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Abstract: Service providers need to meet their service level objectives (SLOs) to ensure better client
experiences. Predicting tail sojourn times of applications is an essential step to combat long tail latency.
Therefore, as an attempt to further unravel the power of our prediction model, new study scenarios
for heterogeneous environments will be introduced in this research by using either of two methods:
white- or black-box solutions. This research presents several techniques for modeling clusters
of inhomogeneous nodes. Those techniques are recognized as heterogeneous fork-join queuing
networks (HFJQNs). Moreover, included in the research is a nested-event-based simulation model,
borrowing help from multi-core technologies. This model adopts the multiprocessing technique
to take part in its design to enable different architectural designs for all computing nodes. This
novel implementation of the simulation model is believed to be the next logical step for research
studies targeting heterogeneous clusters in addition to the several provided scenarios. Experimental
results confirm that even with the existence of such heterogeneous conditions, the tail latency can be
predicted at high-load regions with an approximated relative error of less than 15%.

Keywords: tail prediction; heterogeneous fork-join queuing networks; inhomogeneous nodes

1. Introduction

The unacceptable performance of many user-facing and online data-intensive (OLDI)
services, at commercial data centers (DCs), revealed an emerging desire to develop smart,
lightweight, and fast scheduling algorithms. This unveiled interest dictates a requirement
to have an additional module devoted to predicting request tail latency, where (1) appli-
cations tail SLOs translated into budgets, and (2) are used to compare and secure proper
resources ahead of time. Principally, this dire need to predict long tails out of distributions
of latency continues due to the sheer amount, and dynamic workload demands result in
high variability within task response times (RTs). Nowadays, many application requests are
poured into a common heterogeneous infrastructure shared among applications. Therefore,
heterogeneity in resources is also known to be one of the leading causes of the high variabil-
ity among task response times. To this point, as a reason to mitigate the high latency and
to improve the decision-making for scheduler(s), many earlier scheduling algorithms and
an abundance of engineered techniques have been introduced [1–3]. Unfortunately, most
of these scheduling designs, if not all, were based on a homogeneous assumption which
renders their inability for adoption as practical solutions for heterogeneous environments.
As a result, it becomes one of the principal causes of the expected poor user experience for
all proposed solutions.

Consolidating cloud ecosystems helps reduce costs and improve the return on invest-
ment by sharing cluster resources at data centers. Enforcing such a practice would increase
resource utilization, but unfortunately, it comes with its pitfalls. On one hand, it intro-
duces a significant departure from using organization-specific clusters. For example, many

Processes 2023, 11, 407. https://doi.org/10.3390/pr11020407 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11020407
https://doi.org/10.3390/pr11020407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4339-3791
https://orcid.org/0000-0002-4422-8678
https://doi.org/10.3390/pr11020407
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11020407?type=check_update&version=1


Processes 2023, 11, 407 2 of 19

machines with various generational specifications and computing capacities are naturally
used to satisfy the diversity in application demands. On the other hand, consolidated
applications typically need to run their daemons or other software components in the
backgrounds of computing units. Sometimes, executing these software components lead to
an increased amount of different process hiccups at DCs. Hiccups differ concerning their
duration or the additional hardware characteristics that might be required by daemons
to operate. Further, contention over resources, either between applications or among the
same application requests, maintenance activities, hot spots, energy management, and
thermal and power effects are all pitfalls that contribute to creating various inhomogeneous
conditions [4–6]. Therefore, when non-homogeneous situations exist, providing low latency
services at scale is considered most important to many service providers.

The emerging dilemma has challenged lots of researchers to offer better ways to keep
the tail of latency distribution as short as possible for latency-sensitive services [7–11]. So
far, none of the presented works were thoughtfully designed to take into account users’
wishes to maintain the promised guaranteed services. The leading cause is the missing link
between the system-level requirements and the subsystem-level performance. Fortunately,
we presented in previous publications a prediction model, which serves to compensate for
the missing baseline connection. The model has the potential to work as a universal answer
for all types of DC infrastructures, either shared or not [12].

The design space for creating the before-mentioned sophisticated and diverse DC
climates, at first glimpse, seems endless and very challenging. Still, it is possible to establish
simplified models for the study of this research. For example, fork-join structures are
used generally to express the basic functional system at DCs, as they have become the
core foundation for such environments. Fork-join structures are traditionally modeled
by a class of queuing network models known as fork-join queuing networks (FJQNs). The
focus, mainly, will be on enabling computing units independently to demonstrate distinct
responses when servicing a received group of tasks. Hence, by creating such heterogeneous
FJQNs behaviors, it is possible to mimic what happens in production environments. This
can be easily done by providing several case scenarios of inhomogeneous situations linked
to many examples from reality.

However, the lack of establishing inhomogeneous conditions in all previously re-
searched models, particularly regarding the prediction of tail latency, has become the
downside that is reflected. Therefore, it is believed that the outcome of this work might
pioneer future studies of tail prediction concerning inhomogeneous conditions. Thus,
the prime goal is to demonstrate those complex HFJQNs using model-driven simulations
Figure 1. In addition, a mathematical explanation emphasizes the white-box approach,
which is a closed-form solution for any model whose analytical expressions for the means
and variances of task response times are available, and comparisons between the two
methods of prediction—white- and black-box—will be drawn. Finally, as a contributing
part of this research, a mathematical analysis of the function of the budget translating unit
will be presented. This analysis will describe how to translate requested SLO requirements
into tasks’ budgets to reserve proper resources ahead of time.

As explained, the outcomes of this research might become a real treasure for re-
searchers interested in conducting further investigations utilizing the fork-join queuing
models related to subjects of parallel processing. The lack of enough studies for tail pre-
diction in inhomogeneous environments is the main reason for our work. There are three
new novel ideas that contributed to this research in the late sections: (1) covering more
advanced case studies of heterogeneous clusters, (2) convergence point for reliable met-
rics, and (3) budget translation, which renders the uniqueness of this work, as it takes
further steps toward providing a practical, reliable, and budget guaranteed scheduling
mechanisms in the foreseeable future. Therefore, our research work is formulated as the
following: The related work is given in Section 2. In Section 3, a general overview of the
derived prediction model and a closed-form solution for any inhomogeneous white-box
models, in general, is given. In Section 4, we present abstract definitions of how to model
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inhomogeneous conditions in fork-join structures and list all possible case scenarios of
the defined in-homogeneous types, and it is followed by a discussion about the results of
the experiments in Section 5. The convergence point for reliable metrics is described in
Section 6. In Section 7, we give our explained method for budget translation. Finally, the
future work and conclusion are given in Section 8.

Figure 1. Simulation model for inhomogeneous scenarios, where incoming requests spawned to an
equal number of fork nodes at a cluster.

2. Related Work

Fork-join structures underlay many big data applications, whose execution usually
is handled by a large number of nodes, and the partial results from those nodes are then
merged. Fork-join structures are traditionally modeled by fork-join queuing networks
(FJQNs) [13]. FJQN models have been studied extensively in the literature. To date, the ex-
act solution exists for a two-node network only [14,15]. Most of the previous research efforts
mainly focus on approximating the mean response time for the FJQN model [15–17] and its
bounds [18–20]. Some works attempt to find the approximation of response time distribu-
tion for the networks applying simple queuing models for each node, e.g., M/M/1 [21] or
M/M/k [22], i.e., Poisson arrival process and exponential service times with one or more
servers. For general service time distribution, the combination of analysis and simulation
are usually employed to derive the approximation for the mean response time [15,23,24].

The approximation of tail latency for homogeneous FJQNs with phase-type service
time distributions was introduced in a recent work [25], which is based on the analytical
results from single-node and two-node networks. In [26], the authors proposed to use a
black-box approach for the approximation of tail latency at high-load regions, treating each
processing node as a black-box. The approach requires only the means and variances of re-
sponse times at the processing nodes as input. However, it was based on the homogeneous
assumption. Therefore, in this research, an analytical approach was derived for use in the
introduced inhomogeneous FJQNs.

3. An Overview of Prediction Model

There is a recognized fact about the behavior of task flow, in parallel systems, that
are waiting in lines for their turn to execute. Mainly, for any G/G/m queuing model
that is highly loaded, it is observed that the accumulated tasks’ waiting times behave
as if they were independent variables following a distribution. The waiting times result
from the build-up variability in task executions processed in front of the waiting lines and,
obviously, in addition to the known differences in task arrivals. Further, it was noticed that
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the distribution of the waiting times at a given line converged to a memory-less exponential
distribution [27,28]. Following this convention, it posited that task sojourn times could
be approximated to a distribution too. Hence, it is assumed that the resulting fluctuations
from variability in service times are going to be alleviated, due to the impact of having
long queues.

Consequently, on the basis of extreme value theory, request response times can be
efficiently approximated if applying the central limit theorem in the sense that the two
moments of historically collected response times for a single line, i.e., mean and variance,
can be used to predict tail latency of response times using any suitable distribution. Having
mentioned that, the generalized exponential distribution was determined such that it can
capture different behaviors for the arrived jobs requests, e.g., heavy-tailed and short-tailed
behaviors with regard to response times [12]. The presented results in [26] showed that the
generalized exponential distribution outperformed exponential distribution in the matter of
predicting tail latency. The following is the generalized exponential distribution function:

FT(x) = (1− e−x/β)α, x > 0, α > 0, β > 0, (1)

distribution parameters α and β are shape and scale, respectively. The mean and variance
of the task response time are given [29]:

E[T] = β[ψ(α + 1)− ψ(1)], (2)

V[T] = β2[ψ′(1)− ψ′(α + 1)], (3)

where ψ(.) and its derivative are the digamma and poly gamma functions.

3.1. Prediction: Homogeneous

At a given fork-join structure, i.e., cluster of nodes, incoming users’ requests are sent
to a scheduler and forked to sub-requests/tasks that are mapped to the cluster’s nodes.
Now, assuming an approximated response times distribution at homogeneous conditions,
the yield is the derivation that can be used for tail prediction:

FX(x) =
k

∏
i=1

FTi (x), (4)

xp = F(k)
X

−1
(p/100). (5)

xp = −β log(1− (
p

100
)

1
kα ) (6)

where xp is the pth percentile request response time; β and α parameters can be obtained
from the measured mean and variance at a single node, Equations (2) and (3). k is the
number of forked tasks, 1 ≤ k ≤ N-nodes.

3.2. Prediction: Inhomogeneous

The experiments carried out on all previous works were based on the homogeneous
assumption. Many cases were studied, and even cases for consolidated applications
were covered. However, none of the works was enough to demonstrate the prediction
performance when tested under non-homogeneous situations. Hence, putting the final
piece of the puzzle into this ongoing research, a necessity to define ways to establish
inhomogeneous conditions (i.e., HFJQNs) is direly needed for simulation experiments.

For the sake of clarity, consider a white-box approach and assume distinct distribu-
tion(s), either single or a mixture of distributions, associated with each node in a given
fork-join system. Assume only one of many conditions causes heterogeneity in the fork-
join structure to be applied during the whole simulation period, and let G reference the
condition type that could exist. Heterogeneous conditions in this research, generally, are
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driven by one of the following: (1) node’s distribution f (x), (2) node’s utilization ρ, and/or
(3) the tail of distribution applied at each node τ.

Now, suppose there are N mixtures, of m distributions, at each of N nodes: SH1,
SH2, . . . , SHN . Let us assume that the distributions resulted from combined effects of
both software and hardware. It is possible that the mixture at each node/computing unit
might be uniquely different, i.e., f j,i(x) 6= f j,i+1(x), for i = from 1 to N-nodes, as defined
in the following:

- Service times xj, for j = 1, 2, . . . , m, follow f j(x) distribution, where xj ∼ f j(x) with µj

and σ2
j .

- Assume each distribution f j(x) at node i has weight pj in the mixture SHi, and assume
that for a long-run experiment, if using uniform distribution to maintain weights p′js,
the resulted distributions are balanced. The effective random distributions are used to
generate task service times:

Xi ∼ fi(x) =
m

∑
j=1

pij · fij(x). (7)

The kth moment of X at any fork node i can be written as

E[Xk
i ] =

m

∑
j=1

pij ·E[Xk
ij]

=
m

∑
j=1

pij · µ
(k)
ij = E[E[Xk

i |Gi]], (8)

where µ
(k)
j is the kth moment of Xj, and G refers to one of the previously defined types

of heterogeneous conditions that could exist at node i. Here, we assume only one for
simplicity but in reality, it could be more complex.

According to the law of total variance, the variance of X at fork node i is given by

σ2
i = E[Var(Xi|Gi)] + Var(E[Xi|Gi])

=
m

∑
j=1

pij · σ2
ij +

m

∑
j=1

pij · µ2
ij −

(
m

∑
j=1

pij · µij

)2

(9)

Since tasks spawned to the subsystems came from a large pool of many independent
requests/applications, their arrivals at the system can be modeled using the Poisson process.
Several studies have found that the dispersion around the inter-arrival-times distribution
is very small, i.e., C.V. = 1 to 2, which means using the memory-less exponential is a
reasonably acceptable model for simulating the arrivals of network traffic and data center
applications [30–32]. Therefore, in this research, each fork node is viewed as an M/G/1
queue system, i.e., a Poisson arrival process with a general service time distribution and
one service center.

The first and second moments of tasks waiting time at any fork node, i.e., an M/G/1
queuing system using Takács recurrence theorem [33], are given as follows:

E[Wi] =
λE[X2

i |Gi]

2(1− ρi)
=

ρiE[Xi|Gi]

1− ρi

(
1 + C2

X|G
2

)
, (10)

E[W2
i ] = 2E[Wi]

2 +
λE[X3

i |Gi]

3(1− ρi)
, (11)
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where C2
X|G = σ2

i /µ2
i is the squared coefficient of variation with σ2

i being the variance given
by Equation (9); and ρi = λ · µi is the utilization or load on ith Fork node at average arrival
rate λ.

Therefore, from task executions’ mean Equation (8) and variance Equation (9), respec-
tively, the mean and variance of response times of the target task at ith Fork node can be
written as

E[Ti] = E[Wi] +E[Xi|Gi], (12)

Var(Ti) = Var(Wi) + Var(X|G),

= (E[W2
i ]−E[Wi]

2) + (E[X2
i |Gi]−E[Xi|Gi]

2), (13)

where E[X|G] and E[X2|G] are the first and second moments of target task service times,
and E[W] and E[W2] are given in Equations (10) and (11). The remainder is straightforward
using Equation (5) and knowing the required moments for all of the N-nodes.

4. Definitions and Case Scenarios

Thinking logically, any possible inhomogeneous condition, per node in a fork-join
structure, is mainly influenced by several elements. In this research, those elements are
categorized into two primary factors: software and hardware. Many real scenarios can
represent the software side, for example, operating systems, resources management, queu-
ing management, utilization level, frameworks, daemons, . . . , etc. While the hardware
capabilities can be represented by differences in computing power, memory speed, hard
disk, I/O, . . . , etc., both sides participate in shaping any inhomogeneous situation at DCs.
Hence, it is presumed that in a DC, the noticed differences in computing capabilities among
serving units are tangible. This is due to the influence of both the resources’ hardware and
competing software, where their footprints on waiting times, queues, and task executions
are clearly witnessed. Therefore, from the perspective of a primary cluster component,
i.e., computing units, an abstract description is laid out to provide distinct realizations
of how HFJQN could form. Each node behaves in a different way, as if it has a distinct
distribution associated with it, or as the collective mixture of distributions applied at each
node is unique.

We will demonstrate the simulation experiments considering per-node behavior (or a
unique group of nodes) following unique distribution. Several defined perspectives are
used in modeling the heterogeneous simulations, where examples from real-world scenar-
ios are linked and used to explain some of the following abstract definitions. Therefore,
experiments were conducted assuming a cluster of (1) different loads utilization among
nodes, (2) the same utilization level for all nodes but different distributions’ tails, (3) de-
fined portions of homogeneous and inhomogeneous nodes [5] (93% of the Google cluster is
homogeneous, which renders the remaining as inhomogeneous), and finally (4) with the
help of multi-cores and multiprocessing technologies, different architectural designs per
node applied, e.g., different numbers of replicas, distribution type, and mean service time.
For the latter, as each node functions independently of others, we speculate that this case
scenario might become the key kernel for any future simulations targeting heterogeneous
designs. Basically, it is done by allowing each node to be handled independently as a sepa-
rate event-based simulation process, where a recipient fork node treats each encapsulated
task arrived from the system level as a newly arrived job at the subsystem level.

4.1. Different Load Utilization among Nodes

Load imbalance among nodes might result from many arising factors. For exam-
ple, it happens due to combined operational effects of unbalanced scheduling policies
(e.g., random dispatching [1]) and/or running multi-degree of applications fanouts. Ad-
ditionally, it might occur due to the existing various computational powers of computing
machines, the prolonged effects of prioritization and resource reservations, or as a result of
emerging hotspots, where particular items/entities become popular, and the requesting
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workloads for specific hotspots increase. Such unevenness in loads among a cluster’s
nodes could induce, in the long run, many distinguished levels of utilization. Therefore,
to establish a similar scenario and compose HFJQNs rendering a clear difference in node
utilizations, an exponential distribution is selected for such a case, but different mean
service times are put to use, where the max one is selected to maintain the flow of the
arriving requests into the system.

The several provided experiments with clusters consist of groups of 18 distinguished
nodes, i.e., heterogeneous nodes, h-nodes = 18, where each one is uniquely utilized against
others. The exponential distribution is the only applied distribution in this case, but with a
different mean service time enforced at each node. Varied versions of utilization for the
primary selected mean service time = 70 ms, which is the one utilized for the 90%, end up
creating a range of several mean service times for all provided N nodes at a given cluster.
Experimented clusters are synthesized with the different load utilizations, starting at 5%
and ending with 90% utilizations and applying 5% incremental steps in between.

Following the white-box approach, Table 1, we assume the same distribution is applied
at all nodes, but different utilization (ρi) at each, where i = 1 to N nodes. Hence, estimating
the needed two moments for all the N-nodes of the fork-join structure can be easily done
using Equations (13) and (12). The remainder is straightforward when using Equation (5)
with the required moments for the N-nodes. The prediction results are presented in
Figures 2 and 3. Refer to discussions regarding all the experimental results of this section
as well others, which will be explained in more detail in Section 4.

Figure 2. HFJQNs of different node utilizations, where the black-box approach is used in solution,
and the load level (here) is determined by max node utilization.

Figure 3. HFJQNs of different node utilizations, where the white and black-box methods prediction
performances are compared, given the max node utilization is at load 90%.
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Table 1. HFJQNs of different nodes utilizations.

Parameters pij = 1, m = 1, G = Utilization (ρ)

Arrival Distribution Poisson, E[X|ρ = 90%] = 70 ms

Service Distribution(s) Exponential, E[Xi|ρi]

Manipulated at nodei ρi = in [5% to 90%], Step ρ = 5%

# Heterogeneous Nodes h-nodes = 18 (or multiples of h-nodes)

Cluster Sizes 18, 270, 540, 900

4.2. Variant Distributions Tails among Nodes

At high-load regions, where lots of incoming application requests are in waiting lines,
contention for shared resources mounts, not to mention the diverse computing powers
of resources that could exist among nodes. This might exhibit distinct differences in the
overall tail response times at each node. Therefore, the combined effects of both, i.e., the
increasing amount of applications demands, and the noted varieties in cluster hardware,
can be presented in such a case scenario, where each node is bounded by a different tail
τi than other nodes. Consequently, to demonstrate the effectiveness of the prediction
model, examples of HFJQNs use multiple distributions with different tails, and each node
is presumably associated with one of those several-tailed distributions.

In the following experiments, simulations with clusters consist of groups of nine
distinct tails for nodes, i.e., heterogeneous nodes, h-nodes = 9, where each one has a unique
distribution tail different from others, see Table 2. Heavy-tail Pareto distribution with the
same mean service time, µ = 4.22 ms, and lower bound L = 2.14 ms is assumed for all. The
array of the nine tails, Table 3, originated by manipulating the shape parameter αi, which
they used to distinguish each node in a single group of nine-tailed nodes. When the cluster
scales up, it will become a multiple of the same single nine-node group.

Following the white-box approach, Table 4, we assume that the same distribution
is applied at all nodes, the same utilization level as other nodes, but different tail (τi)
at each, where i = 1 to N nodes. You can solve the complete FJ structure knowing the
required moments for the N-nodes from using Equations (13), and (12) and then applying
Equation (5). Prediction results are presented in Figures 4 and 5. Discussions regarding all
the experiment results of this section as well as others will be explained in more detail in
Section 4.

Figure 4. HFJQNs of nine distinct tails associated with all fork nodes, where the black-box method is
used in the solution.
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Figure 5. HFJQNs of nine distinct tails applied at all fork nodes, where the white- and black-box
methods’ prediction performance are compared at load 90%.

Table 2. HFJQNs of nine tails associated with all nodes.

Parameters pij = 1, m = 1, G = Tail (τ)

Arrival Distribution Poisson, E[X] = 4.22 ms

Service Distribution(s) Truncated Pareto, E[Xi|τi]

Manipulated at nodei τi = see Table 3

# Heterogeneous Nodes h-nodes = 9 (or multiples of h-nodes)

Cluster Sizes 9, 270, 540, 900

Table 3. Pareto: different tails (τi) for different shapes (αi).

Distribution Tail τi Shape Parameter αi

503.53 ms 2.0210

450.00 ms 2.0200

402.65 ms 2.0189

350.07 ms 2.0173

301.53 ms 2.0153

250.39 ms 2.0123

200.59 ms 2.0078

150.51 ms 2.0000

100.09 ms 1.9833

4.3. Separate Portions of Homogeneous and Inhomogeneous Nodes

A straggler is a well-known phenomenon that might temporarily occur when service
providers scale up their systems to cope with the growing need for extra resources. Even
if a current state of a system is kept intact, there would be a potential chance for one or
multiple serving units to slow down their executions of the incoming tasks. This might
happens due to (1) spikes in requests for memory access or in CPU activity during tasks
processing, (2) interference, in accessing storage servers or from irrelevant network traffic,
(3) maintenance activities, such as garbage collections, data reconstructions, or (4) energy
management and so on. All could induce similar situations for having a group of straggler
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computing stations exists at any given cluster. For example, it was found in several studies
on production traces of the Google cluster that a realized significant division of the cluster
is homogeneous while the remaining division is inhomogeneous [5]. This fact is the basis
of the subsequent experiments.

Assume a 90% of the given cluster nodes associated with exponential distribution,
for µ = 4.22 ms, and considered the homogeneous part. The remaining nodes, i.e., 10%,
are left to be handled by the truncated Pareto distribution with max tail (upper bound)
= 503.530 ms. We will follow through this example setup, and in another experiment, this

ratio will be tuned as depicted in Figure 6.
For the white-box approach, Table 4, the same utilization level is enforced at all fork

nodes. We assume two different distributions fi(x) associated with two groups of defined
nodes’ percentages, i.e., h-nodes = 90%(homogeneous) + 10%(in-homogeneous), where
i = 1 to N nodes. For solving the fork-join structure of N-nodes, refer to Equations (13)
and (12) to estimate the required moments for all N-nodes, and then use Equation (5). The
prediction results are presented in Figures 7 and 8. Discussions regarding all the experiment
results of this section as well as others will be explained in more detail in Section 4.

In related scenario experiments, explained in Figure 6, we push this case a little further
and observe the impact when tuning the portion of inhomogeneous nodes. Thus, the
changing effects on jobs mean response times, the 99th percentile of the actual experiments
response times, and the predicted 99th percentile tail-response times were studied, and
the resulting outcomes are presented as shown. Truncated Pareto distribution of the same
tail (i.e., 503.53 ms), and exponential distribution with mean execution times = 4.22 ms
were applied. The outcomes of this experiment are no different than the basic one, where
the errors in prediction stay the same, even knowing that the situation changed completely
to homogeneous at the two ends of the figure, i.e., totally dominated by exponential
distributions or Pareto distributions.

Figure 6. Job response times (RTs) against the increased percentage of inhomogeneous nodes
(bounded Pareto with tail = 503.53 ms, and total cluster size = 900 nodes).
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Figure 7. HFJQNs of applying 90% homogeneous (exponential) and 10% inhomogeneous (bounded
Pareto) for all fork nodes, where the black-box method is used in the solution.

Figure 8. HFJQNs of applying 90% homogeneous (exponential) and 10% inhomogeneous (bounded
Pareto) for all fork nodes, where the white- and black-box methods’ prediction performance results
are compared at load 90%.

Table 4. Portions of homogeneous and inhomogeneous nodes.

Parameters pij = 1, m = 1, G = Distribution f (x)

Arrival Distribution Poisson, E[X] = 4.22 ms

Service Distribution (s) TPareto and Exponential, µ = 4.22 ms

Manipulated at nodei fi(x) = Expo or Pareto (τ = 503.53 ms)

# Heterogeneous Nodes h-nodes = 90% Expo + 10% Pareto

Cluster Sizes 20, 270, 540, 900

4.4. Nested Event-Based Simulations Model for Multi-Cores Technology

A proposed scenario for heterogeneous modeling is to deviate from the usual practice
in implementing event-based simulations and construct a simulation model of different
architectural designs. For example, different node structures concerning replicas, distribu-
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tions, utilizations, and even for establishing huge gaps between mean executions times, all
can apply in a single round if using such simulation models. Multicore technology and
a multiprocessing technique both were considered at the design stage to help exploit the
suggested modeling scenario to the limits. Therefore, it became the sole motivation for
conducting the following experiment, as it was desired to test the results of the prediction
model for a situation where different node structures exist.

A vector of twenty-six distributions synthesized initially from nine distinct distribu-
tions, ten different mean service times, and nine Pareto distributions of different tails set
with the same mean service time, µ = 4.22 ms, were used for the experiment. The elements
from the vector are assigned randomly to all nodes following uniform random distribu-
tion. A range of random replicas numbers is set arbitrarily for each node. Thus, diverse
architectural designs are enforced per node. The Pareto distribution is used to generate
target requests based on a predefined percentage to the system scheduler, where tagged
forked tasks are sent to subsystems. Each subsystem is handled as different event-based
simulation processes, where the tasks of the untagged job sent to null-event are used to
advance the sub-simulation time. All sub-simulations function independently with varying
configurations of their networks, and the number of generated task requests at each node
is set to be unlimited. The created task requests are considered for the influence of having
background applications involved. Recognizing the behaviors of background applications
helped to study their impacts on target tasks received from the control system, i.e., from
the parent simulation; see Figure 9.

Figure 9. HFJQNs of applying different architectural designs at all fork nodes, where the black-box
method is used in the solution.

5. Results and Discussion

To our knowledge, no one so far has exploited tail prediction in heterogeneous environ-
ments the way we did in this research work. Additionally, all of the existing state-of-the-art
prediction models are known for targeting only homogeneous FJQNs, which leads to
no available model for accuracy comparisons. Therefore, we used both approaches of
our model—the white- and black-box methods—for comparing prediction results where
it applicable.

For the white-box approach, to relax the complexities in computing the root, we
even the number of nodes in all experiments groups, where the heterogeneous nodes of an
experiment group, h-nodes, have different computing capabilities, e.g., unique distributions,
or mean service times. Then it becomes a multiple of the same h-nodes as the system
scale out to large cluster sizes, e.g., 270, 540, and 900. An exception is for the last case
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scenario, where the h-nodes have different characteristics configurations per each scaled-out
experiment, and that explains why only the black box is presented in that case.

Further, we numerically compute the root using the Levenberg–Marquardt algorithm,
as the root-finding package comes by default with Matlab fsolve function. Applying the
root-finding function with this algorithm requires assuming an initial value to begin with.
From observations, it is found that this initial value has its impact and at the same time
dictates the accuracy of tail prediction results. Hence, we conducted a small research
study to observe the proper range of initial values for all heterogeneous conditions to
determine one common range that would work under the selected root-finding package.
From our analyses, we find that the right initial value for the utilization experiments
using light-tailed distribution (e.g., exponential) is any value (rinit) that falls within the
range 0.99 6 rinit 6 3.05. For the remaining tests types, either applying the heavy-tailed
Pareto of different tails or in combination with other distributions, the best initial value is
0.24 6 rinit 6 0.47. The latter range also worked well with the heterogeneous cases covered
by another research work conducted in parallel to this one, where mixtures of distributions
are applied at each node. Actually, it is not clear whether this observation of range effect is
due to the Matlab root-finding package or the estimation method, needing further research
outside the scope of the current study.

For the types of HFJQNs in Section 3, except the last, Figures 2–8 present the prediction
errors for the 99th percentile response times at loads 50%, 75%, 80%, and 90%, for all
HFJQNs of N nodes that are running a single serving unit at each. The odd figures,
i.e., Figures 3, 5 and 8, present comparisons of prediction errors between the black-box
HFJQNs and the white-box HFJQNs at load 90% only. The model yields quite accurate
approximations for tail latency at high load regions, less than 10% and 20% at the load
of 90% and 80%, respectively. Further, in Figure 2, for all the cases with the exponential
distribution, i.e., different node utilizations, the model gives accurate predictions across
the multiple HFJQNs sizes studied. This is consistent with earlier observations i.e., the
lighter the tail, the smaller the prediction errors. The results shown in the odd figures,
i.e., the outcomes of comparisons between white box and black box, ideally, should be
equivalent. The differences are introduced due to simulation and measurement errors,
i.e., based on 95% confidence. For the example case with the nested simulations utilizing
multi-cores technology in Section 4.3 the current implementation code relies heavily on
memory, where the experiments are limited to small cluster sizes, i.e., 10, 50, and 100, and
that is due to the limited resources of using a single core7-CPU testing PC. Figure 9 shows
the prediction errors at the determined load levels, where, to our surprise, the prediction
errors are reduced with less than 10% mostly across all load regions and less than 5%
for loads at 75% or above. This further asserts our postulation about the reliability of
using this model, assuming no advanced knowledge of node distributions, and even under
such heterogeneous scenarios where huge differences in performance are applied among
node architectures.

Lastly, one of the main questions that has not been answered yet is the considerable
difference in prediction errors between heavy and light-tailed workload distributions. It
seems the model successfully predicts the light-tailed distributions within the expected
window of errors across all load levels. At the same time, it underestimates the heavy-tailed
distributions at low loads, and once it reaches high loads, it overestimates, even though it
stays within the expected margin of error.

As known, there are two competing effects in the approximation: (1) the impact of
using extreme value theory, and (2) modeling our solution using a generalized exponential
distribution. First, the solution is not an exact estimate but approximated; we use extreme
value theory, which predicts the worst-case scenario. That explains why there is an expected
small percentage of errors added to the approximation. Second, the basic concept is that at
high-load regions, due to the queuing effect, the distribution of task response times of a
single forked node can be modeled as an exponential, as its CV becomes near exponential in
its behavior/characteristics, i.e., CV in the range [1–1.2]. Third, the used generalized expo-
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nential model is inherently exponential, where the long tail can be considered as an added
feature. Therefore, it will not have trouble predicting distributions of the short-tailed family
at most load regions as we saw with the Weibull and the exponential distributions [34].
However, for heavy-tail distributions, and based on the concept, at high-load regions, when
queuing effects dominate the existing workload distribution, 10% of errors in prediction,
observed in all applied scenarios of workload distributions, is considered enough for the
model to satisfy the argument.

6. Convergence Point for Reliable Metrics

The two performance metrics are essential for the work of the prediction model, and
both are used to interpret any node’s ability to serve a demanded latency response. Histori-
cal collections of task-completion times help in inferring the two metrics and determining
the resource capabilities as well. Therefore, to gain better prediction, a crucial point is
to learn the least amounts of archived responses, which is necessary for assessing the
reliability of the metrics’ measurements at a node. For example, assuming homogeneous
conditions, it is known from the budget translation section that a single round of translation
for a provided target response helps achieve the required nodes’ measurements. Hence, µ
and σ2 can be obtained when numerically determining the value of C ratio, and inferring
both α and β. Now, assuming a 10% window of errors in prediction is acceptable and a
required 95% confidence level, Chebyshev’s inequality can apply alongside the statistical
metrics gathered from cluster nodes:

P(|X− µ| > ε) 6 (1− con f idence) (14)

where, ε is the accepted error for the mean of task responses, i.e., ε = (Accepted Error Ratio ·
µ). Now, assuming collected samples are independent, central limit theorem can be used for
further derivation to normalize the σ2

x of the population distribution into σ2/n for collected
samples, as the following:

σ2
x

ε2 =
σ2

n · ε2 (15)

Therefore, we have

P(|X− µ| > ε) 6
σ2

n · ε2 (16)

From both Equations (14) and (16),

n =
σ2

ε2 · (1− con f idence)
(17)

Figure 10 demonstrates an example where the parameters were empirically gathered
from carrying on two different types of experiments used for the estimation. The obtained
statistics are from conducted homogeneous experiments [12], where mean and variance
in responses were observed only for tagged tasks at workers. The used clusters were of
different sizes (e.g., 10, 100, and 500 workers), and the collected responses of target tasks
were based on predetermined target percentages (e.g., 10%, 50%, and 90%). Hence, the
influence of having background applications was involved in the experiments. In the
first scenario, the background was of the same distribution but applying a different mean
service time than the target, and in the second one, the background was of a different
distribution. The result in the figure shows that if a particular application gets to dominate
a large percentage of the entire workload, the number of needed samples slightly increases
≤ 20%, where both two ends stay within the expected 10% of the target if set as a reference
point when it dominates half of the workload. That is, once considered the addition of
this slight amount, it does not matter how significant the portion of a target application
will be. We follow the above derivation to mathematically estimate the required amount
of samples for the same target tail once translated into µ and σ2. The results are found to
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be about the same with an accuracy of more than 87.5% compared with the one estimated
from measurements. It is worth mentioning that the observed differences in the introduced
errors caused by the average µ might be due to simulation and measurement errors, which
could also negatively play a role in the changed portions of the target shown in the figure.

Figure 10. Samples amount required for reliable metrics, check scenarios 2 and 3 in [12].

Further, the amount of the required samples can be tuned for a lesser amount once
the accepted error ratio of the mean latency is increased from the 10% shown in the figure
to a little higher (e.g., 20%). Therefore, this method is a very crucial tool, as it presents a
way to estimate the required amount of sample response times for getting reliable mean
latency measurements of task processing at a fork node. Finally, using this approximation
approach for estimating the required sample size is unique in a way that it does not need
to know the distributions or nodes’ statistical performance beforehand [35]. At the same
time, it does not require to use approximations, which incur a high margin of errors when
neither distributions nor nodes’ measurements are known [36,37].

7. Budget Translation

One of the unique and potential benefits of using the prediction model is the ability to
translate any required latency into task performance budgets, e.g., µ and σ2. Consequently,
from the given allowed budget, any landed job request negotiates for a range of nodes based
on the knowledge of subsystems performance metrics that could serve while guaranteeing
SLO requirement satisfaction. For that reason, a question of how to work out the budget
translation using this model should arise. From Equations (2), (3) and (5), we already have
the following:

µT = g(α, β) (18)

σT = h(α, β) (19)

xp = f (α, β, p, k) (20)

where µT and σT are the mean and standard deviation of the task responses, and xp is
the required tail in response times. Now, assume ratio C = µT/σT , where C > 1. This
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provides us with four equations and four variables We can numerically solve it, and hence,
the translated budget will be

BT = µT ± σT (21)

For demonstration purposes, assume a homogeneous condition with the given user
requirements: 99% ile, xp = 100 ms, and amount of forked tasks k = 20. Applying the
above method leads to the results shown in Table 5, where the translated budget can
be used to direct tasks as in Figure 11. Choosing a C ratio ≈ 1 sounds reasonable to
attain the performance measurements of a single node. A core principle of this model
approximation is that at a high-load region, waiting times for a single node follow an
exponential distribution, which means µ and σ = 1/λ. Therefore, it is safe to assume that
for budget translation, setting C ratio = 1 would provide us with approximately the same
µ expected at any single node.

Accordingly, what happens if the C ratio changes to different values? For example,
assume changing the C ratio takes the range between 1 to ∞. Figures 12 and 13 demonstrate
the impact of tuning the C ratio at the translated budget. Note that the observed changes
in the boundaries stop when C = 15, but the increase in µ and the decrease in σ values
continue until C = 31. This means that working different C ratios helps relax (low C) or
tighten (high C) the amount of provisioned resources for the allowed budget.

Table 5. Translated budget using two different C ratios.

K Latency C µSLO σSLO
Upper

limit SLO

Lower
limit SLO

20
100 ms 1 13.16 ms 13.16 ms 26.32 ms 0

100 ms 15 60.46 ms 7.22 ms 67.68 ms 53.23 ms

Figure 11. Using the translated budget to determine the right destination.
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Figure 12. The two boundaries of the translated budget.

Figure 13. Translated Budget area: the enclosed area between the two boundaries.

8. Future Work and Conclusions

So far, provided there is a clear distinction between the inhomogeneous and homo-
geneous environments, the original-derived prediction model still holds. At schedulers,
if decision making is established only based on queue lengths, it could sometimes be
deceiving [1]. Henceforth, engaging the knowledge of the computing capabilities for cluster
nodes to derive the resource allocation is more reasonable for gaining reliable performance.
Schedulers would become able to define budget boundaries for guaranteed user satisfaction.
Based on the performance measurements feedback, dispatching systems can specify ranges
of nodes that could afford to serve users’ requests within the given SLO requirements.
A good example is to perceive an experienced taxi-driver who takes advantage of the
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knowledge he has about a destination. He uses the knowledge to ride his vehicle and steer
the wheel toward proper addresses. This is a crucial improvement that we could achieve
from using the prediction model, which seems already to be lacking in other models.

In this paper, we deviated from the normal practice of most previously conducted
works. Assuming heterogeneous conditions existed, we provided several study cases
regarding the prediction of tail latency. Many conditioned scenarios were covered, where
different distributions and unique characteristics were considered for the demonstration
of cluster nodes. The model has proved to be reliable, as it performed well within an
acceptable window of errors for all studied cases. The encouraging outcomes stand for
adopting this prediction model in designed schedulers for improved decision making and
providing guaranteed services. Furthermore, it is expected that this model could fit rightly
in more sophisticated scenarios, where multi-stage scheduling is acquired [38]. Therefore,
extending the use of the prediction model is the next future work, as the design nature of
many production environments requires including more processing stages instead of only
one fork-join phase.
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