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Abstract: Designing an efficient wireless sensor network (WSN) system is considered a challeng-
ing problem due to the limited energy supply per sensor node. In this paper, the performance of
several bi-objective optimization algorithms in providing energy-efficient clustering solutions that
can extend the lifetime of sensor nodes were investigated. Specifically, we considered the use of the
Moth–Flame Optimization (MFO) algorithm and the Salp Swarm Algorithm (SSA), as well as the
Whale Optimization Algorithm (WOA), in providing efficient cluster-head selection decisions. Com-
pared to a reference scheme using the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol,
the simulation results showed that integrating the MFO, SSA or WOA algorithms into WSN clustering
protocols could significantly extend the WSN lifetime, which improved the nodes’ residual energy,
the number of alive nodes, the fitness function and the network throughput. The results also revealed
that the MFO algorithm outperformed the other algorithms in terms of energy efficiency.

Keywords: moth–flame algorithm; bi-objective optimization; salp swarm algorithm; whale optimization
algorithm; LEACH protocol

1. Introduction

A wireless sensor network (WSN) is defined as a network with many embedded
wireless sensors with various sensing devices [1,2]. It is an infrastructure-based network
composed of communication, computing and sensing elements, which makes a sink node
capable of reacting to events within a certain context [3,4]. Typically, it is a governmental,
civil, industrial or commercial entity, where the environment could be an IT framework, a
biological system or the physical world [5]. Usually, a WSN includes thousands of randomly
deployed sensors. Theses sensors are battery-powered, and it is difficult to recharge them
after deployment [6,7]. Hence, energy efficiency is a significant challenge in WSNs, and
different mechanisms have been proposed to deal with this energy efficiency issue [8]. To
establish which relaying mode is more energy-efficient and to solve the issue of energy
efficiency optimization, a complete analysis of the energy efficiency of full-duplex and half-
duplex amplify-and-forward relay-assisted 60 GHz dual-hop indoor wireless systems is
presented in [9]. The cluster network topology concept is considered a promising strategy to
enhance the energy performance of WSNs. The basic concept of the Low-Energy Adaptive
Clustering Hierarchy, which is known as LEACH, is choosing the cluster node within an
unsystematic cycle and handing over the entire energy of the network to every node of
the sensor, as well as, on average, prolonging the network survival lifetime in addition
to reducing energy consumption [10–13]. For instance, reducing the transmission task of
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sensor nodes in a WSN can result in extending the service life of the sensor nodes [14].
However, the random technique of choosing the cluster node means that every single node
may turn into the cluster node, and there is a chance that a small energy node will turn out
to be the cluster node. An additional technique that uses a weighted-objective optimization
algorithm is the Moth–Flame Algorithm, which is known as the MFO algorithm and was
proposed in [15]. The MFO algorithm has several advantages [16]. The MFO algorithm is
popular due to its simple parameters and structure. Furthermore, since the MFO algorithm
is efficient, robust and easy to implement within different computer languages, it has
been widely used in many optimization applications [17]. The MFO algorithm combines a
population-based algorithm and a local search strategy to yield an algorithm capable of
global exploration and local exploitation [18]. Like other metaheuristics, the MFO algorithm
is simple, flexible and easily implemented; as a result, it can be utilized to solve a wide
range of problems [19]. Because of these merits, the MFO algorithm has been successfully
applied to various optimization problems, including scheduling [20], the inverse problem
and parameter estimation [21,22], classification [23], economics [24], medicine [25], power
energy [26] and image processing [27].

Several studies have investigated energy-efficient bi-objective optimization for cluster
head selection in wireless sensor networks. For instance, Latiff et al. proposed a novel
clustering algorithm based on Particle Swarm Optimization (PSO) called Centralized-
PSO (PSO-C); the cluster head (CH) selection process was formulated as a bi-objective
optimization problem to find the optimal cluster head set to form one-hop clusters to
balance energy consumption. The study considered each sensor node’s residual energy
and each cluster head’s closeness to its sensor nodes. The proposed algorithm minimized
the objective function to ensure that the sensor nodes with sufficient energy, as well as a
minimum distance from their neighbors, were selected as cluster heads [28,29]. Jadhav and
Shankar hybridized an energy-efficient CH algorithm based on the Whale Optimization
Algorithm (WOA). The proposed WOA-C algorithm contributes to the selection of energy-
aware CHs according to a fitness function that considers the node’s residual energy and
the sum of the adjacent nodes’ energy. The proposed algorithm was evaluated in terms
of energy efficiency, network lifetime, overall stability and throughput. Moreover, the
WOA-C algorithm’s performance was evaluated and compared with other standard routing
protocols, including the Low-Energy Adaptive Clustering Hierarchy (LEACH) [30]. Honey
Bee Optimization (HBO) was proposed by Selvi et al. to minimize energy consumption
through finding the optimal path, which is associated with a lower cost. The proposed
algorithm showed improvements in the network lifetime and throughput. HBO also
showed enhanced performance in terms of scalability and link quality [31]. Syed and Syed
developed the Weighted Salp Swarm Algorithm (WSSA) based on the weighted distance
position update for improving the convergence rate and performance of the SSA algorithm.
The WSSA was validated by many benchmark functions, where it was compared with
seven state-of-the-art algorithms. The results showed that the WSSA has an improved
convergence rate and performance. In addition, the proposed algorithm was applied to
the problem of optimal sensor deployment. The algorithm was applied on a probabilistic
sensor model to maximize the coverage, while it was applied on a radio energy model to
minimize the energy consumption [32]. Mann and Singh proposed an Improved Artificial
Bee Colony (IABC) algorithm for optimal sensor deployment. The proposed algorithm
was used for obtaining CHs and improved the energy efficiency. The results showed that
the optimal base station position could be obtained by changing the distance to the sensor
node number [33].

Hussain and Raziuddin proposed the Completely Informed Artificial Bee Colony
(CABC) for optimal CH positions and used a probability sensor model for coverage for a
wireless sensor network. The results showed improvements in the coverage rate in a WSN
using the proposed algorithm [34]. Li et al. proposed Ant Colony Optimization (ACO)
for an energy-efficient wireless sensor network. The algorithm saved on residual energy
and the distance of neighbor nodes. According to the pheromone value, the subsequent
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hop was updated as the distance between nodes was compared. The proposed algorithm
showed that a low energy node was not selected as the subsequent hop, which resulted in
the efficient load balancing of the network energy [35,36]. Jia et al. studied the maintaining
sensing problem coverage by optimizing energy consumption in a WSN. As opposed to
the existing consistent sensing model, the authors considered an excess of sensors with a
variable sensing radius to be randomly deployed in the monitoring area. A new coverage
control format founded on a selective non-dominated sorting genetic algorithm, which
is known as (NSGA-II), was implemented within a heterogeneous WSN. The algorithm
was applied in a distributed manner by developing a cluster-based architecture [37,38].
Vijayalakshmi and Anandan investigated the choice of the best path within routing that
develops a network’s energy efficiency and network lifespan. Different meta-heuristic
methods, mainly PSO, have been efficiently utilized that have reduced the problem of
local optima. The projected technique was included in the foundation of the algorithms
of Tabu as well as PSO search. The results showed the effectiveness of the Tabu PSO that
was proposed through the ornamental cluster-shaped number and the percentage of nodes
alive, and the decrease in the average continuous delay and the average of the packet loss
speed was illustrated [39,40]. Jameii, Faez and Dehghan projected a new algorithm for
optimizing the lifetime, connectivity and coverage of a network within wireless sensor
networks. NSGA-II was applied to make the best use of the exposure area for presenting
the consumption of the balanced energy as well as for reducing the conduction variety
of the nodes [41]. Jameii, Faez and Dehghan used NSGA-II to optimize the rate of the
coverage of the observing area, the consumption of the balanced energy, and number of
active sensor nodes while adaptively mutating the rates and assigning crossover to advance
the performance of the algorithm of optimization through learning automata [42]. Bara’a,
Khalil and Cosar used NSGA-II to choose mobile sensor locations, offering a long network
lifetime as well as a high coverage. The planned system included mobile sensors and a
number of targets. The most important idea of the algorithm was making the most of the
detected targets number and the network lifetime together [43].

Following an investigation on the best bi-objective optimization algorithm technique
for increasing the WSN life span, we found few research that had been conducted on the
use of the moth–flame algorithm for cluster head selection in a wireless sensor network.
Therefore, this research proposes a bi-objective optimization algorithm based on MFO
as a WSN clustering technique by making use of a weighted-sum approach. This study
also compared the proposed algorithm with SSA, WOA and LEACH, some of the most
well-known hierarchical routing protocols for wireless sensor networks. The adopted
algorithm (MFO) demonstrated superior performance regarding efficiency (the speed at
which an algorithm finds accurate answers, converges and computes) and effectiveness
(an algorithm’s capacity for generating high-quality solutions) in solving wireless sensor
optimization problems. This paper is organized as follows. The introduction is presented
in Section 1. Related works and background are provided in Section 2. Section 3 is devoted
to the WSN energy consumption model as well as the complexity analysis. The simulation
results and discussion are addressed in Section 4. Conclusions and further work are covered
in Section 5.

2. Related Works and Background
2.1. Selection of the Bi-Objective Optimization Algorithms

It is worth noting that the adopted algorithms (MFO, SSA and WOA) have demon-
strated superior performance regarding efficiency (the speed at which an algorithm finds
accurate answers, converges and computes) and effectiveness (an algorithm’s capacity for
generating high-quality solutions) in solving optimization problems. These metaheuristic
optimization algorithms were chosen based mainly on their searching scope and simplicity
as well as other critical factors such as time complexity, problem functionality, the number
of objectives, output optimality and the number of starting solutions.
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From a searching scope point of view, these algorithms look at the entire problem
space as a single entity when trying to find the global optimum solutions via a good
balance between exploitation and exploration in order to improve the rate of algorithm
convergence [44,45]. Exploration entails generating numerous solutions to thoroughly
examine the search space on a global basis, whereas exploitation entails focusing the search
on a limited region in the knowledge that a currently viable solution exists there. The
best solutions are chosen to ensure that they converge to the optimal solution, whereas
randomization allows the search to avoid local optima while increasing the diversity of
solutions. A successful combination of these two fundamental components almost results
in global optimality [46]. In addition, a searching method has a stochastic nature when a
set of random variables is employed in extracting a possible solution [47]. Additionally, the
progress of the searching process continues iteratively with the same searching procedure
until the best potential candidate solution is obtained [48,49]. With respect to simplicity,
meta-heuristic algorithms require fewer control parameters to fit the problems under
consideration, and they are more appealing and easier to execute since they are based on
the use of simpler concepts and the use of establishing parameters that can be altered and
tailored to match the problem’s nature [50]. Considering time–growth complexity, it is
an important metric in evaluating an algorithm’s run time that is defined according to
the algorithm’s implementation and structure. When the quicksort algorithm is used, the
computational complexity of the sort is O(n2) and O(nlog(n)) in the worst and best cases,
respectively [51]. In terms of functionality and the number of the objective functions, it
ensures that the algorithm as well as the corresponding generic implementation code is
applicable to a wide variety of issues. Additionally, the emphasis is mostly on the use of
algorithms without regard for problem-specific expertise [52]. In addition, the problem in
hand has goals with bi-objective functions, which requires incorporation with a weighted
average in order to reflect the nature of the existence of the two objectives. As a result,
their fitness functions are represented by a multi-parameter vector [53]. Regarding output
optimality and the number of starting solutions, the problem of cluster head selection
allows for several possible outcomes, all of which are recognized as valid by the solution
space, and any of them could be the optimal solution or close to the optimal one [54,55].
Additionally, these meta-heuristic algorithms are population-based approaches, which
means that numerous viable solutions work together to overcome local optima traps.

2.2. Moth–Flame Optimization (MFO) Algorithm

The MFO algorithm is a novel meta-heuristic method of optimization. It is a method
for travelling an extended distance within a directed path and is inspired by the fact that
the moon is distant for a moth [56]. This method ensures that a moth takes off in a directed
line during the night. On the other hand, it is also generally found that moths will fly in a
spiral pattern around lights. Moths are also deceived by fake lights. To a moth, a man-made
light is very similar to the moon; therefore, preserving a similar angle into the source of the
light is the reason that moths fly in a spiral pathway [57]. Within the moth–flame algorithm,
moths are the confirmer of the answer, where the changeable argument is the position of
the moth in the search area. Therefore, moths will take wing in 1-D, 2-D or 3-D spaces; the
vector of a moth’s position will vary within the dimensions of the area being searched. The
MFO algorithm measures a population as stranded wherever the moths are detected in a
matrix form.

The moth simulation is carried out by a spiral function logarithm. The flame points
to the moth’s subsequent position around it; this can be observed in the logarithm of a
spiral function. The term ‘t’ defines the restriction that chooses the space of every moth
throughout the spiral motion; t = −1 represents the immediate or direct space, while t = 1
represents the farthest distance. Moths incessantly change their situations regarding the
light up the next spiral pathway. The exploitation as well as exploration of a whole search
gap can be definite, as a logarithmic spiral function permits a moth to move around a
flame [58,59]. Algorithm 1 demonstrates the pseudocode of the moth–flame algorithm.
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Algorithm 1 (MFO) The pseudocode of the moth–flame algorithm

1: Begin
2: initialize the moths position.
3: While(iteration<=Max_iteration)
4: Update the number of flame
5: OM = Fitness Function(M)
6: if iteration equal to 1
7: F = short(M)
8: OF = sort(OM)
9: else
10: F = sort(Mt−1,Mt)
11: OF = sort(Mt−1,Mt)
12: End
13: for i = 1: n
14: for j = 1: d
15: Update t as well as r
16: compute D with regard to the equivalent moth
17: Update M(i,j) with regard to the equivalent
18: End
19: End

2.3. Whale Optimization Algorithm (WOA)

The WOA is a novel nature-inspired meta-heuristic optimization algorithm developed
by Mirjalili as well as Lewis (2016) that imitates humpback whales’ social behavior [60].
Whales are known for being extremely clever animals through their movement. The whale
optimization algorithm is inspired by specifically humpback whales’ hunting behavior.
Generally, humpback whales favor fish or hunt krill that are near the surface of the sea.
Humpback whales utilize a particular exclusive hunting technique called bubble net feeding.
During bubble net feeding, they swim in the prey area and generate a unique bubble, all
along a nine-shaped or circular pathway. Humpback whales can distinguish their prey’s
location in addition to surrounding them. For the unknown position of the optimal design
in the search area, the existing best-agent-possible solution is the target prey or is near to
the optimal solution in the whale optimization algorithm. Once the most excellent search
candidate is defined, the next search candidates will thus try to update their positions
towards the finest search candidate [61].

2.4. Salp Swarm Algorithm (SSA)

The inspiration for the SSA is the swarming performance of salps when they are forag-
ing, as well as when they are navigating within the ocean. The algorithm contains several
mathematical optimization functions to confirm as well as observe efficient behaviors while
finding the best possible solutions to optimization problems [62].

2.5. Low-Energy Adaptive Clustering Hierarchy (LEACH)

The LEACH algorithm is a TDMA (Time-Division Multiple Access) fundamental MAC
(Medium Access Control) algorithm that was proposed by Heinzelman, Chandrakasan
and Balakrishnan (2000). The important goal of this algorithm is to extend the lifetime
of WSNs through decreasing the consumption of the energy necessary for maintaining
and creating the cluster heads. The process of the LEACH algorithm contains several
rounds, with two stages within every round: a steady phase in addition to a setup phase.
The steady phase is comparatively longer. The setup mostly relates to the transmission
of aggregated information to the base station as well as the aggregation of information
at the cluster heads. In the setup phase, the most important aim is to build clusters, as
well as choosing cluster heads through choosing a sensor node with the highest remaining
energy [63]. Knowing that the dissipation of the energy of the sensors relies on the data
size in addition to the transmission distance, LEACH attempts to reduce the number of
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receptions and transmissions. The main features of LEACH involve the arbitrary rotation
of the CH [64]. This study took a different approach by comparing well-known nature-
inspired algorithms to the low-energy adaptive clustering hierarchy algorithm, which is a
common contemporary routing protocol. Furthermore, the LEACH method is used as a
starting point for most cluster head protocols since it is a reliable wireless communication
protocol that is both energy efficient and has a low latency.

The MFO algorithm was used in this study because of the following advantages:
it guarantees exploration and exploitation. The success of such an algorithm depends
on a suitable tradeoff between exploration and exploitation [65] since this impacts the
algorithm’s convergence rate. The MFO algorithm tries to optimize the optimization
problem and guarantees both exploitation and exploration of the search space by using
the logarithmic spiral function, which allows the movement of the moth around the flame
and not essentially in the space between the flame and the moth. Moreover, the flame
count is gradually lessened during iterations to maintain the balance between exploration
and exploitation. In the MFO algorithm, each moth updates its position according to one
particular flame. Due to the significance of the WSN-based border protection domain,
this study attempted to identify an optimization algorithm that could provide better
performance in order to expand the WSN lifetime, increase the number of alive nodes and
enhance the throughput and remaining energy.

The MFO algorithm provides a very quick convergence at a very early stage by
switching from exploration to exploitation, which increases the MFO algorithm’s efficiency
for applications such as classification when a quick solution is required or when energy-
efficient cluster head selection is needed in a WSN. However, the MFO algorithm was only
considered to be employed for such problems after enhancement was performed in order
to solve different kinds of optimization problems. Therefore, this study performed experi-
ments with this algorithm and compared its performance with that of other algorithms. The
contributions of this study can be summarized in the following way: it was the first work
that compared the MFO algorithm with well-known, nature-inspired algorithms. Moreover,
it demonstrated the MFO algorithm’s capability to achieve a very rapid convergence at an
early point of the exploration process by moving from exploration to exploitation.

3. Materials and Methods
3.1. The Wireless Network Energy Consumption Model

We investigated a network configuration with the following characteristics: the base
station remained intact and was positioned within the sensor network region. Each sensor
node was fixed and was capable of sensing. Sensor nodes executed their work and trans-
mitted data to the base station (BS). Each node could operate in cluster head (CH) mode
or detecting mode depending on the residual energy level. The wireless energy model
states that the transmitted power attenuation decays exponentially as the transmission
distance increases.

Firstly, Equation (1) was used to determine the expected number of cluster heads, k.

k =
⌈√

n/2
⌉

(1)

where the ceil-up operator (
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) was used, and (n) is the number of sensor nodes in the
networks, from which k nodes were selected for the initialization of the cluster centers. The
wireless energy model for the sensors utilized as a part of the protocol depends on the
first-order wireless model that was used as a part of [66,67]. The wireless energy model
relies on the consumption of the energy transmission. The energy consumption formula for
the transmission from node a to node b, with distance d and packet size K, is given as:

ETab(K, d) =
{

KEelect + Kε f sdab
2, d < do

KEelect + Kεmpdab
4, d ≥ do

(2)
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where “ε f s ” is the free space fading energy, and “ εmp ” is the multi-path fading energy.
Eelect refers to the energy consumed in an electronic circuit to transmit or receive a signal.
dab is the Euclidean distance between nodes a and b. do is the constant-threshold estimation
of the transmission distance, which is given as:

do =

√
ε f s

εmp
(3)

The appropriate energy consumption model is determined by the threshold distance
as a function of the distance (d) between any communication nodes. Since the cluster head’s
location determines the distance (d), then (d) changes along with the cluster head. The first
part of the mathematical formula (2) represents the free-space path-loss consumed energy,
while the second part quantifies the multi-path fading model.

The energy consumption of receiving the data packet, which only depends on the
circuit loss, was calculated as

ER(K) = K ∗ Eelect (4)

The energy consumption at the cluster head was calculated as

Ec = nER + ETCBS (5)

where n is related to the number of packets to be sent, and ETCBS is related to the energy
consumption while transmitting from the cluster head to the base station. The energy
consumption of transmission from the node to the cluster head within a given cluster was
calculated as [68]

En = nETnc (6)

The parameters listed in Table 1 are used to determine how much energy is consumed
by a wireless sensor network.

Table 1. Energy consumption radio parameters in WSN.

Symbol Description

Eelec Energy consumed in an electronic circuit to transmit or receive a signal
εMP Energy consumed by an amplifier to transmit at a shorter distance (multi-path)
εFS Energy consumed by an amplifier to transmit at a shorter distance (free space)
εDA Data aggregation energy
d0 The threshold estimation of the transmission distance
ER The energy consumption of receiving the data packet
Ec The energy consumption at the cluster head
En The energy consumption at the node

ETCBS The energy consumption of transmission from the cluster head to the base station
ETnc The energy consumption of transmission from the node to the cluster head

3.2. Weighted-Sum-Based Bi-Objective Optimization

Communication between the CH and the node selected should be modest in terms
of both distance and energy consumption. The network must have a massive amount of
energy, which means that it must use just a small amount of energy when transmitting
data. Thus, one optimized solution will have trade-offs among diverse objectives, and
a group of solutions is necessary for characterizing the most efficient solution for every
objective [67,68].

The bi-objective function in this study was designed to select the cluster head within
every cluster while optimizing two objectives (distance and energy), which are given as

fobj = α× f1 + (1− α)× f2, α = 0.5 (7)
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f1 = min
{

∑node i ∈ Ck

d(node i, CHk)

‖Ck‖

}
(8)

f2 =
∑N

i=1 E(nodei)

∑k
j=1 E

(
CHj

) (9)

where f 1 defines the majority great of the Euclidean distance between nodes, nodei∈ cluster
Ck, for the cluster heads CHk, ‖Ck‖ is the number of nodes that are managed by cluster Ck
within f 2 and N is the number of nodes that are selected as cluster-heads. This ensures the
selection of the nodes’ average energy supplies and the best average distance to the nodes
from the selected cluster heads. The constant α demonstrates the weight of f 1 and f 2 within
the objective f(x). The target function aims to decrease the intra-cluster average distances
and improve the energy consumption in the network.

Note that f 1 represents the distance, namely, the distance from every node to the
cluster head and the distance from the cluster head to the base station. f 2 represents the
ratio of the starting energy of all living nodes in the network (a sensor node is alive when its
energy is greater than zero) to the cluster head’s total current energy in the current round.
This ensures the selection of a cluster head with high remaining energy. The optimization
function reflects a tradeoff between the two objectives. The factor α is a scaling factor
that determines the importance of f 1 and f 2, where the factor is selected as 0 ≤ α ≤ 1.
The constant factor α is utilized to evaluate the weight of every sub-objective. The fitness
function in Equation (7) has the purpose of concurrently reducing the distance between the
cluster head and the nodes, while the network energy efficiency optimization is quantified
via f 2. This results in weighted-sum-based bi-objective optimization. When α = 0, fobj = f2,
and the fitness function only optimizes the network energy efficiency. When α = 1, fobj = f1.
This only optimizes the distance between the nodes and the cluster heads. When α is equal
to 0.5 in Equation (7), both sub-objectives are optimized equally.

3.3. Complexity Analysis

The complexity analysis is an important metric in evaluating an algorithm’s run
time that is defined according to the algorithm implementation and structure. The MFO
algorithm’s computational complexity depends on the number of moths, the number of
variables, the number of maximum iterations and a flame-sorting mechanism in each
iteration. As the quicksort algorithm was used, the computational complexity of the sort
was in the order of O(n2) and O(nlogn) in the worst- and best-case scenarios, respectively.
With the P function, the overall computational complexity can be defined as follows:

O(MFO) = O(t(O(Quick sort) + O(position update))) (10)

O(MFO) = O
(

t(n2 + n× d)
)
= O(tn2 + tnd) (11)

where n is the number of moths, t is the number of maximum iterations and d is the number
of variables. In order to understand how the MFO algorithm can be effective for solving
optimization problems theoretically, some observations include:

• The procedure of updating positions allows finding neighboring solutions around the
flames, which is a mechanism for typically promoting exploitation.

• As the MFO algorithm uses a population of moths, the local optima avoidance will
be high.

• The search space exploration is increased and the local optima stagnation probability
is decreased by assigning each moth a flame and then updating the flames sequence
within each iteration.

• Taking into consideration current best-obtained solutions up to the present as the
number of flames saves promising solutions as moth guides.

• The adaptive flames number balances exploration and exploitation.
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• The adaptive convergence constant (r) results in accelerated convergence around the
flames on the iterations course.

Such observations make the MFO algorithm able to enhance the initial random solu-
tions as well as the convergence into an enhanced point within the search space.

4. Simulation Results and Discussion

This paper presents a performance evaluation and comparison between three main
bi-objective optimization algorithms, namely the whale optimization algorithm (WOA),
the salp swarm algorithm (SSA) and the moth–flame optimization (MFO) algorithm in
terms of their ability to provide efficient clustering decisions. Some critical metrics for the
evaluation process were used, such as the fitness function, the number of alive nodes, the
throughput and the residual energy. Then, the algorithm with the best performance was
compared with the low-energy adaptive clustering hierarchy (LEACH) protocol.

The proposed algorithms were tested using Matlab R2022. Simulations were carried
out on a network with 30 sensor nodes that were deployed in a 100 m × 100 m field, as
shown in Figure 1. A mobile working sensor with a fixed trajectory was used that could be
placed at different locations within the deployment area. This could significantly improve
the data delivery rate and reduce the energy dissipation of the sensor nodes. The selection
of cluster heads was carried out whenever a re-clustering was needed (e.g., when the energy
level of the current cluster head fell below a certain threshold). Hence, the selection was not
a one-time optimization. The MFO algorithm started creating moths randomly within the
solution space, and a random population of sensor nodes were produced through iterations.
The nodes were generated after the system reached its statistical foundation, i.e., a steady
state status, using the residual analysis. The numbers of generations and search agents
were set to 10,000 and 5, respectively. The parameters used in the simulation are shown in
Table 2.
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 Figure 1. Cluster head selection in WSN via WOA, MFO and SSA.

Table 2. Simulation parameters of the network.

Parameters Value

Population size 30 sensor nodes
Deployment area 100 ×100 m2

The location of the sink (50, 50)
Initial energy for each node 0.5 J

The energy transmission 50 nJ/bit
The energy receiver 50 nJ/bit
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Table 2. Cont.

Parameters Value

εMP 0.0013 pJ/bit/m4

εFS 10 pJ/bit/m2

εDA 5 nj/bit/packet
Eelec 50 nJ/bit

Search agents 5
The number of generations 10,000

Size of packet (K) 4096 bits

4.1. First Stage of Analysis

The simulations began by comparing the performance of the WOA, SSA and MFO
algorithms in terms of exploration and exploitation, as well as four different metrics
(number of alive nodes, network throughput, residual energy and fitness function).

4.1.1. Exploration and Exploitation Process

An effective method for analyzing the exploration and exploitation process is to
compare new individuals to the existing population. If a new individual’s similarity to
the population is poor, the algorithm will prioritize exploration. The degree of similarity
between a new individual and the old population is high during the exploitation process.
The following formula was used to determine the similarity of two individuals using the
Euclidean distance:

(x.y) =
√

∑n
i=1(xi − yi)

2 (12)

The new individual’s similarity (S) to the population is determined by the distance
between the new individual and its closest neighbor as follows:

S(indnew.P) = min
ind ∈P

(indnew. ind) (13)

If the similarity value exceeds a threshold value that determines the neighborhood
boundary, the procedure is termed exploration; otherwise, it is called exploitation [69].
We defined the threshold value in this study as 1% of the search space. The percentage
of individuals exploring the search space for each iteration throughout the optimization
process is depicted in Figure 2.
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As illustrated in Figure 2, the number of exploring individuals decreased faster in
the WOA and SSA algorithms than in the MFO method. Thus, as compared to the other
two algorithms, the MFO method assigned more balanced weights to exploration and
exploitation, ensuring sufficient diversity and thus increase the likelihood of converging on
the global optima.

4.1.2. Number of Alive Nodes

The number of alive nodes is used to calculate the network lifetime. It is an instanta-
neous count of all the nodes that have not yet used up all of their energy. Alive nodes are
sensor nodes that contain non-zero energy. Figure 3a illustrates a comparison of the perfor-
mance evaluation between the MFO, SSA and WOA algorithms in terms of the number
of alive nodes relative to the number of rounds. A higher number of alive nodes within a
network extends the network lifetime. Based on this, the MFO algorithm outperformed
the WOA and SSA algorithms. Figure 3b shows the progression of how nodes died using
the MFO, WOA and SSA algorithms for 30 sensor nodes over the period (0, 550). The
lifetime of the network was increased by using the MFO algorithm, as shown in Figure 3c.
For the WOA, MFO, and SSA algorithms, the performance comparison of the number of
living nodes vs. the number of rounds was improved. Figure 3 illustrates that there were
differences in the performance evaluation between the three algorithms. Considering the
timing of the death of the first node for the different protocols, the MFO algorithm had a
better performance compared with the SSA and WOA methods. Moreover, the nodes in the
MFO and WOA algorithms started to die after 550 rounds. However, the network lifetime
of the MFO algorithm was the highest, as the last node died after 2190 rounds, compared
to 2130 and 2020 rounds for the SSA and WOA methods, respectively.
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4.1.3. Network Throughput

The network throughput is a significant metric that reflects the performance of a
protocol. It represents the number of packets delivered to the base station. Cluster member
nodes send the sensed information to the CH in the form of packets. Then, the CH combines
the received packets and sends them to the BS. Throughout this phase, if the CH energy is
insufficient to transmit, receive or combine the information, the information will be lost,
which significantly reduces the network throughput. The throughput performance of the
WOA, MFO and SSA algorithms is presented in Figure 4. The MFO algorithm provided
the best performance, as shown in Figure 4a, followed by the WOA and SSA methods in
the initial interval (0, 700). The MFO algorithm outperformed both the SSA and WOA
methods in terms of network throughput during the interval (1850, 2140). However, the
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MFO algorithm outperformed the SSA and WOA in terms of network throughput during
the timeframe (2140, 2200) as shown in Figure 4b.
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4.1.4. Residual Energy

To ensure the network’s long-term viability, limited resources must be used wisely.
When it comes to wireless networks, energy conservation is the most important factor
in their design and execution. Having information about the present distribution of
residual energy in a network may assist the user in deciding what kind of measures to
take. Figure 5 shows the number of rounds versus the residual energy in the MFO, SSA
and WOA algorithms. This figure reveals that the MFO algorithm achieved the best energy
performance. The number of rounds for the MFO algorithm exceeded that of the SSA and
WOA algorithms.
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4.1.5. Fitness Function

The bi-objective function in this study was designed to select the cluster head within
every cluster while optimizing two objectives; the first one minimized the distance from
every node to the cluster head and the distance from the cluster head to the base station,
while the second one ensured the selection of a cluster head with high remaining energy.
Figure 6 displays the quantity of the bi-objective function optimization for all the algo-
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rithms, with the MFO protocol outperforming the others because it produced the smallest
objective function.
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In summary, the simulation results revealed that the moth–flame algorithm performed
better than the other two algorithms in terms of exploration and exploitation, along with
four additional criteria (number of alive nodes, network throughput, residual energy and
fitness function).

4.2. Second Stage of Analysis

This stage of the analysis compared the performance of the MFO algorithm with
the LEACH algorithm over the wireless network energy consumption model in terms of
the number of alive nodes, the network throughput, the residual energy, and the fitness
function. The LEACH protocol shares critical characteristics with the MFO algorithm such
as purpose and concept, operational structure and process and routing category [70–72].
They both aim to rotate sensor nodes as cluster heads so that the high energy dissipation
in communicating with the BS is distributed to all the sensor nodes in the network. That
is, they maintain a balanced energy usage, responsibility for the CH is rotated and a
new cluster is established in each round [73,74]. As an added benefit, the LEACH and
MFO methods conduct local data compression, lowering the quantity of data transmitted
between clusters and the BS and, as a result, extending the system lifespan and reducing
power consumption [75]. Considering their operational structure and process, the MFO
and LEACH methods operate in rounds. Each round is divided into two phases: setup and
steady state. Clusters are organized during the setup phase, and data transmission occurs
during the steady-state phase. Furthermore, both use a simple radio model to describe how
energy is dissipated through electronic equipment, such as the transmitter, power amplifier
and receiver [76–78]. In terms of the routing category, both the MFO and LEACH methods
fall in the same category of proactive routing protocols (centralized, source-driven). They
both use a link-state routing protocol, where each node determines the channel condition
and network topology and forwards it to a centralized location that computes the routing
table for all the nodes in the network [79]. In addition, the network can execute dependable
operations by adopting hierarchical protocols for data communication, which can save
energy for network nodes [80].

In summary, the proposed optimization algorithm’s performance was compared to
that of the LEACH method due to the following primary advantages [81–86]: (1) The
LEACH protocol’s clustering minimizes the amount of energy required for communication
between sensor nodes and the BS, allowing the network to last longer. (2) By lowering the
linked data locally, the CH’s data aggregation saves a substantial amount of energy. (3) The
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nodes in the network are placed into sleep mode. As a result, cluster collisions are avoided,
and the sensor node’s battery life is increased. (4) In the LEACH protocol, every sensor
node has an equal chance of becoming the CH at least once. The network’s longevity is
increased by this randomized rotation of the CH. Figure 7 illustrates the performance of
the LEACH and MFO algorithms in terms of the number of alive nodes with respect to
the number of rounds. The MFO algorithm outperformed LEACH. Figure 7b shows the
network’s lifetime for the period (0, 815). Figure 7c illustrates that the nodes survived for
approximately 2380 rounds for the MFO algorithm. The performance comparison showed
that the MFO algorithm significantly outperformed LEACH. Considering the timing of
the death of the first node in the different protocols, the MFO algorithm showed a better
performance compared to the LEACH method. Moreover, the last node in the LEACH
method died earlier than the last node in the MFO algorithm, as shown in Figure 7b.
Moreover, the lifetime of the MFO algorithm was much longer than that of the LEACH
method (Figure 7c).
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Figure 8 plots the network throughput for the two protocols in terms of the number of
rounds. The clustering within the moth–flame algorithm extended the network’s lifetime
by preserving the residual energy of the nodes. The MFO algorithm’s throughput was
higher than that of the LEACH method, as shown in Figure 8b.
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As demonstrated in Figure 9a, the MFO algorithm outperformed the LEACH approach
in terms of residual energy. The number of rounds in the MFO algorithm case exceeded
2000 rounds, whereas in the LEACH method case there were about 1800 rounds. Further-
more, Figure 9b shows that the MFO algorithm’s fitness function was significantly lower
than that of the LEACH method.
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5. Conclusions and Future Work

In this paper, an MFO-based clustering algorithm for enhancing the network lifetime
was proposed and evaluated. The performance of the proposed algorithm was compared
with existing clustering protocols (SSA, WOA and LEACH) in terms of four different
metrics (fitness function, network lifetime evaluation, energy evaluation and throughput).
The MFO algorithm achieved a significant performance improvement with an enhanced
energy consumption compared to the SSA and WOA algorithms as well as the LEACH
protocol. The proposed algorithm extended the sensor network’s lifetime, preserved the
nodes’ energy, extended the network’s lifetime and improved the network throughput.
For a future work direction, it is recommended to use specified operators to solve multi-
objective algorithms utilizing the MFO algorithm.
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