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Abstract: Highly efficient visible-light-driven heterogeneous photocatalyst Ag3PO4/g-C3N4 with differ-
ent weight ratios from Ag3PO4 to g-C3N4 were synthesized by a facile in situ hydrothermal method
and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform
infrared spectrometry (FTIR), photoluminescence spectra (PL), UV–vis diffuse reflectance spectra (UV-
Vis), and electrochemical impedance spectra (EIS). Under visible light irradiation, Ag3PO4/g-C3N4

showed very excellent photocatalytic activity for sulfapyridine (SP) which is one of the widely used
sulfonamide antibiotics. When the ratio from Ag3PO4 to g-C3N4 was 1:2, the degradation rate of
SP at 120 min was found to be 94.1%, which was superior to that of pure Ag3PO4 and pure g-C3N4.
Based on the experimental results, the possible enhanced photocatalytic mechanism of Ag3PO4/g-C3N4

was proposed.

Keywords: visible light; photocatalysis; Ag3PO4; g-C3N4; sulfapyridine

1. Introduction

Over the past decades, with rapid economic development, water pollution has become
more and more serious, threatening the health of human beings in the world. Among pollu-
tants, antibiotics are usually used to treat or prevent bacterial infections in humans and animals.
In particular, the continuous and long-term abuse of antibiotics has attracted widespread
attention because various antibiotics are detected in natural water bodies, including surface
water and groundwater, which has resulted in drug resistance to pathogenic microorganisms
and has led to cross-resistance and multi-drug resistance even at very low concentrations [1–5].
However, conventional wastewater biological treatment technologies cannot remove antibi-
otics effectively from water due to antibiotics’ complex composition, toxicity, and recalcitrant.
It was found that the effluent from a wastewater treatment plant with conventional biological
treatment technology, which is responsible for treating wastewater from 90 antibiotic drug
manufacturers in India, contains 31 mg/L ciprofloxacin, which is about over 1000 times
toxic to certain bacteria [6]. There were three kinds of antibiotics, including tetracycline,
sulfonamide, and quinolone, detected at 195, 2001, and 3866 ng/L in the effluent from a
wastewater treatment plant adopting activated sludge in Beijing, and the concentration of
these antibiotics was much higher than that of the ambient river water [7]. Al Maadheed et al.
found that two conventional wastewater treatment plants in Doha, built in 1990 and 2010,
respectively, received hospital sewage, and even if the sewage passed the ultrafiltration stage,
two antibiotics (clavulanic acid and ciprofloxacin) could not be removed [8]. Wang et al.
selected 37 antibiotics from four classes of sulfonamides, macrolides, tetracyclines, and flu-
oroquinolones to be detected and observed that 19–33 of these antibiotics were discovered
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in the effluent of conventional wastewater treatment plants ranging from ng/L to µg/L [9].
Hendricks et al. took fluoroquinolones and sulfamethoxazole as model antibiotics to study
the removal efficiency of wastewater treatment plants employing biological technologies, and
the result showed that the removal efficiency of fluoroquinolone and sulfamethoxazole was
only 21% and 34%, respectively [10].

Hence, it is imperative to develop an effective technology to remove antibiotics from
the water environment [5,11,12]. During the past few decades, it was found that advanced
oxidation processes (AOPs) could efficiently remove antibiotics by generating reactive
species [13–16]. Dehghani et al. applied the Fenton oxidation process to the degradation
of sulfamethoxazole, and antibiotic removal was achieved for up to 99.99% in 15 min [17].
Nasseh et al. used the FeNi3/SiO2 nanocomposite with the presence of H2O2 as a hetero-
geneous Fenton-like catalytic process for oxidating metronidazole, and the result showed
that the removal efficiency of metronidazole reached 80.29% in 180 min with the presence
of 150 mg/L H2O2, 0.1 g/L nanocomposite and Ph = 7 [18]. Feng et al. utilized ozonation
to degrade flumequine in an aquatic environment, and the result showed that ozonation
could remove flumequine fast and efficiently from water [19]. As one of the AOPs, or
photocatalysts, photocatalysis has attracted widespread attention due to its properties such
as effective, cost, environmentally friendly, and safe qualities [20–23].

In the past years, photocatalysis using semiconductors as photocatalysts has been
widely studied and applied in the removal of antibiotics. TiO2 was first reported for use
in decomposing water under UV light irradiation [24] and then became one of the most
common photocatalysts. However, the band gap of TiO2 is about 3.2 eV, which means
that only Ultra-Violet (UV) light energy, which accounts for <5% of sunlight energy, could
be utilized. Additionally, a serious of photocatalysts that could utilize visible light has
been discovered by many researchers. Over the last few decades, graphitic carbon nitride
(g-C3N4), as a metal-free polymeric photocatalyst, has become a promising photocatalyst
for photocatalysis since it is abundant, has low cost, is non-toxic, and demonstrates chemi-
cal and thermal stability and simple synthesis. Nevertheless, the application of g-C3N4 is
limited by its relatively insufficient light capture and rapid charge carrier recombination
rate [25,26]. Therefore, many researchers have made a lot of effort to improve the photo-
catalytic performance of g-C3N4, such as nonmetal doping [27], metal doping [28,29], the
morphology and structure modification [30,31], and constructing a heterojunction compos-
ite coupling of two or more semiconductors [32,33]. Liu et al. reported that g-C3N4 could
be doped by sulfur to enhance the nanocomposite photoactivity, and the result showed
that the photoactivity of synthesized nanocomposite for H2 evolution is about eight times
higher than that pure g-C3N4 under UV [34]. Han et al. found that chlorine-doped g-C3N4
had a stronger oxidation capability, more active sites, and more efficient charge transfer
compared to pure g-C3N4 [35]. Xu et al. doped Mn and O to g-C3N4 to enhance g-C3N4
photocatalytic performance and found that the photodegradation rate was constant to that
of the synthesis nanocomposites for Malachite green, which was about 5.09 times more
than that of pure g-C3N4 [36]. Niu et al. successfully synthesized g-C3N4 with highly
anisotropic 2D nanosheets through a thermal oxidation etching method and found that the
modified g-C3N4 had higher photocatalytic activity due to the modification of morphology
and construction [37]. The study of Du et al. showed that g-C3N4 coupled with Bi2WO6
and black phosphorus quantum dots had much higher photocatalytic activity for bisphenol
A than for that of g-C3N4, Bi2WO6, and phosphorus quantum dots [38]. The hybrid photo-
catalyst is widely used because it can not only improve the photogenerated electron–hole
pairs separation efficiency but also extend the photocatalyst’s response to light. Hence,
there are a lot of scientists focusing on the enhancement of the photocatalytic performance
of g-C3N4, constructing it with other semiconductors. Ye et al. found that CoTiO3/g-C3N4
photocatalyst could enhance the H2 evolution under visible light, accounting for efficient
charge carrier separation and strong reduction ability [39]. Tao et al. investigated that
TiO2/g-C3N4 with a multi-layered porous structure had a superior photocatalytic perfor-
mance for the photodegradation of Rhodamine B due to its low recombination rate of the
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photogenerated electron-hole [40]. Maminozhi et al. synthesized g-C3N4/ZnO photocata-
lyst through a hydrothermal method and found that it had very excellent degradation for
organic dye driven by visible light [41].

After that, Ye et al. first reported that silver nitrate (Ag3PO4) had excellent photocat-
alytic activity under visible light irradiation, and more and more studies have revealed
its excellent photocatalytic performance in water oxidation and the photodegradation of
organic pollutants. It has been reported that Ag3PO4 would have quantum efficiencies
as high as 90%, even at wavelengths greater than 420 nm, which is much higher than
previously reported by other semiconductors. Despite the great advantages of Ag3PO4-
based photocatalysts, there are still many issues hindering their practical applications in
the degradation of organic pollutants, such as the rapid recombination rate of photogen-
erated carriers and stability. To overcome these problems, a lot of researchers coupled
Ag3PO4 with various semiconductors, and it has been proven to be an effective method
for promoting the photoactivity of the photocatalyst since Ag3PO4 could significantly
enhance the visible-light absorption of the photocatalyst and suppress the separation
of electron–hole pairs [42–44]. Recently, photocatalysts hybridized with π-conjugated
structure materials have been proven to be effective in improving the nanocomposite pho-
tocatalytic activity under visible light irradiation [45]. g-C3N4 can be easily decorated on
the surface of nanocomposites since it is a soft polymer with a π-conjugated structure [46].
Thus, the heterogeneous photocatalyst g-C3N4/Ag3PO4 was desired to have prominent
photocatalytic activity.

Sulfapyridine (SP), one of the most commonly used sulfonamide antibiotics, has been
widely employed as a veterinary drug for disease treatment in humans and added to
animal feed, which is frequently detected in the aquatic environment [47]. According to
much research, there are various deleterious effects of SP, such as bio-toxicity and endocrine
disruption for both aquatic wildlife and human beings [47–50]. Meanwhile, SP cannot be
removed efficiently by the chlorination method, which is the most common way to disinfect
the water [51]. In the meantime, there would be an assortment of disinfection by-products
formed during chlorination [52]. Hence, it is strongly desired for an efficient way to remove
SP from the aquatic environment.

In this work, Ag3PO4/g-C3N4 hybrid photocatalysts with different weight ratios of
Ag3PO4 to g-C3N4 were prepared through an in situ hydrothermal method and were
characterized. The photocatalytic activity of Ag3PO4/g-C3N4 was evaluated by the pho-
todegradation of SP under visible light irradiation, and the optimal weight ratio of Ag3PO4
to g-C3N4 was determined. Finally, the possible photocatalytic mechanism of Ag3PO4/g-
C3N4 was proposed.

2. Materials and Methods
2.1. Materials

Urea, AgNO3, disodium hydrogen phosphate (Na2HPO4·12H2O), and ethanol for
this experiment were obtained from Tianjin Xintong Fine Chemicals Company Limited,
Tianjin, China. SP were obtained from Shanghai McLean Biochemical Technology Co.,
Ltd., Shanghai, China. All reagents used in this work were of an analytical grade and
used as received without any further purification. All solutions were prepared using
deionized water.

2.2. Preparation of Photocatalyst
2.2.1. Synthesis g-C3N4

A total of 10 g of urea was weighed and placed in a covered crucible and heated at 550 ◦C
for 4 h with a heating rate of 2 ◦C min−1 in a muffle furnace. The obtained yellow-colored
powder was collected and cooled to room temperature, washed several times with deionized
water and ethanol thoroughly, and then dried at 60 ◦C for 12 h. After that, the obtained
powder was calcined at 500 ◦C for 330 min with a heating rate of 5 ◦C min−1 in a muffle
furnace, and the resulting products were g-C3N4.
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2.2.2. Synthesis Ag3PO4/g-C3N4

The Ag3PO4/g-C3N4 were prepared according to the literature [53] with slight modifi-
cations. Briefly, g-C3N4 was sonicated in 20 mL of water for 2 h. Then, 0.312 g of AgNO3
was put into the above solution, and then the solution was sonicated continually at room
temperature for 1 h. Thenceforth, 0.238 g of Na2HPO4·12H2O was put into the solution at
60 ◦C for 1 h with continuous stirring. The obtained yellow powder was collected through
a centrifuge, then washed thoroughly with water and ethanol, and dried at 60 ◦C for 24 h.
For comparison purposes, we prepared different weight ratios of Ag3PO4 to Ag3PO4/g-
C3N4 (50%, 33%, 25%, and 20%), which were chosen in the nanocomposite photocatalysts
and denoted as 1:1 Ag3PO4/g-C3N4, 1:2 Ag3PO4/g-C3N4, 1:3 Ag3PO4/g-C3N4, and 1:4
Ag3PO4/g-C3N4, respectively.

2.3. Characterization

Power X-ray diffraction (XRD) was investigated by an X-ray diffractometer (Rigaku
UltimaIV) using Cu Kα irradiation with the 2θ range from 10 to 90◦. The scanning electron
microscope images were collected by an FEI Quanta-PEG 450 microscope. The photolu-
minescence spectra (PL) were investigated with an F-98 system (Shanghai, China). The
FTIR spectrum was recorded with a PerkinElmer Spectrum Two spectrometer. The UV–vis
diffuse reflectance spectra (UV-vis) were carried out via a TU-1901 with a wavelength range
from 200 to 800 nm. The electrochemical impedance spectra (EIS) were carried out via the
electrochemical workstation (Ivium Technologies BV, Ivium, Eindhoven, The Netherlands)
with a standard three-electrode configuration using a working electrode, a platinum plate
as a counter electrode, and a standard Ag/AgCl in saturated KCl solution as a reference
electrode. A total of 0.5 M Na2SO4 solution was used as the electrolyte.

2.4. Photocatalytic Experiments

The photocatalytic performance of Ag3PO4/g-C3N4 samples was evaluated by the
photocatalytic degradation of the SP under the irradiation of a 500 W xenon lamp with
a 420 nm cut-off filter. A total of 100 mg of the prepared samples was dispersed into the
SP solution (3 mg/L), and the solution was 50 mL. Before irradiation, the suspensions
were magnetically stirred for 30 min in the dark to reach an adsorption/desorption equi-
librium between the SP and the photocatalysts. A 1.5 mL suspension was withdrawn and
filtered through a 0.22 µm filter (Millipore) at regular intervals for testing the residual
SP concentration. The SP concentration was recorded by HPLC (Agilent Technologies
1200-Series).

3. Results and Discussion
3.1. Characterization

Figure 1 depicts the XRD patterns of g-C3N4, Ag3PO4, and 1:2 Ag3PO4/g-C3N4 sam-
ples. There are two typical diffraction peaks at 13.0◦ and 27.4◦ in the XRD patterns of
g-C3N4, which were ascribed to the (100) and (002) crystal planes of g-C3N4, respectively.
The XRD pattern of Ag3PO4 can be originated from the cubic structure of Ag3PO4 (JCPDS
No. 06–0505). The peaks at 20.9◦, 29.7◦, 33.3◦, 36.5◦, 42.5◦, 47.8◦, 52.7◦, 55.0◦, 57.2◦, 61.6◦,
69.9◦, 71.9◦, 73.8◦, and 87.2◦, correspond to (110), (200), (210), (211), (220), (310), (222), (320),
(321), (400), (420), (421), (332), and (520) diffraction plane, respectively. The XRD patterns
also further affirmed Ag3PO4 and g-C3N4 purity. The characteristic peaks of crystalline
g-C3N4 can be indexed in the patterns of 1:2 Ag3PO4/g-C3N4, and the peak intensity is
weaker than pure g-C3N4 owing to the presence of Ag3PO4, which is in good agreement
with the literature [54].

The morphology and microstructure of g-C3N4, Ag3PO4, and 1:2 Ag3PO4/g-C3N4
were investigated by SEM and are shown in Figure 2. As shown in Figure 2a, g-C3N4 had
a large number of randomly stacked sheet structures. From Figure 2b, it can be seen that
Ag3PO4 particles are spherical in shape without any aggregation. Figure 2c displays the
SEM images of 1:2 Ag3PO4/g-C3N4, and it can obviously be seen that the Ag3PO4 was well
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dispersed on the thin and smooth sheets, along with the porous morphology of g-C3N4.
The nanocomposite nanoparticles are also similar in size and shape to those of the Ag3PO4
particles. This further confirmed that g-C3N4 and Ag3PO4 had been combined successfully.
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Figure 2. SEM images of g-C3N4 (a), Ag3PO4 (b) and 1:2 Ag3PO4/g-C3N4 (c).

FTIR could be recorded to investigate the detailed structural composition of nanocom-
posites. Figure 3 shows the FTIR spectra of the Ag3PO4/g-C3N4 composites prepared
in this paper. There are three main strong characteristic peaks of g-C3N4 at about 810,
1200–1700, and 3200–3400 cm−1, which could be assigned to the breathing mode of triazine
unites, the typical stretching vibration of CN heterocycles, and the O–H stretches, respec-
tively [55–61]. The peak at 1010 cm−1 could be associated with the P-O stretching vibration
in PO4 [62–64], and the broad bands at 1300–1450 cm−1 which originated from phosphoryl
(P = O), which also found another characteristic frequency of PO4 [54]. It further confirmed
that Ag3PO4/g-C3N4 had been successfully prepared.
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The Photoluminescence (PL) emission spectra of pure g-C3N4, pure Ag3PO4, and 1:2
Ag3PO4/g-C3N4 are exhibited in Figure 4. Generally, PL emission spectra can reveal the
migration, transfer, and recombination of photogenerated charge carriers in semiconductors.
Hence, there is a strong correlation between PL intensity and photodegradation performance.
Generally, a higher PL peak would suggest higher recombination rates of electron-hole pairs,
leading to lower photodegradation activity. In opposition to this, a lower intensity of PL
means lower recombination rates of electron-hole pairs, resulting in higher photodegradation
activity. The main emission peak centered at about 460 nm, and a broad PL peak in the range
of 445–475 nm for the g-C3N4. Ag3PO4 exhibits the strongest peak at around 462nm, and 1:2
Ag3PO4/g-C3N4 presents a strong PL emission intensity at 460 nm, which is in line with the
literature [65]. The PL emission intensity of g-C3N4 has the highest PL intensity, which means
that g-C3N4 has the most efficiency in photogenerated charge recombination. The PL emission
intensity of Ag3PO4 is much lower than that of g-C3N4. Among these nanocomposites, the
PL emission intensity of 1:2 Ag3PO4/g-C3N4 PL emission is the lowest. It definitely proves
that 1:2 Ag3PO4/g-C3N4 processes a higher efficiency in separating the electron–hole pair
and would have good photodegradation performance.
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vestigated by the UV–vis DRS technique. As shown in Figure 5, the absorption edge of 
pure g-C3N4 and Ag3PO4 were approximately 438 nm and 510 nm, suggesting both nano-
composites could absorb visible light energy. The light-absorbance ranging from 200 to 
420 nm was much higher for 1:2 Ag3PO4/g-C3N4 than that for pure g-C3N4 and pure 
Ag3PO4. This revealed that there was a small shift in the band edge position to a higher 
wavelength in the g-C3N4 coupling with Ag3PO4 compared to pure g-C3N4. The above 

Figure 4. Photoluminescence emission spectra of g-C3N4, Ag3PO4, and 1:2 Ag3PO4/g-C3N4.

The optical properties of pure g-C3N4, pure Ag3PO4, and 1:2 Ag3PO4/g-C3N4 were
investigated by the UV–vis DRS technique. As shown in Figure 5, the absorption edge
of pure g-C3N4 and Ag3PO4 were approximately 438 nm and 510 nm, suggesting both
nanocomposites could absorb visible light energy. The light-absorbance ranging from 200
to 420 nm was much higher for 1:2 Ag3PO4/g-C3N4 than that for pure g-C3N4 and pure
Ag3PO4. This revealed that there was a small shift in the band edge position to a higher
wavelength in the g-C3N4 coupling with Ag3PO4 compared to pure g-C3N4. The above
results suggest that the 1:2 Ag3PO4/g-C3N4 would have more efficient utilization of solar
energy and higher photocatalytic activities compared to pure g-C3N4 and pure Ag3PO4.
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The electrochemical impedance spectra (EIS) technique is an effective method to evaluate
the charge carrier separation and transportation ability during the photocatalytic reaction [66].
The detected semicircles in the EIS are ascribed to the charge transfer resistance on the electrode
material surface [67]. Usually, the small arc radius in an EIS Nyquist plot indicates a low
recombination rate of electron-hole pairs, and the large arc radius in an EIS Nyquist plot
indicates a high recombination rate of electron-hole pairs [68–70]. Figure 6 shows typical
Nyquist plots of the EIS results over pure g-C3N4 and 1:2 Ag3PO4/g-C3N4. As shown in
Figure 6, 1:2 Ag3PO4/g-C3N4 has a smaller arc radius than pure g-C3N4, suggesting that
Ag3PO4 can improve g-C3N4′s efficiency in the separation of electron-hole pairs. The result
is in good agreement with PL. To be brief, it proves that 1:2 Ag3PO4/g-C3N4 would be a
favorable photocatalyst.
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working electrode.

3.2. Photocatalyst Performance Analysis

The photocatalytic degradation activity of Ag3PO4/g-C3N4 prepared in this study
has been evaluated in terms of the removal of SP under simulated visible light irritation.
Because SP is very stable, it is very difficult to be degraded under visible light without a
photocatalyst. After visible light irradiation for 120 min, very limited removal efficiency
(<5%) was observed for SP by photocatalysts in the dark condition, suggesting that the
adsorption by photocatalysts could be neglected. However, there was obvious degradation
with photocatalysts and visible light irritation. As shown in Figure 7a, the g-C3N4 with
Ag3PO4 content exhibited a substantially increased SP degradation compared to g-C3N4
under visible light. Additionally, the photodegradation of SP by Ag3PO4/g-C3N4 increased
with the ratio of Ag3PO4 to g-C3N4 from 1:4 to 1:2. When the ratio of Ag3PO4 to g-
C3N4 increased to 1:1, a lower photodegradation of SP was observed compared to 1:2
Ag3PO4/g-C3N4. The photodegradation efficiencies of g-C3N4, 1:1 Ag3PO4/g-C3N4, 1:2
Ag3PO4/g-C3N4, 1:3 Ag3PO4/g-C3N4, and 1:4 Ag3PO4/g-C3N4 were 73.1%, 89.9%, 94.1%,
and 89.5% at 120 min, respectively. The relationships between ln(C0/Ct) (C0, the initial
concentration of SP and Ct, the concentration of SP after t min visible light irritation) and
visible light irritation time were recorded in Figure 7b. From Figure 7b, it can be seen that
the photodegradation processes of SP by Ag3PO4/g-C3N4 fit the first-order kinetics model
very well. Additionally, the slopes of these lines are the SP photocatalytic degradation
kinetic constants with Ag3PO4/g-C3N4 under visible light irritation. The photodegradation
kinetic constants of 1:1 Ag3PO4/g-C3N4, 1:2 Ag3PO4/g-C3N4, 1:3 Ag3PO4/g-C3N4, and
1:4 Ag3PO4/g-C3N4 were 0.01936 min−1, 0.02335 min−1, 0.0202 min−1, and 0.01856 min−1,
which were 1.72, 2.08, 1.79, and 1.65 times that of pure g-C3N4, respectively. Among these
photocatalysts, 1:2 Ag3PO4/g-C3N4 exhibited the highest photocatalytic degradation of SP
under the present experiment.
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It is well-known that both g-C3N4 and Ag3PO4 can be irradiated by visible light to 

generate electrons and holes because they belong to the scope of the narrow band gap 
energy [71–73]. On the basis of the above results and analysis, a possible photocatalytic 
mechanism for the photocatalytic performance of Ag3PO4/g-C3N4 for SP is proposed and 
illustrated in Figure 8. In order to analyze the photocatalytic reaction activity of the nano-
composite, the valence bands (VBs) and conduction bands (CBs) positions for g-C3N4 and 
Ag3PO4 were evaluated by the Mulliken electronegativity theory [74]: 
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arithmetic mean of the atomic electron affinity and the first ionization energy (g-C3N4 = 
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3.3. Possible Photocatalytic Mechanism

It is well-known that both g-C3N4 and Ag3PO4 can be irradiated by visible light to
generate electrons and holes because they belong to the scope of the narrow band gap
energy [71–73]. On the basis of the above results and analysis, a possible photocatalytic
mechanism for the photocatalytic performance of Ag3PO4/g-C3N4 for SP is proposed
and illustrated in Figure 8. In order to analyze the photocatalytic reaction activity of the
nanocomposite, the valence bands (VBs) and conduction bands (CBs) positions for g-C3N4
and Ag3PO4 were evaluated by the Mulliken electronegativity theory [74]:

EVB = X − Ec + 0.5Eg (1)

ECB = EVB − Eg (2)

where X is the absolute electronegativity of the semiconductor, expressed as the geometric mean
of the absolute electronegativity of the constituent atoms, which is defined as the arithmetic
mean of the atomic electron affinity and the first ionization energy (g-C3N4 = 4.72 eV and
Ag3PO4 = 5.93 eV) [75,76]; Ec is the energy of free electrons on the hydrogen (4.5 eV); Eg is the
band gap of the semiconductor. According to the results from Figure 5b, the Eg values of g-C3N4
and Ag3PO4 can be calculated through the following equation:

αhv = A
(
hv− Eg

)n (3)

where α, h, ν, A, and n are absorption index, plank constant, optical frequency, constant,
and a configurable parameter, respectively. Based on Equation (3), the direct band gap
of g-C3N4 and Ag3PO4 are about 2.96 and 2.27 eV, which is consistent with examples in
the literature [77,78]. The indirect band gap of g-C3N4 and Ag3PO4 are 2.64 and 2.48 eV,
respectively (Figure S1). According to Equations (1) and (2), the CB (ECB) and VB (EVB)
values for g-C3N4 are calculated to be −1.26 eV and +1.7 eV, respectively. The values
of CB and VB for Ag3PO4 are +0.16 eV and +2.64 eV, respectively. Because the CB of
g-C3N4 is more negative than that of Ag3PO4, the photoexcited electrons from g-C3N4
tend to migrate toward the CB of Ag3PO4 through the well-defined interface. In the
meantime, the photoexcited holes generated from Ag3PO4 are transferred in the composite.
Thermodynamically, the photoexcited electrons are noble reductants, which can diffuse to
the photocatalyst surface and react with the adsorbed O2 molecules on the photocatalyst
surface, hence inhibiting the recombination of the charge carriers. Therefore, accumulated
electrons in the CB of Ag3PO4 can enhance the production of radical ·OH efficiently,
highlighting the role of the charge separation process. Meanwhile, a reduction reaction
takes place in g-C3N4, thus forming O2

·− radicals, which can directly oxidize the target
organic pollutant subsequently. The high photocatalytic performance of Ag3PO4/g-C3N4
is ascribed to the rapid charge transfer and efficient separation processes, which can inhibit
the recombination of the photogenerated holes.
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4. Conclusions

In summary, a facile chemical precipitation method was employed to synthesize hybrid
Ag3PO4/g-C3N4 nanocomposites with enhanced photocatalytic performance. The physical
and chemical characterizations were investigated by XRD SEM, FTIR, DRS, PL, and EIS
analysis. Compared to pure g-C3N4, the introduction of Ag3PO4 can significantly enhance
the visible light-responsive photocatalytic activity for the degradation of the SP solution. In
the meantime, the ratio of Ag3PO4 and g-C3N4 can affect the photocatalysts’ performance.
The optimal ratio of Ag3PO4 and g-C3N4 was found to be 1:2. The SP photodegradation
efficiency reached 94.1% with the presence of the 1:2 Ag3PO4/g-C3N4 under 120 min visible
light, which is 1.28 times that of pure g-C3N4. Meanwhile, the observed rate constant for
the photodegradation of SP by 1:2 Ag3PO4/g-C3N4 was found to be about 0.02335 min−1,
which is 2.08 times that of pure g-C3N4. In conclusion, this study provides the possible
application of the Ag3PO4/g-C3N4 composite for the photodegradation of sulfonamides in
aquatic environments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11020375/s1, Figure S1. (a) and (b) band gap energies of g-C3N4, Ag3PO4.
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