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Abstract: With the characteristics of low fracturing pressure, little damage to the reservoirs, and
assuming the role of carbon storage, supercritical carbon dioxide (SC-CO2) fracturing is suitable for
the development of unconventional oil and gas resources. Based on the tensile failure mechanism
of rocks, this paper establishes a thermal-fluid-solid coupling initiation pressure model for SC-CO2

fracturing. Using this model, the changes in formation temperature and pore pressure near a wellbore
caused by invasion of CO2 into the formation are analyzed, as well as the impact of these changes on
the tangential stress of reservoir rocks. The field data of SC-CO2 fracturing in a sandstone gas well are
used to validate the reliability of the model. The results show that SC-CO2 fracturing can significantly
reduce the initiation pressure, which decreases with the increase in fracturing fluid injection rate.
The minimum value of tangential stress is located at the well wall, and the direction of tangential
stress caused by formation temperature and pore pressure is opposite, with the former greater than
the latter. The increase in Poisson’s ratio, the increase in elastic modulus and the decrease in bottom
hole temperature can reduce the initial fracturing pressure of the reservoir. The computation model
established in this paper provides an effective method for understanding the reservoir fracturing
mechanism under the condition of SC-CO2 invasion.

Keywords: SC-CO2; hydraulic fracturing; initiation pressure; tangential stress; thermal-fluid-solid
coupling

1. Introduction

Unconventional oil and gas resources in China are characterized by tight reservoir,
complex geological structure, and high clay mineral content, which increases the difficulty
of unconventional oil and gas field development [1–4]. Practice shows that large-scale
hydraulic fracturing is one of the most effective technical means in unconventional oil and
gas development fields [5,6]. However, the traditional hydraulic fracturing poses problems
such as high water consumption, reservoir damage, and flowback fluid pollution [7],
which restrict the scale and effectiveness of reservoir fracturing, and hinder the process of
commercial development of unconventional oil and gas resources in China. Therefore, it is
urgent to explore a new environmentally friendly water free fracturing technology.

SC-CO2 fracturing is a new technology that uses SC-CO2 (critical point: temperature
304.1 K, pressure 7.38 MPa) as the fracturing fluid to fracture the reservoir [8,9]. During
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fracturing, liquid CO2 is injected into the wellbore at a high pressure and low temperature
and heated by the formation around the wellbore when flowing down the wellbore. When
it reaches the bottom of the wellbore, it is usually in a supercritical state [10]. In this case,
CO2 assumes the characteristics of high density, low viscosity, strong permeability, etc.
Compared with water-based fracturing fluid, it is easier to induce secondary fractures and
form a complex fracture network [11,12], which makes promising application prospects in
fracturing and stimulation of unconventional oil and gas reservoirs. In addition, SC-CO2
fracturing has advantages in reducing crude oil viscosity, competing with methane in terms
of adsorption, clay expansion inhibition, water resources conservation, and effective burial
of CO2 [13]. Therefore, it is a green and efficient fracturing technology.

The mechanism of reservoir initiation is the inception and primary point of the basic
theoretical research of SC-CO2 fracturing which can be traced back to the 1950s. At present,
it is principally based on Hubbert–Willis model and Haimson–Fairhurst model. Hubbert
et al. [14] proposed a near-wellbore stress model (Hubbert–Willis model) affected by well-
bore pressure based on triaxial compression experiments in 1957 and provided criteria for
wellbore fracture mode, but did not take into consideration the influence of radial seep-
age. In 1967, Haimson et al. [15,16] introduced the seepage term into the wellbore stress
model and deduced the calculation formula of the starting pressure and fracture width.
Huang [17] further proposed the criteria for the initiation and propagation of vertical and
horizontal fractures, and concluded that lithology, interface, and fracturing fluid can affect
the initiation and propagation of fractures. In 2000, Hossain et al. established the initiation
criterion of hydraulic fracturing for perforated wells by using coordinate transformation
and superposition principle [18]. Subsequently, scholars gradually carried out research on
the effects of the well deviation and orientation [19], completion and perforation [20,21],
formation structure and bedding structure [22,23], and reservoir anisotropy and natural
fracture distribution [24,25] on the initiation pressure and orientation. However, when
SC-CO2 is used as a fracturing fluid, its high permeability and interaction with rock signif-
icantly affects the stress state around the well, thereby changing the fracturing pressure.
Laboratory experiments show that SC-CO2 fracturing has lower initiation pressure and
more complex fracture network systems than conventional hydraulic fracturing [26,27].
Chen et al. [28] established a prediction model for the initiation pressure of SC-CO2 fractur-
ing considering such factors as SC-CO2 viscosity, fluid compressibility, and pressurization
rate, and conducted parameter sensitivity analysis. Xiao et al. [29] coupled wellbore flow
equation, wellbore pressurization rate, and initiation pressure equation, proposed a CO2
fracturing initiation pressure model considering real bottom hole temperature and pressure
conditions, and proposed the optimal injection rate range. Zhong et al. [30] established a
thermal-fluid-solid coupling model considering wellbore temperature pressure field and
stress field around the well and analyzed the change rule of SC-CO2 fracturing time with
factors such as initial injection rate, injection pressure, and injection temperature.

In summary, the research on the fracturing mechanism of SC-CO2 fracturing is predom-
inantly confined to laboratory experiments, and a theoretical system of reservoir fracturing
considering the impact of CO2 invasion has yet to be formed. In view of the shortcomings
of the existing theoretical models, this paper attempts to establish a thermal-fluid-solid
coupling SC-CO2 fracturing initiation pressure model, taking into full account of the impact
of SC-CO2 on the near-wellbore formation temperature, pore pressure, and rock tangential
stress. By analyzing the stress weakness of the wellbore and near-wellbore formation, the
authors aim to calculate the initiation pressure and provide theoretical guidance for on-site
construction.
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2. Theoretical Model
2.1. Tangential Stress Model around Well

The fracture is related to tensile failure during fracturing. Taking the compressive
stress as positive, the condition for formation fracturing is as follows:

σθ ≤ −σt (1)

where σθ is effective tangential stress, MPa; σt is the tensile strength of reservoir rock, MPa.
CO2 can invade the formation after reaching the bottom of the well for its strong

permeability, and then change the pore pressure around the well and affect the physical
properties of the rock, thus change the tangential stress around the well. At the same time,
the temperature difference between the fluid and the reservoir also causes the change in
the tangential stress around the well.

According to the analysis above, the tangential stress around the well during SC-CO2
fracturing is mainly caused by four basic loads: external radial stress, wellbore pressure,
pore pressure, and thermal effect. According to the superposition principle [24], the
expression of tangential stress around the well is:

σθ = σθ1 + σθ2 + σθ3 + σθ4 (2)

where  σθ1 = σH+σh
2

(
1 + R2

w
r2

)
− σH−σh

2

(
1 + 3 R4

w
r4

)
cos 2θ

σθ2 = −pw
R2

w
r2

(3)

where σθ1 is the tangential stress caused by external radial stress, MPa; σθ2 is the tangential
stress caused by the wellbore pressure, MPa; σθ3 is the tangential stress caused by fluid
seepage effect in the wellbore, MPa; σθ4 is the tangential stress caused by thermal effect,
MPa; σH, σh is the maximum and minimum horizontal principal stress, respectively, MPa;
Rw is the borehole radius, m; r is the distance from the borehole in the horizontal direction,
m; pw is the bottom hole pressure, MPa; and θ is the well circumference angle, (◦).

The mud cake cannot be formed inside the well wall for CO2 has little wall building
property [31]. At the same time, the bottom hole pressure increases during injection, and
the pore pressure increases caused by invasion of SC-CO2 into the formation, thus the
tangential stress changes. The pore pressure change ∆pp is defined as

∆pp(r, t) = pp(r, t)− ppo (4)

where pp(r,t) is the formation pore pressure around the well, MPa; ppo is the original
formation pressure, MPa; and t is the time, s.

The tangential stress distribution formula caused by the change in pore pressure is{
σθ3 = − 2η

r2

∫ r
Rw

r′∆pp(r′, t)dr′ + 2η∆pp(r, t)
η = G

λ+2G α = 1−2ν
2(1−ν)

α
(5)

where η is the stress coefficient of porous elastic medium; G and γ are the Lame coefficient
of rock; ν is Poisson’s ratio; α is the Biot coefficient; and r′ is the variable in the integral.

The thermal stress is generated when there is a temperature difference between the
fluid and the reservoir, which causes rock damage [32,33]. During SC-CO2 fracturing, there
is a temperature difference between the injected low temperature CO2 and the reservoir
when it reaches the bottom of the well, and the resulting thermal stress affects the tangential
stress around the well. Define the temperature change field ∆T of rock around the well as

∆T(r, t) = T(r, t)− T0 (6)



Processes 2023, 11, 437 4 of 14

where T(r,t) is the formation temperature around the well, K; and T0 is the original forma-
tion temperature, K.

Then the tangential stress caused by temperature difference in the wellbore is

σθ4 = − E
3(1− ν)

αm[
1
r2

∫ r

Rw
∆T(r′, t)r′dr′ − ∆T(r, t)] (7)

where E is the elastic modulus of reservoir rock, MPa; and αm is the volume thermal
expansion coefficient of rock, K−1.

If r = Rw, the effective tangential stress at the wellbore under the influence of multiple
factors is

σθ = σH + σh − 2(σH − σh) cos 2θ − pw − 2η
(

ppo − pw
)
+

E
3(1− ν)

αm(Tw − T0) (8)

where Tw is the temperature when the fluid reaches the bottom hole, K.
Fracturing occurs when the effective tangential stress in the borehole wall reaches

the tensile strength of the reservoir rock. Therefore, it can be calculated that the fracture
initiation pressure pf is

pf = pw =
3σh − σH − 2ηppo +

E
3(1−ν)

αm(Tw − T0) + σt

2− 2η
(9)

2.2. Reservoir Temperature and Pore Pressure Model

It can be seen from Equations (5) and (7) that the tangential stress of the near-wellbore
formation is related to formation temperature and pore pressure. Therefore, a reservoir
temperature and pressure model with mechanical and thermal coupling is established to
analyze the initiation conditions of fractures after CO2 invasion.

Based on the mass conservation equation and energy conservation equation of fluid in
pores, it can be concluded:{

∂(φρf)
∂t +∇ · (ρf Jv) = 0

ρscps
∂T
∂t −∇ · (kT∇T)−Qs = 0

(10)

where
Jv = − k

µ
∇p + KT∇T (11)

where ρf is the density of carbon dioxide, kg/m3; φ is porosity; ρs is the density of reservoir
rock, kg/m3; cps is the specific heat capacity of reservoir rock, J/(kg·K); kT is the thermal
conductivity coefficient, W/(m·K); Qs is the heat source intensity, J/(m3·s); and Jv is the
fluid velocity, m/s.

After CO2 invades the reservoir, the fluid velocity is affected by temperature and
pressure. The velocity divergence is

∇Jv = − k
µ
∇2 p + KT∇2T (12)

where K is permeability, µm2; µ is viscosity, µPa·s; p is pore pressure, MPa; and KT is the
thermal permeability coefficient, m2/(s·K).

For the same formation, assuming that the thermal conductivity coefficient kT is
constant [34], and there is no internal heat source in the reservoir, then:

∂T
∂t

=
kT

ρ0cp
· ∇2T (13)
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In this paper, only the reservoir temperature at the distance r from the borehole is
required. Therefore, Equation (13) degenerates into a one-dimensional heat conduction
equation, that is, a parabolic equation. The analytical solution form can be obtained by

T = Tw − (Tw − T0)er f
r

2
√

Ktdft
(14)

Substitute Equation (12) into continuity equation, then:

φ
∂ρf
∂t
− kρf

µ
∇2 p +

ρfρ0cpKT

kT

∂T
∂t
− k

µ
∇p∇ρf + KT∇T∇ρf = 0 (15)

where kρf
µ ∇2 p, k

µ∇p∇ρf and kT∇T∇ρf are small quantities which can be ignored, and set

the coupling coefficient ccou =
ρ0cpKT

kT
, then:

φ
∂ρf
∂t

+ cρf
∂T
∂t

= 0 (16)

Equation (13), Equation (16), and CO2 physical property equation are comprehensively
solved to obtain the change relationship of reservoir temperature and pore pressure with
time and location.

The boundary conditions are

p(r = Rw, t > 0) = pw
T(r = Rw, t > 0) = Tw
p(r → ∞, t > 0) = ppo
T(r → ∞, t > 0) = T0
p(r, t = 0) = p0
T(r, t = 0) = T0

(17)

3. Model Solving and Verification
3.1. Model Solving Method

Due to the compressibility of CO2, its physical parameters are sensitive to the changes
in temperature and pressure. At the same time, the physical parameters of CO2 also change
the distribution of reservoir temperature and pore pressure near the well, thus affecting the
local stress state of the reservoir. CO2 interacts with rock after invasion into reservoir, and
affects the physical and mechanical properties of rock [35,36]. Therefore, when calculating
the fracture initiation pressure, it is necessary to comprehensively consider the following
parameters such as influence of CO2 on the physical and mechanical properties of rocks,
fluid seepage and heat transfer, CO2 physical property changes, and other factors before
conducting a coupling solution. The calculation process is shown in Figure 1. In this
paper, the Span Wagner equation [37] and Vesovic equation [38,39] with internationally
recognized high accuracy are used to calculate the thermophysical properties (density,
specific heat capacity, etc.) and migration properties (viscosity, thermal conductivity, etc.)
of CO2 to ensure the accuracy of the model.

3.2. Model Validation

This paper uses the SC-CO2 fracturing field data from a tight sandstone gas well to
verify the model (Table 1). The field data show that the fracturing occurred at the initial
stage of injection, the initial pressure decreases from 66.02 MPa to 48.62 MPa, the bottom
hole temperature was 368.97 K, and the original formation temperature was 382.15 K. The
fracture initiation pressure calculated by the model in this paper is 48.94 MPa, and the
absolute error is about 0.32 MPa, which is within 1%, indicating that the model in this
paper has high calculation accuracy.
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Figure 1. Coupling calculation process.

Table 1. Basic parameters.

Parameter Value

Well depth/m 3 250
Borehole diameter/mm 121.36
Formation pressure/MPa 28.16
Inlet temperature/K 258
Wellhead pressure/MPa 8
Ground temperature gradient/(K·100 m−1) 2.8
Formation thermal expansion coefficient/K−1 3 × 10−5

Thermal permeability coefficient/(m2·(s·K)−1) 6.0 × 10−11

Original fracture initiation pressure/MPa 66.02
Formation tensile strength/MPa 11.256
Elastic modulus/GPa 22.04
Poisson’s ratio 0.312
Porosity 0.05
Maximum horizontal stress gradient/(g·cm−3) 1.9
Minimum horizontal stress gradient/(g·cm−3) 1.5
Vertical stress gradient/(g·cm−3) 2.3
Coupling coefficient 1.2375 × 10−3

4. Results
4.1. Distribution of Formation Temperature and Pressure

During the fracturing and injection of SC-CO2, the bottom hole temperature gradually
decreases and is lower than the formation temperature, while the bottom hole pressure
is higher than the pore pressure, so CO2 is easily invades the formation, affecting the
formation temperature and pore pressure near the well [40,41]. Previous research shows
that the fracturing fluid injection rate is the main control factor affecting the temperature
and pressure of CO2 in the wellbore [40]. The bottom hole temperature decreases with the
increase in injection rate. This paper refers to the calculation of bottom hole temperature
and pressure in reference [29] and analyzes the distribution rule of formation temperature
and pore pressure near the well under different injection rate (0.5 m3/min, 2.0 m3/min)
(Figures 2 and 3).
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It can be seen from Figure 2 that when the injection rate increases from 0.5 m3/min to
2.0 m3/min, the bottom hole temperature decreases from 368.97 K to 328.83 K, a decrease
of 40.14 K. Under a different injection rate, the formation near the bottom of the well has
an evident temperature drop with the increase in time, and the influence range gradually
expands. In addition, it can be seen from Figure 2 that the injection rate has little influence
on the range of formation temperature drop.
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Figure 3 shows the distribution of pore pressure near the wellbore formation with
time and radial distance under different injection rate (0.5 m3/min, 2.0 m3/min). It can be
seen from Figure 3 that under the same wellhead pressure, when the injection rate increases
from 0.5 m3/min to 2.0 m3/min, the bottom hole pressure increases from 32.35 MPa to
34.17 MPa, an increase of 1.82 MPa. This is because the pressure increment caused by the
increase in gravity is greater than the frictional pressure drop increment caused by the
increase in injection rate. Under a different injection rate, the formation pore pressure near
the bottom hole increases with the increase in time, and the influence range increases. In
addition, it can be found that the sweep velocity of bottom hole pressure is significantly
higher than that of bottom hole temperature by comparing Figures 2 and 3.

4.2. Distribution of In Situ Stress

The near-wellbore temperature and pore pressure are substituted into Equations (5)
and (7) to obtain the stress changes caused by formation temperature and pore pressure
(Figure 4). It can be seen from Figure 4a that the thermal stress near the well wall (σθ4) is
negative, which can effectively reduce the tangential stress at the well wall, thus reducing
the fracture initiation pressure. Maximum temperature stress (|σθ4|) is 5.24 MPa, which
is located at the well wall. The absolute value of temperature stress gradually decreases
and changes to a positive value with the increase in radial distance; the negative range of
temperature stress increases with the increase in time.
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(a) Formation temperature; (b) pore pressure.

It can be seen from Figure 4b that the tangential stress caused by pore pressure near
the wellbore (σθ3) is a positive value, indicating that the increase in pore pressure can
cause the increase in tangential stress and the increase in fracture initiation pressure. The
maximum value of σθ3 also appears at the well wall, which is 0.92 MPa. In the process
of CO2 fracturing, the effect of pore pressure change on the tangential stress at the well
wall is less than that of the reservoir temperature; as the radial distance increases, σθ3
gradually decreases and turns into a negative value. The range of positive values of σθ3
increases gradually with the increase in time. In addition, it can be found from Figure 4b
that the tangential stress concentration area caused by pore pressure is concentrated near
the well wall.

In general, the stress caused by the change in formation temperature during SC-CO2
fracturing is greater than that caused by the change in pore pressure. This is because the
injected low temperature CO2 can reach the supercritical state when reaching the bottom of



Processes 2023, 11, 437 9 of 14

the well, but the temperature is lower than the reservoir temperature, resulting in greater
thermal stress.

Figure 5 shows the distribution of tangential stress in the near-wellbore formation.
It can be seen from the figure that the minimum tangential stress is 41.16 MPa, which
is located at the well wall. With the increase in the radial distance, the tangential stress
first increases, then decreases and gradually plateaus. There is a stress concentration area
within the range of 2~4 times the borehole diameter. With the increase in time, the stress
concentration area is gradually released, which is the result of the comprehensive effect of
formation temperature and pore pressure changes near the well.
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4.3. Influencing Factors of Fracture Initiation Pressure

It can be seen from Equation (10) that there are many factors that affect the fracture
initiation pressure of SC-CO2 fracturing. In this paper, the effects of rock mechanical
properties (Poisson’s ratio, elastic modulus) and bottom hole temperature are analyzed.

4.3.1. Poisson’s Ratio

After the invasion of CO2, the axial strain of reservoir rock increases, leading to a
decrease in Poisson’s ratio. Ding et al. [30] found through shale core experiments that the
Poisson’s ratio of reservoir rock decreases from 0.280 to 0.257, a decrease of 8.2 % after the
invasion of CO2.

Porous elastic stress coefficient η and thermal stress σθT are affected by Poisson’s ratio.
It can be seen from Equations (5) and (7) that the former decreases, while the latter increases
with the increase in Poisson’s ratio. Figure 6 shows the variation in the porous elastic
stress coefficient and the fracture initiation pressure with Poisson’s ratio under different
Biot coefficients.

It can be seen from Figure 6 that η and pf increase with the increase in Biot coefficient
α. Under different Biot coefficients, η and pf reduce with the increase in Poisson’s ratio of
rock. Combined with the research results of Ding et al. [34], the Poisson’s ratio of rocks
after CO2 invasion is reduced, so the variation in CO2 into the formation may increase the
initial fracturing pressure of the reservoir.
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4.3.2. Elastic Modulus

Ding et al. found that the strain difference that the core can withstand decreases and
the elastic modulus increases after intrusion of CO2. According to Equation (10), when the
bottom hole fluid temperature is low, the initiation pressure decreases with the increase
in elastic modulus. Figure 7 shows the change in the fracture initiation pressure with the
elastic modulus. It can be seen from the figure that the fracture initiation pressure decreases
linearly with the increase in elastic modulus.
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4.3.3. Bottom Hole Temperature

Bottom hole temperature is an important factor affecting the fracture initiation pressure
of SC-CO2 fracturing reservoirs. The change in initiation pressure with Poisson’s ratio at
different bottom hole temperatures is shown in Figure 8. In the figure, the injection rate is
0.5 m3/min and 2.0 m3/min, respectively, and the corresponding bottom hole temperature
difference and formation temperature difference are 13.18 K (bottom hole temperature
368.97 K) and 53.32 K (bottom hole temperature 328.83 K), respectively.

It can be seen from Figure 8 that under different temperature differences, the reservoir
fracture initiation pressure decreases linearly with the increase in Poisson’s ratio. The
reservoir pressure decreases with the increase in temperature difference between the
bottom hole and the reservoir.
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According to the analysis above, the Poisson’s ratio and elastic modulus of reservoir
rock change distinctly after contacting with CO2. In order to comprehensively analyze
the influence of changes in Poisson’s ratio and elastic modulus of rock on the initiation
pressure, the contour of the initiation pressure changes with Poisson’s ratio and elastic
modulus when the bottom hole temperature is 368.97 K as provided in Figure 9. It can be
seen from the figure that the increase in Poisson’s ratio and elastic modulus can lead to the
decrease in reservoir initiation pressure. In practical application, the change in initiation
pressure can be judged according to the increment of Poisson’s ratio and elastic modulus
after CO2 invasion.
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5. Application Example

Based on the analysis above, the initiation pressure at the injection rate of 0.5 m3/min
and 2.0 m3/min is calculated, respectively (Table 2). It can be seen from Table 2 that
SC- CO2 fracturing can effectively reduce the initial pressure of the reservoir. When the
injection rate increases from 0.5 m3/min to 2.0 m3/min, the initial pressure decreases from
48.94 MPa to 40.99 MPa, reducing by nearly 8 MPa. It should be noted that although
increasing the injection rate can reduce the fracture initiation pressure, it also brings large
energy consumption. In the fracture initiation stage, it is not appropriate to excessively
pursue the low fracture initiation pressure under high injection rate.
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Table 2. Calculation results of initiation pressure at the injection rate of 0.5 m3/min and 2.0 m3/min.

Q
/(m3·min−1)

Bottom Hole
Temperature

/K

Initiation
Pressure

/MPa

Original Initiation
Pressure

/MPa

Reduction
Rate
/%

0.5 368.97 48.94 66.02 25.87
2.0 328.83 40.99 66.02 37.91

From the perspective of dynamic fracturing process, low initial pressure is conducive
to the formation of fractures, which expands rapidly under the bottom hole pressure. Due
to the slow propagation speed of the temperature field, the thermal stress generated by
the temperature field can induce the generation and expansion of secondary fractures, and
thus create a fracture network system with high conductivity in the reservoir.

6. Conclusions

SC-CO2 fracturing can effectively reduce the fracture initiation pressure of reservoir.
The fracture initiation pressure decreases with the increase in injection rate.

With the injection of CO2, the influence of bottom hole temperature and pressure
on the near-wellbore formation expands radially. The sweep velocity of bottom hole
pressure is higher than that of bottom hole temperature. The injection rate mainly affects
the near-wellbore formation temperature and pore pressure, but has little influence on the
sweep velocity.

The maximum tangential stress caused by formation temperature and pore pressure
are both located at the well wall. The former reduces the tangential stress at the well
wall, while the latter increases the tangential stress at the well wall. The stress caused by
formation temperature change is greater than that caused by pore pressure change. On the
whole, the minimum tangential stress is also located at the well wall.

The increase in Poisson’s ratio, the increase in elastic modulus and the decrease in
bottom hole temperature can all contribute to reducing the initial pressure of the reservoir.
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