present in 4 mL of isopropanol in the substrate-enzyme solution
(solution A). Arabic gum (0.07 g), sodium deoxycholate (0.14 g), and 65 mL of pH 7.0
phosphate buffer (50 mM) were mixed to make Solution B. To eliminate the turbidity, Triton
X-100 (350 µL) was dissolved in Solution B. A mixture of solutions A and B was prepared
quickly for every assay.

3.4. Lipase Activity Assay

A colorimetric assay was used to determine the activity of the lipase. The procedure
was performed as reported previously by Elgharbawy et al. [36]. The hydrolysis of para-
nitrophenyl palmitate (pNPP) to p-nitrophenol was chosen as the basic reaction to assess
the activity of the enzyme. To start the reaction, 300 µL lipase or lipase/DES was added
to 700 µL of the fresh solution (A + B). Then, all tubes were allowed for incubation in
a pre-heated water bath (40 ◦C, 15 min). The reaction was terminated by the addition
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of 300 µL acetone:ethanol solution (1:1). The p-nitrophenol (pNP) absorbance at 410 nm
was measured via the MultiskanTM GO microplate spectrometer. Measurements were
performed in triplicate for each DES. The results were then recorded and reported as the
average of the triplicates ± standard deviation (SD).

For each DES solution, individual standard curves were generated because the molar
extinction coefficient can differ due to the different pH values and DES presence. The
unit of measurement for lipase activity was mg−1 and the amount of enzyme required to
produce one mole of pNP per minute was known as one unit. The optical density of DES
without enzyme was measured and calculated for the correction of enzyme value. The
relative activity in regard to the initial concentration of the enzyme at zero time (I0) and the
activity (%) achieved after the incubation step was calculated using Equation (1).

Relative activity (%) =
residual activity
initial activity

× 100 (1)

3.5. Lipases Activities in DES Screening

To evaluate the influence of hydrophobic DESs on biological molecules, lipases were
selected as the targeted protein molecules. The four lipases (CRL, RNL, AML, and PPL),
with fixed concentrations (one mg enzyme in one mL buffer) were mixed in pH 7.00
sodium phosphate buffer (50 mM). Then, each DES was added at a ratio of 1:4 of the total
reaction volume. All reaction mixtures were heated to 40 ◦C and agitated at 300 rpm in a
thermomixer (BIOBASE).

3.6. Comparison of Lipase Activity in Menthol-based DESs and Other Solvents

To validate the exceptional enhancement and stability of lipases in the DESs, their
activity was compared with natural deep eutectic solvents (NADESs) and ionic liquids
(ILs) [55]. The relative activity was then assessed based on statistical analyses. The NADESs
used were NADES 1 (ChCl:fructose:water (5:2:5)), NADES 2 (ChCl:sucrose:water (4:1:4)),
and NADES 3 (ChCl:glucose:water (4:1:4)) [36]. The ILs used were IL-BC (1-butyl-2,3-
dimethylimidazoliumimid chloride), IL-BIC (N-butylpyridinium chloride), and IL-TTI
(Tetrabutylammonium bis(trifluormethylsulfonyl)amide), which are commercially available
from MERCK.

3.7. Procedures for Chemical and Analytical Analysis
3.7.1. Protein Content Determination

The Bradford assay (using Bio-Rad reagent) and bovine serum albumin (BSA) were
used, respectively, to measure the protein standard curve and its content. In total, 160 µL of
reagent and 40 µL of the sample were mixed using the microplate mixer feature for each
microplate well. Using a MultiskanTM GO spectrometer (Thermofisher), the absorbance
was measured at 595 nm after 5 min.

3.7.2. Measurements of Enzyme Activity and Adsorption

The method by Li et al. [56] was used to study the lipase adsorption-desorption
activity in this study. The selected pH of the buffer was combined with free (0.05 mL) or
subsequently activated lipase in a 15 mL centrifuge tube. For 2 h, the centrifuge tube was
incubated in a thermomixer (BIOBASE) at 40 ◦C. The supernatant was then obtained after
centrifuging for 15 min at 4 ◦C. The total amount of protein for the unabsorbed enzyme
was determined with the Bradford assay. The initial amount of protein in the supernatant
and total enzyme following the 2 h of adsorption was determined to calculate the amount
of lipase that had been absorbed into the substrate. The adsorption parameters were
calculated using Equation (2) using the Langmuir-type adsorption isotherm.

Pads = Kp .
Pads,m

1 + Kp . P
. P (2)
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where P is the total free enzyme (mg mL−1) after adsorption in the supernatant, Pads,m is
the total enzyme adsorbed (mg g−1), Kp is constant adsorption (mL mg−1), and Pads is a
measurement for affinity adsorption. The graph plots of P/Pads,m against P; Kp and Pads,m
were then determined. To calculate desorption at 40 ◦C, the sample volume was 5 mL,
diluted with buffer, and incubated for 2 h. After 15 min, the samples were centrifuged, and
the protein content was determined. The average percentages of enzymes are quantified
by Equation (3).

Lipase desorption (%) = (
C − D

C
)× 100 (3)

where C and D are the amount of protein unabsorbed (mg g−1) and the sum of the adsorbed
lipase (free and activated) (mg g−1) over the previous 2 h, respectively [57]. The enzyme
relative activity (in percent) and the remaining activity yield was calculated according
to Equation (4) [58] and (5) [59], respectively. Meanwhile, Equation (6) demonstrates the
specific enzyme activity calculation [60].

Relative activity (%) =
residual activity
initial activity

× 100 (4)

Activity yield(%) =
The activity o f bound lipase

The activity o f lipase added in the initial solution
× 100 (5)

Specific activity
U

mg
protein =

Initial activity
f inal protein content o f lipase

(6)

3.7.3. Half-Life (t1/2)

For a period of time (days), until it reaches 50% of its initial value, lipase pre-incubation
stability was observed. It was incubated at the optimum pH with DES at 4.0 ± 2.0 ◦C.
When the activity of the enzyme reached 50% of its initial value, the results of free and
activated lipase were recorded, and the relative activities were calculated. The half-life
(t1/2) was computed statistically using version 9.0.0 GraphPad Prism and the one-phase
non-linear decay model was obtained, following Equation (7):

t1/2 =
0.693

k
(7)

where t1/2 is in the time units and k is the constant rate in the enzymatic reaction.

3.8. Total Protein Recyclability and Activated Lipase Recovery in DES

In order to assess the total protein reusability of pNPP, the activity of activated lipase
was continuously used in the hydrolysis reaction. After each recyclability cycle, the used
activated lipase was isolated and retrieved for 2 h using pH 7.0 PBS at 40 ◦C. As stated in
Section 2.4, the lipase activity was determined and recorded until the A0 reached 50%. To
estimate the relative activity of the enzyme and determine the enhanced lipase potential
for recycling, the initial activity of the enzyme (A0, specified as 100%) was employed.

3.9. Lipase Kinetic Parameter in the Presence of DES

To further evaluate the performance of the DESs, the kinetics parameters were calcu-
lated (in optimal conditions) at different substrate concentrations. The experimental kinetic
data were plotted using the Lineweaver–Burk plot to evaluate the maximum velocity (Vmax)
and Michaelis–Menten constant (KM). The enzymatic affinity is the KM value. The values
were acquired using the GraphPad Prism version 9.0.0 and Michaelis–Menten model, ap-
plying a non-linear regression. Both the catalytic efficiency (kcat/KM) and turnover number
(kcat) could be assessed using the GraphPad Prism Version 9.0.0 since the required enzyme
total quantity is specified.
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3.10. Statistical Analysis

Data were reported as the standard deviation ± the mean after being analyzed in
triplicate. A Tukey’s test with one-way analysis of variance (ANOVA) was identified at
a 95% confidence level (p < 0.05) between the means via XLSTAT-Pro (2019) statistical
software (Addinsoft, Paris, France). Kinetics analyses were conducted using GraphPad
Prism version 9.0.0.

3.11. Characterization
3.11.1. Fourier Transformed Infrared (FTIR) Spectroscopy

An FTIR spectrometer 400 (Perkin Elmer, Waltham, MA, USA) with a transmittance
mode at 4000 to 500 cm−1 with 4 cm−1 resolution was used to perform the FTIR anal-
ysis. To ascertain modifications in functional groups, 0.1 g of free and activated lipase
were evaluated.

3.11.2. Scanning Electron Microscopy (SEM) Analysis

Using an SEM (FEI Quanta 200, Hillsboro, Oregon, U.S.) at 5 kV, the morphologies of
the free and activated lipase were examined. The samples, which weighed about 50 mg,
were adhered on aluminum stubs with the aid of pad carbon before being coated with a
tiny layer of platinum to improve the conductivity of electrons.

3.12. Application in Reverse Reactions: Synthesis

The reaction mixture consisted of ethanol, and decanoic acid diluted in hexane (6 mL
of reaction medium) was used as the substrate. An esterification reaction in a DES system
was also performed under similar conditions using DES to substitute hexane in the reaction
medium. The reaction mixture was mixed in a 100 mL glass bottle sealed with a screwcap
and incubated in an incubator shaker with controlled temperature under fixed agitation
at 240 rpm for 60 min. The reaction was initiated by adding the RNL. The samples were
withdrawn from the reaction mixture at various time intervals (0.1 mL), diluted in 10 mL of
ethanol solution, and titrated with a standard 0.1 M NaOH using phenolphthalein as an
indicator to determine the residual decanoic acid concentration [61]. The reaction can be
observed in Scheme 1. The conversion percentage was determined as Equation 8:

Y =
C0 − Ct

C0
× 100 (8)

where:

Y = fatty acid conversion (%)
C0 = initial decanoic acid concentration (mM)
Ct = decanoic acid concentration (mM) after a certain time t (min) of reaction.
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4. Conclusions

Eutectic mixtures based on menthol were described in this report, providing insights
into the enzyme activation activity of hydrophobic DESs. Regarding enzyme activation,
lipases showed a high stability and catalytic activity in the hydrophobic DESs, particu-
larly in DES 4 and DES 5. Moreover, the reusability of activated RNL@DES-5 was up to
four subsequent cycles under ideal conditions. These improvements were attributed to
the unique hydrogen bonding of DES 5 that protected active conformations of RNL via
immobilization that was seen upon examination using FTIR and SEM analyses. DES 5
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also demonstrated the ability to catalyze ester synthesis with good performance and could
replace the use of organic solvents such as hexane in multiple industries. This confirms that
some of the developed hydrophobic DESs have potential applications in various organic
and industrial reactions.
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