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Abstract: Hidden moving target defense (HMTD) is a proactive defense strategy that is kept hidden
from attackers by changing the reactance of transmission lines to thwart false data injection (FDI)
attacks. However, alert attackers with strong capabilities pose additional risks to the HMTD and
thus, it is much-needed to evaluate the hiddenness of the HMTD. This paper first summarizes
two existing alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven
alert attackers. Furthermore, this paper proposes a novel model-based alert attacker model that
uses the MTD operation models to estimate the dispatched line reactance. The proposed attacker
model can use the estimated line reactance to construct stealthy FDI attacks against HMTD methods
that lack randomness. We propose a novel random-enabled HMTD (RHMTD) operation method,
which utilizes random weights to introduce randomness and uses the derived hiddenness operation
conditions as constraints. RHMTD is theoretically proven to be kept hidden from three alert attacker
models. In addition, we analyze the detection effectiveness of the RHMTD against three alert attacker
models. Simulation results on the IEEE 14-bus systems show that traditional HMTD methods fail
to detect attacks by the model-based alert attacker, and RHMTD is kept hidden from three alert
attackers and is effective in detecting attacks by three alert attackers.

Keywords: false data injection attack; hidden moving target defense; alert attacker model; state
estimation; D-FACTS device; unsupervised learning

1. Introduction

Modern power systems suffer from significant threats from cyber–physical attacks
due to the vulnerabilities of widely used information and communication technology (ICT)
enabled devices and Internet of things (IoT) technologies. In addition, energy sources such
as wind and solar energy have inherent instability that might compromise the stability of
the system [1]. According to the U.S. Department of Energy, 362 power interruptions related
to cyber–physical attacks were reported between 2011 and 2014 [2]. False data injection
(FDI) attacks are one of the most destructive cyber–physical attacks against smart grids.
FDI attacks compromise measurements in the supervisory control and data acquisition
(SCADA) system, which aim to manipulate the voltage estimated by the state estimation
in the energy management system of the power system. FDI attacks can cause severe
consequences, including line overloading, load shedding, unstable system states, and even
voltage collapse [3].

Moving target defense (MTD) is introduced into the physical layer of power systems to
detect FDI attacks. MTD actively perturbs the branch impedance using distributed flexible
AC transmission system (D-FACTS) devices, such that the time-variant system configura-
tion invalidates attackers’ knowledge about the actual power system configurations. The
first MTD work against FDI attacks [4] proposed a random MTD (RMTD) method in which
the reactance of an arbitrary subset of D-FACTS-equipped lines is randomly changed. It
was proved that MTD methods could effectively detect FDI attacks [5–9], cyber–physical
attacks [10], and Stuxnet attacks [11].
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1.1. Related Work

MTD planning and MTD operation are two essential steps in implementing the MTD
method. MTD planning refers to installing D-FACTS devices on an identified subset of
transmission lines, and MTD operation refers to adjusting the D-FACTS setpoints under
different load conditions. Reference [12] proved that MTD planning determines the detec-
tion effectiveness of MTDs. Max-rank placement [5,12] can achieve the maximum rank
of the composite matrix, which is the widely used metric of MTD detection effectiveness.
Arbitrary placement and full placement are the two simplest D-FACTS placement strategies
without considering the detection effectiveness of MTDs. Arbitrary placement installed
D-FACTS devices on randomly selected lines [4], while full placement installed D-FACTS
devices on every transmission line [13]. The placement of D-FACTS devices was optimized
in [14], which aims to reduce the number of measurements that can be manipulated by the
attacker. It also proved that the coordinated design of consecutive perturbation schemes
within an MTD cycle could improve the MTD’s performance in detecting FDI attacks.

MTD operation methods mainly determine the function of D-FACTS devices in MTD.
The arbitrary operation method, the simplest MTD operation method, randomly perturbed
the D-FACTS setpoints [4] without considering the economic benefits and detection ef-
fectiveness. Optimal-power-flow (OPF)-based operation methods utilized the D-FACTS
devices and OPF model to control the power flow and minimize the system losses or
generation costs [12,15,16]. Optimization-based operation methods maximized the metric
of detection effectiveness or the economic cost to optimally dispatch the D-FACTS set-
points [13,17]. Recently, a double-benefit moving target defense was proposed to protect
the smart grid from cyber–physical attacks (CPAs) and also gain generation-cost benefits in
the DC power system model [9]. Reference [18] studied the effectiveness and hiddenness of
MTD using measurement residuals in three-phase AC distribution system state estimation
and further formulated the optimization problem for MTD to jointly optimize the effective-
ness and hiddenness considering voltage stability. Reference [19] developed two strategies
to make the increasing operation cost zero for activating the MTD. In addition, it studied
the impact of MTD on the system dynamics using small signal stability.

A strong and alert adversary can detect the existence of MTD in place, which can
drive the attacker to postpone the attack using the incorrect line impedance. Consequently,
the attacker can invest more resources to obtain the current power system configuration,
and potentially launch stealthy attacks with a higher-level threat. The concept of hidden
MTD is proposed in transmission systems [6] and distribution systems [20], in which the
defender delicately modifies the line impedance to maintain MTD hidden to the attacker.

There are three types of hidden MTD methods in the literature. In the first type,
referred to as watermarking HMTD [21], the defender slightly changes the line impedance
such that the status of the power system will not significantly change, and the attacker
will not realize the existence of MTD. However, small line impedance changes cause the
Chi-square bad data detector (BDD) in state estimation to fail to detect the FDI attacks. The
defender had to utilize the CUSUM detector to detect FDI attacks. Due to the characteristic
of CUSUM [22], the CUSUM detector cannot immediately detect the FDI attacks. As a
consequence, the power system may suffer from FDI attacks for multiple time instants. In
the second type, referred to as secure-meter-based HMTD [23], multiple protected meters
were utilized in each loop of the power system topology to cover the status change of the
power system and the power flow changes caused by the line impedance changes. It is
assumed that attackers have no read access to the protected meters such that alert attackers
(AA) cannot detect the existence of MTD using the remaining measurements through the
state estimation. However, this method is expensive for the defender, as the expensive
protected meters are only used for ensuring the hiddenness of MTD, rather than improving
the detection effectiveness against attacks. In the third type, referred to as model-based
HMTD [5,20], the defender delicately changes the line impedance such that the power
flow of each transmission line is the same before and after the MTD. However, the model-
based HMTD methods utilize optimization models without any uncertainties, which are
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not consistent with the dynamic defense nature of MTD. Randomness and diversity are
two essential components in the dynamic defense strategy [24]. Without randomness in
MTD, the attacker can apply the same HMTD method to estimate the exact line impedance
dispatched by the system operator, if the attacker knows which model-based HMTD is
used. Therefore, it is necessary to model possible alert attackers, and further improve the
hiddenness and detection effectiveness of MTD methods against the different types of
smart and alert attackers.

1.2. Research Gap

There is a research gap in that existing alert attackers need to be summarized and
modeled, and novel alert adversaries with strong and advanced capabilities are necessary
to be modeled. With clearly defined alert attacker models, these alert attacker models can
be used as a metric to comprehensively evaluate the hiddenness and detection effectiveness
of any novel MTD methods. In this paper, two existing alert attackers against MTD are
modeled, i.e., BDD-based alert attacker (BDD-AA), and data-driven alert attacker (DD-AA).
In addition, this paper proposes a novel model-based alert attacker (M-AA). These three
alert attacker models can be used to analyze the drawbacks of existing HMTD methods.

This paper further proposes a novel HMTD method that is hidden to three alert
attacker models. We compare the proposed HMTD method with the existing methods
regarding the hiddenness and detection effectiveness against three alert attacker models in
Table 1. Table 1 presents the drawbacks of existing HMTD methods, highlights the necessity
of the proposed model-based alert attacker, and demonstrates the novelties of the proposed
HMTD method. Note that the first Yes (Y) or No (N) indicates whether the HMTD method
is hidden to a given alert attacker, and the second Y or N indicates whether the HMTD
method is able to detect the attacks by the attacker.

Table 1. Comparison of the proposed and existing HMTD methods regarding the hiddenness and
detection effectiveness.

Method BDD-AA DD-AA M-AA Characteristics

Watermarking HMTD [21] Y/Y Y/Y Y/Y Detection delay of FDI attacks

Secure-meter-based HMTD [23] Y/Y N/Y Y/Y Extra expensive protected meters

Model-based HMTD [5,20] Y/Y Y/Y Y/N Lack of randomness

This paper Y/Y Y/Y Y/Y No detection delay and no
protected meters with randomness

1.3. Contribution

To fill the research gap, this paper summarizes two alert attacker models and further
proposes a novel alert attacker model. These three alert attacker models formulate a metric
to fully evaluate the hiddenness and detection effectiveness of any HMTD method. Then,
this paper proposes a novel random-enabled HMTD (RHMTD) operation model that is
stealthy to the three alert attackers. The contribution of this paper is summarized as follows:

• We summarize two alert attacker models against MTD in the literature: (i) a BDD-
based alert attacker who uses Chi-square BDD to detect the existence of MTD; and
(ii) a data-driven alert attacker who uses dimension reduction and unsupervised
learning methods to detect the existence of MTD.

• We propose a novel alert attacker model, i.e., a model-based alert attacker, who uses
the MTD operation model to calculate the dispatched line reactance and then uses
Chi-square BDD to verify the correctness of the estimated reactance. This attacker
model can use the estimated line reactance to construct stealthy FDI attacks against
HMTD methods that lack randomness.

• We propose a novel RHMTD operation model in the DC power system model, which
maximizes the weighted line reactance changes and integrates the derived MTD
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hiddenness operation condition as constraints. The weights of the line reactance in the
objective function follow the uniform distribution for introducing the randomness.

• We theoretically prove the hiddenness of the proposed RHMTD method against three
alert attacker models. We further analyze the attack detection effectiveness of the
proposed method against three alert attacker models.

The rest of this paper is organized as follows. In Section 2, we define three alert attacker
models. In Section 3, we derive a novel RHMTD operation model, prove the hiddenness of
RHMTD to three alert attackers, and evaluate the attack detection effectiveness of RHMTD
against three alert attackers. The case studies in the IEEE 14-bus system are conducted in
Section 4. The paper is concluded in Section 5.

2. Alert Attacker Models

In this section, we first define variables used in this paper and then define three alert
attacker models.

2.1. Notation

Variables used throughout the paper are summarized in Nomenclature. “D-FACTS
lines” and “non-D-FACTS lines” stand for the set of lines equipped with and without
D-FACTS devices, respectively.

2.2. BDD-Based Alert Attacker Model

The first BDD-based alert attacker model was proposed in [6]. Here, we refine the
BDD-based alert attacker with the capability of topology learning capability.

Attack goal. The BDD-based alert attacker aims to launch traditional stealthy FDI
attacks using correct line impedance under the MTD. Assumption. We assume that the
attacker knows the original configuration of the system without MTD, including the
system topology and the line impedance b0, but does not know the actual line impedance
dispatched by MTD on the current time instant. Attacker’s capability. The attacker has
read access to all SCADA measurements in the power system to detect MTD, and write
access to all measurements to inject FDI attacks. The attacker can perform SE and BDD to
detect MTD, and can launch the topology learning (TL) methods [25] to learn the current
line impedance b̂a. Attack logic. The flowchart of the BDD-based alert attacker is shown in
Figure 1. The attacker conducts SE using the original line impedance before the MTD, and
then performs BDD to calculate the estimation residual by (1).

ra = ‖z1 −H0(HT
0 H0)

−1
HT

0 z1‖2 = ‖H1x1 −H0(HT
0 H0)

−1
HT

0 z1‖2 (1)

where the measurement matrix under the MTD is H1 and the attacker’s original measure-
ment matrix before MTD is H0.
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If the attacker’s estimation residual is less than the threshold, i.e., ra < rth, it indicates
the attacker’s knowledge of the line impedance is correct and no MTD is applied in the field.
Then, the attacker can launch stealthy FDI attacks using the original system configuration
H0. If ra > rth, the alert attacker suspects the accuracy of the line impedance due to the
MTD and postpones launching attacks until bypassing the BDD check by estimating the
actual line impedance with the topology learning methods.

2.3. Data-Driven Alert Attacker Model

The first data-driven alert attacker model against MTD is proposed in [21]. Here,
we generalize the data-driven alert attacker model, and enable the attacker with stronger
attack capability. Currently, only watermarking HMTD has been evaluated to remain
hidden to the data-driven attacker through simulation. However, the hiddenness of the
secure-meter-based HMTD and model-based HMTD has not been evaluated against the
data-driven attacker.

Attack goal. The attacker aims to launch data-driven FDI attacks under the MTD.
Assumption. It is assumed the attacker does not know the configuration of the system
before and after the MTD, including the system topology and the line impedance, but he
knows MTD may be applied in the system. Attacker’s capability. The attacker has read
access and write access to all SCADA measurements. The attacker can collect historical
measurement data over time and the attacker can use unsupervised machine learning
methods to analyze the data.

Attack logic. The attack logic of the data-driven alert attacker is shown in Figure 2.
First, the attacker adds all eavesdropped measurements in Z matrix. Then, the attacker
applies the dimension reduction method (e.g., PCA) on the collected historical measurement
Z to 2D for visualization. If the low-dimensional historical measurements form more
than one cluster, it reflects the pattern of the power flow measurements significantly
changing, indicating MTD could exist in the field. Then, the attacker can apply clustering
algorithms (e.g., K-means and DBSCAN) to identify all historical measurements responding
to the current MTD, and construct data-driven FDI attacks using the identified historical
measurements. However, the number of the identified historical measurements depends
on the frequency of MTD. Therefore, under MTD, the number of historical measurements
that can be used for constructing data-driven FDI attacks is significantly reduced. Since
the performance of data-driven FDI attacks heavily relies on the number of measurements,
advanced data-driven FDI attack methods need to be applied, such as matrix reconstruction
FDI [26]. If the low-dimensional historical measurements only form one cluster, it indicates
MTD is not applied in the field. Therefore, all collected historical measurements can be
used to construct data-driven FDI attacks. With sufficient historical measurements, the
attack has more data-driven FDI attack methods to choose from for constructing malicious
injection vectors, such as PCA-FDI [27] and subspace FDI [28].
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2.4. Model-Based Alert Attacker Model

For the first time, this paper proposes a model-based alert attacker model. This
alert attacker model is designed for the existing MTD or HMTD methods [5,12,15,19,20],
which are based on the optimization problem without considering any uncertainties. If
the attacker applies the same MTD model, it is easy to obtain the actual line impedance
dispatched in the field.

Attack goal. The attacker aims to launch traditional FDI attacks using the correct line
impedance under the MTD. Assumptions. We assume the attacker knows the configu-
ration of the system, including the system topology and the line impedance before the
MTD. Attacker’s capability. The attacker has read access and write access to all SCADA
measurements. In addition, the attacker is assumed to know the multiple MTD operation
models, including the method used by the system operator. Attack logic. As shown in
Figure 3, the model-based alert attacker utilizes the MTD operation model to calculate the

dispatched line impedance b̂a and measurement matrix
^
H. Then, the attacker can further

evaluate the correctness of the solved line impedance by ra = ‖z1 −
^
H

(
^
H

T ^
H

)−1
^
H

T

z1‖2.

If ra < rth, it indicates the attacker obtains the actual line impedance under the MTD. If
the estimated residual is larger than the threshold, i.e., ra > rth, the alert attacker needs
to change an MTD operation method until the system operator’s current MTD operation
model is found and correct line impedance is obtained. Then, the attacker can launch the

traditional FDI attacks using
^
H.
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3. Random-Enabled HMTD

In this section, we first derive a novel hiddenness operation condition of HMTD,
and then propose a novel RHMTD operation model. Finally, we prove that the proposed
RHMTD is hidden to three alert attackers, and analyze the attack detection effectiveness
of RHMTD.

3.1. Hiddenness Operation Condition

Assume MTD changes the line impedance of the transmission lines. Accordingly, the
measurement matrix is changed from H0 to H1, and system states are changed from θ0 to
θ1. SCADA measurements are changed from z0 = H0θ0 (the measurements before MTD)
to z1 = H1θ1(the measurements after MTD).

We will use the decomposition of H matrix to demonstrate the impact of D-FACTS
devices on H and the relationship between H0 and H1. First, we separate matrix H0
into two submatrices, i.e., H1

0 and H2
0, which correspond to the measurements related to
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the lines with and without D-FACTS devices, respectively. Then, we apply the matrix
decomposition [12] on H1

0 and H2
0, respectively:

H0 =

[
H1

0
H2

0

]
=

[
D1 · X1 ·A1
D2 · X2 ·A2

]
(2)

where X1∈ R p1×p1 and X2∈ R p2×p2 are the diagonal reactance matrix of p1 D-FACTS
lines and p2 non-D-FACTS lines, respectively; A1∈ R n−1×p1 and A2∈ R n−1×p2 are the
reduced bus-branch incidence matrixes of the graphs composed of the D-FACTS lines and
non-D-FACTS lines, respectively; D1 and D2 are the meter deployment matrixes of graph
A1 and A2, respectively. Here, D-FACTS lines refer to the transmission lines equipped with
D-FACTS devices, and non-D-FACTS lines refer to the remaining transmission lines in the
power system. Similarly, H1 can be expressed by (3):

H1 =

[
H1

1
H2

1

]
=

[
D1 · X

′
1 ·A1

D2 · X2 ·A2

]
=

[
D1 · (X1 + ∆X) ·A1

D2 · X2 ·A2

]
(3)

where X
′

is the diagonal reactance matrix of D-FACTS lines after D-FACTS devices modify
the line reactance; and ∆X is the incremental line reactance matrix, i.e., ∆X = X′1 − X1.
Equations (2) and (3) intuitively demonstrate the impact of MTD on the measurement
matrix. MTD only modified the submatrix of the measurement matrix related to the
D-FACTS devices.

According to [6], HMTD remains hidden to BDD-based attackers by keeping all
measurements unchanged after the setpoint changes of D-FACTS devices, i.e., z0 = z1. In
the noiseless condition, the unchanged measurement condition can be reformulated:[

H1
0

H2
0

]
θ0 =

[
H1

1
H2

1

]
(θ0 + ∆θ) (4)

where ∆θ is the incremental state by MTD, i.e., ∆θ = θ1 − θ0. When we substitute (2) and
(3) into (4), we can obtain:{

D1 · X1 ·A1 · θ0 = D1 · (X1 + ∆X) ·A1 · (θ0 + ∆θ)
D2 · X2 ·A2 · ∆θ = 0

(5)

Since D2 · X2 ·A2 is a fixed matrix, ∆θ determined by HMTD should belong to the
null space of D2 · X2 ·A2, i.e., ∆θ ∈ Null(D2 · X2 ·A2). Thus, ∆θ can be represented by
the kernel bases of D2 · X2 ·A2. Therefore, the hiddenness condition of the HMTD can be
summarized as follows:

D1 · X1 ·A1 · θ0 = D1 · (X1 + ∆X) ·A1 · (θ0 + KW) (6)

where K = [k1, k2, . . . , ks]∈ R p1×s is the matrix of kernel bases of D2 · X2 · A2; W =

[w1, w2, . . . , ws]
T∈ Rs is the weight determined by the system operator; and s is the dimen-

sion of kernel bases.

3.2. The Random-Enabled HMTD Model

In order to remain hidden to three alert attackers and ensure the attack detection
effectiveness, an HMTD operation model should simultaneously meet the following four
requirements. First, for the BDD-based alert attacker, the measurements need to remain
unchanged before and after the implementation of MTD. Essentially, the setpoints of
D-FACTS devices in the HMTD operation model should satisfy the derived hiddenness
condition (6). Secondly, for the data-driven alert attacker, MTD ought to avoid introducing
distinct changes in measurements. Note that this requirement is less restrictive than that
of the BDD-based alert attacker. Thirdly, for the model-based alert attacker, it is necessary
to introduce unpredicted randomness into the HMTD operation model. In this case, even
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though the model-based alert attacker applies the same HMTD operation algorithm used
by the system operator, the attacker still fails to obtain the actual line reactance dispatched
by the system operator. Finally, sufficient line reactance changes are needed to guarantee a
fast and effective attack detection capability [12].

We propose a non-convex, non-linear, optimization-based RHMTD operation model
in (7), which aims to remain hidden to three alert attacker models and ensure the attack
detection effectiveness. The proposed RHMTD model maximizes the weighted square of
the line reactance changes using uniformly distributed random weights. The maximized
line reactance changes ensure the attack detection effectiveness, while the random weights
contribute to providing uncertainties to the model-based alert attacker. Constraint (8) is the
derived hiddenness condition, which ensures the RHMTD is hidden to the BDD-based and
data-driven alert attackers. Constraint (9) defines the kernel bases of D2 · X2 ·A2 for the
hiddenness condition. Constraint (10) is the physical constraint of the D-FACTS devices’
working setpoints. Generally, the MTD magnitude µ is 0.2 [6].

max
∆X,W

diag(∆X)Tλdiag(∆X) (7)

s.t. D1 · X1 ·A1 · θ0 = D1 · (X1 + ∆X) ·A1 · (θ0 + KW) (8)

K = Null(D2 · X2 ·A2) (9)

− µ diag(X1) ≤ diag(∆X) ≤ µdiag(X1) (10)

where the weight parameter λ is random variables following the uniform distribution
between 0 and 1, i.e., λi ∈ U(0, 1), i = 1, 2, . . . , X1 ‖0.

The RHMTD operation model can be seamlessly integrated into the existing energy
management system of the power system. The defender, i.e., the system operator, can
assign the weight and then calculate the setpoints of the D-FACTS devices by solving model
(7) after the optimal power flow (OPF) function determines the optimal generation. Then,
the D-FACTS setpoints are sent to the field devices for implementation through encrypted
communication.

3.3. Hiddenness of the RHMTD against Alert Attackers

In this section, we prove the hiddenness of the proposed method to three alert attackers.
Assume the measurements before the MTD are z0 = H0x0, and the measurements after
the RHMTD are z1 = H1x1, where H1 is determined by (7). Note that z0 = z1 holds in the
noiseless condition due to the hiddenness operation constraints.

Theorem 1. The RHMTD model is hidden to the BDD-based alert attacker.

Proof. The BDD-based alert attacker uses the system configuration H0 to calculate the
estimation residual, and the estimation residual of the proposed RHMTD is zero in the
noiseless condition, as follows. Thus, RHMTD is hidden to the BDD-based alert attacker.

ra = ‖z1 −H0(HT
0 H0)

−1HT
0 z1‖2 = ‖z0 −H0(HT

0 H0)
−1HT

0 z0‖2
= ‖z0 −H0(HT

0 H0)
−1HT

0 H0x0‖2 = ‖z0 −H0x0‖2 = 0
(11)

�

Theorem 2. The RHMTD is hidden to the data-driven alert attacker.

Proof. The data-driven alert attacker collects a set of historical measurements to conduct
the UL detection. It is assumed that the attacker arranges all eavesdropped measurement
vectors of T time instants into a historical measurement matrix ZHist = [z1, z2, . . . , zT ],
where ZHist∈ R m×T. Let us separate T time instants into two parts, i.e., T = T1 + T2, and
accordingly, let Z1 and Z2 be the historical measurement matrix of T1 and T2 time instants,
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respectively. When there are no MTDs applied in the system over T time instants, the
historical measurement matrix is denoted by ZHist

0 =
[
Z1,0 Z2,0

]
. The data-driven attacker

first applies the PCA on ZHist
0 to reduce the dimension, and cluster the low-dimension data

ZPCA
0 as follows:

ZPCA
0 = PCA(ZHist

0 ) (12)

yi = Cluster(ZPCA
0 ) (13)

where yi is the cluster index of the i-th dimension-reduced measurement vector.
Assume the RHMTD model is applied since T2–th time instants, and the historical

measurement matrix collected by the attacker becomes ZHist
RH =

[
Z1,0 Z2,H

]
. Due to the

hiddenness operation condition, the measurement vector in the T2 time instants remain un-
changed with and without RHMTD, i.e., Z2,0 = Z2,H . Thus, ZHist

0 = ZHist
RH holds. Then, the

dimension-reduced vectors of ZHist
RH are the same as those of ZHist

0 , i.e., PCA(ZHist
RH ) = ZPCA

0 .
Since the input of the clustering algorithm remains unchanged, the RHMTD will not
change the clustering results. Therefore, the proposed RHMTD is hidden to the data-driven
alert attacker. �

Theorem 3. The RHMTD is hidden to the model-based alert attacker.

Proof. It is assumed that the model-based alert attacker applies the RHMTD model (7)

using the eavesdropped measurements z1, and obtains the system configuration
^
H. Even

though the input measurement of the RHMTD model conducted by the system operator
and the attacker are the same (z0 = z1), different weights result in different D-FACTS

setpoints, i.e., HRH 6=
^
H. Due to the hiddenness condition, z1 =

^
Hx2 holds. The estimation

residual computed by the model-based alert attacker using
^
H is zero as follows.

ra = ‖z1 −
^
H

(
^
H

T ^
H

)−1
^
H

T

z1‖2 = ‖z1 −
^
H

(
^
H

T ^
H

)−1
^
H

T ^
Hx2‖2= ‖z1 −

^
Hx2‖2 = 0 (14)

Note that if the attacker happens to use the same weight as that used by the system

operator, HRH =
^
H holds. However, it does not impact the hiddenness of the RHMTD in

Theorem 3. It only degrades the attack detection effectiveness of the proposed RHMTD,
but it happens with very low probability. �

3.4. Detection Effectiveness of the RHMTD against Alert Attackers

In this section, we analyze the attack detection effectiveness of RHMTD against the
attacks by the BDD-based and model-based alert attackers due to the straightforward
analysis, and then prove that the RHMTD has the maximum detection effectiveness against
the PCA-FDI attacks by the data-driven attackers.

For the BDD-based alert attacker, the stealthiness of the RHMTD misleads the attacker
to adopt the traditional FDI attacks without the aid of topology learning. It is proved that
the placement of D-FACTS determines the attack detection effectiveness of MTD against
the traditional FDI attacks [12]. The max-rank HMTD placement [5] adopted in this paper
guarantees the maximum attack detection effectiveness under the assumption that the
reactance of all D-FACTS lines is changed by the D-FACTS devices. This assumption is
satisfied by the RHMTD operation by maximizing the line reactance changes introduced
by D-FACTS devices. Therefore, the RHMTD under the max-rank HMTD placement has
the maximum detection effectiveness of the attacks by the BDD-based attackers.

The model-based alert attacker constructs FDI attacks using
^
H under the RHMTD.

According to the MTD detection effectiveness metric [6,12,13], the detection effectiveness
of RHMTD with HRH against the model-based alert attacker depends on the rank of the
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composite matrix, i.e., rank([ ^
H HRH

]). We can apply the graph theory analysis on de-

riving the value of rank([ ^
H HRH

]). Note that in the D-FACTS placement problem, it is
the difference between the original line reactance (attacker’s knowledge) and defender’s
dispatched line reactance that determines the detection effectiveness. However, it is the
difference between the attacker’s estimated line reactance b̂a (attacker’s knowledge) and
defender’s dispatched line reactance b that plays an important role in the detection effec-
tiveness of the model-based attacker’s attacks. Thus, we treat the difference between the
attacker’s estimated line reactance and the defender’s dispatched line reactance, i.e., b̂a − b,
as the contribution of D-FACTS devices. If b̂a(i) = b(i) holds for the i-th D-FACTS line, it
indicates the D-FACTS device on this line does not exist from the perspective of the alert
attacker, referred to as the equivalently removed D-FACTS line hereafter; if b̂a(i) 6= b(i), the
D-FACTS device on this line works. In this case, if b̂a 6= b holds for all D-FACTS lines, the
adopted max-rank HMTD placement ensures the maximum attack detection effectiveness,

i.e., max
(

rank([ ^
H HRH

])
)
= p based on the graph theory analysis of MTD [12]. If the

attacker accurately estimates the defender’s dispatched reactance of some D-FACTS lines,
the rank of the composite matrix in MTDs is determined by the number of loops in Ga
as follows:

rank([ ^
H HRH

]) = p− lpDF (15)

where lpDF is the number of loops in Ga and Ga is a graph constructed from the view
of the attackers, consisting of all buses, non-D-FACTS lines, and equivalently removed
D-FACTS lines.

For the data-driven alert attacker, the hiddenness of RHMTD misleads the alert attacker
to estimate the principle components of H0 before the MTD, rather than that of the actual
HRH . Consequently, the stealthiness of the PCA-FDI attack is degraded greatly. Specifically,
the stealthiness of the PCA-FDI attacks depends on the difference between the column
space of H0 and that of HRH . In Theorem 4, we prove that the proposed RHMTD under
the max-rank HMTD placement maximizes the difference between the column space of H0
and that of HRH such that the stealthy attack space is minimized.

Theorem 4. The RHMTD model has the maximized attack detection probability to the PCA-FDI
attack by the data-driven alert attacker.

Proof. The alert attacker collects historical measurements under RHMTD over T times, and
the historical measurement matrix is denoted by ZHist

RH . Similar to the proof of Theorem 3,
ZHist

0 = ZHist
RH holds in the noiseless condition due to the hiddenness of the RHMTD.

Therefore, the estimated H matrix under the RHMTD HPCA
RH = PCA(ZHist

RH ) is the same
as that without MTD HPCA

0 = PCA(ZHist
0 ) in the noiseless condition, i.e., HPCA

RH = HPCA
0 .

Then, PCA-FDI attacks are constructed by a = HPCA
RH c = HPCA

0 c.
According to the principle of FDI attack [6], if the attack vector a belongs to the column

space of HRH , i.e., a ∈ col(HRH), the constructed PCA-FDI attack is stealthy to RHMTD.
Specifically, a PCA-FDI attack is stealthy to RHMTD if a ∈ col(HRH) ∩ col(HPCA

0 ). Then,
the dimension of the stealthy attack space can be expressed as:∣∣col(HRH) ∩ col(HPCA

0 )
∣∣

= r(HRH) + r(HPCA
0 )− r([ HPCA

0 HRH ])
= 2× (n− 1)− r([ HPCA

0 HRH ])
(16)

Since the attacker’s HPCA
0 is unknown to the system operator, it is assumed that the

attacker can accurately approximate the column space of H0, i.e., col(HPCA
0 ) = col(H0).

Then, the dimension of the stealthy attack space becomes:∣∣∣col(HRH) ∩ col(HPCA
0 )

∣∣∣ = 2× (n− 1)− r([H0 HRH ])
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The adopted max-rank HMTD placement guarantees the maximum value of r(
[
H0 HRH

]
.

Therefore, the dimension of the stealthy attack space is minimized under the RHMTD. There-
fore, RHMTD has the maximized attack detection effectiveness to PCA-FDI attacks by the
data-driven alert attacker. �

4. Numerical Results
4.1. Test Systems

We evaluate the HMTD operation model in the IEEE 14-bus system [29]. We solve
the HMTD operation model using the fmincon function of MATLAB. We use MATLAB to
simulate the BDD-based and model-based alert attackers and use Python to simulate the
data-driven alert attacker. The measurement noise is assumed to be Gaussian distributed
with zero mean and the standard deviation as 1% of the actual measurement. The threshold
of the Chi-square detector in the BDD used by attackers and defenders is set to have a 0.1%
false positive rate.

A flowchart of HMTD against alert attackers regarding the attack detection probability
(ADP) and defense stealthy probability (DSP) is shown in Figure 4. The ADP is a widely
used metric to measure the MTD attack detection effectiveness from the perspective of
defenders. ADP is defined as the ratio of the number of detected FDI attacks to the total
number of launched FDI attacks. The DSP is a metric to measure the MTD hiddenness from
the perspective of attackers in simulation, which is defined as the ratio of the number of
MTDs hidden to attackers to the total number of launched MTDs. In the simulation, we
assume there are N load conditions. We use counters cntH and cntA to record the number
of hidden MTD and detected FDI attacks, respectively.
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4.2. Uncertainties of RHMTD

First, we demonstrate the effectiveness of random weights in providing uncertainties
to the line reactance in the RHMTD. Under the same load condition, we conduct the
RHMTD operation model 20 times using different weights. Figure 5 shows the dispatched
line reactance of each D-FACTS line in the 20 RHMTDs. It is seen that the reactance
of each D-FACTS line in the 20 RHMTDs is different. The uncertainties can contribute
to the hiddenness and detection effectiveness of RHMTD to the model-based attacker.
However, for some RHMTDs, they have similar reactance to the seventh D-FACTS line,
which negatively impacts the detection effectiveness of RHMTD against the attacks by the
model-based alert attacker. This impact is evaluated in Section 4.4.
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Figure 5. The reactance of D-FACTS-lines in 20 RHMTDs under a given load.

We utilize the L1-norm distance between the line reactance generated by the system
operator and that by the model-based attacker to measure the uncertainties in the RHMTD.
Based on the distance, we demonstrate the impact of MTD magnitude on the uncertainties.
Under each MTD magnitude, we generate one RHMTD operation point for the system
operator as the reference, and then generate 50 RHMTD operation points as the model-
based alert attacker’s estimation by running the RHMTD model. Figure 6 shows the
boxplot of the L1-norm distance under different MTD magnitudes. It is seen that a larger
MTD magnitude generally results in a large L1-norm distance. The median of the L1-norm
distance under 0.2 MTD magnitude is lower than that under 0.18. It indicates that a larger
MTD magnitude does not guarantee a larger L1-norm distance or a better attack detection
effectiveness against the model-based alert attacker due to the random uncertainties.
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4.3. Hiddenness of RHMTD against Three Alert Attackers

In this section, we evaluate the hiddenness of RHMTD to three alert attackers. First,
we evaluate the hiddenness of RHMTD to the BDD-based alert attacker by comparing the
DSP of RHMTD and RMTD under different MTD magnitudes.

To study the impact of MTD magnitude on the MTD hiddenness, we increase the
MTD magnitude from 0.02 to 0.2 with an increment of 0.02. For each MTD magnitude, we
generate 100 RMTDs and 100 RHMTDs under different load conditions, respectively. In
addition, we repeat this MTD generation process under two different noise conditions to
evaluate the impact of noise on the MTD hiddenness. The DSP of RMTD and RHMTD
against the BDD-based alert attacker is shown in Figure 7. As seen, when the MTD
magnitude is small (less than 0.04), it is likely that RMTD remains hidden to the attacker.
This is because the tiny line reactance mismatch has limited capability to increase the
estimation residual in the attacker’s BDD. With the increase in MTD magnitude, the DSP
drops to zero, indicating that RMTD is no longer hidden to the attacker. For the RHMTD,
its DSP is larger than 0.95 regardless of MTD magnitudes and the noise standard deviation,
indicating the hiddenness to the BDD-based attacker.
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Then, we evaluate the hiddenness of RHMTD to the model-based alert attacker under
different noise conditions. We generate 100 RHMTD operation setpoints under different
load conditions under MTD magnitudes from 0.02 to 0.2 with an increment of 0.02. The
measurements of RHMTD are sampled in the noiseless condition and noisy conditions
with standard deviations σ = 1%, σ = 2%, and σ = 3%, respectively. It is assumed that
the model-based attacker applies the RHMTD model (7) to estimate the line reactance
dispatched in the field, and then applies SE to calculate the estimation residual to detect
the existence of MTD. The DSP of RHMTD against the model-based alert attacker is shown
in Figure 8. In the noiseless condition, the DSP of RHMTD is always 1.0 regardless of MTD
magnitudes. In noisy conditions, the DSP of RHMTD is more than 95%. It is seen that MTD
magnitude and noise magnitude do not impact the hiddenness of RHMTD.

Finally, we demonstrate the drawbacks of RMTD against the data-driven alert attacker,
and further evaluate the hiddenness of RHMTD to the data-driven alert attacker. To
simulate historical measurements free from MTD collected by the data-driven alert attacker,
the power flow problem is solved for multiple time instants. In this paper, we use 100 load
conditions to generate historical measurements of 100 time instants. First, we generate
three RMTD groups under 100 different load conditions under 0.05, 0.10, and 0.15 MTD
magnitudes, respectively. Specifically, let RMTD 1, RMTD 2, and RMTD 3 refer to these
generated RMTD groups, and RMTD i (i = 1, 2, 3) has 100 different operation setpoints for
each MTD magnitude. After the SCADA measurements are collected by the attacker, a
dimension reduction algorithm, i.e., PCA, is applied on the 100 measurement vectors under
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RMTDs and 100 measurement vectors free of MTD to visualize the difference between the
normal data (no MTD measurements) and MTD measurements.
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The projection of RMTD and no MTD measurement data in the R2 space under
different MTD magnitudes are shown in Figure 9. When the MTD magnitude is 0.05, the
RMTD data points and no MTD data points are overlapped, indicating that the data-driven
alert attacker cannot detect the existence of RMTD. When the MTD magnitude becomes
0.10, RMTD 1 is projected into a new cluster, while RMTDs 2 and 3 are still overlapped
with no MTD data. When the MTD magnitude increases to 0.15, RMTDs 1 and 2 form two
new clusters, and data points of RMTD 3 also remain separated from no MTD data. For the
data-driven attacker, a new cluster indicates the detection of MTD. Thus, the hiddenness
of RMTD degrades with the increase in MTD magnitude, which is consistent with the
performance of RMTD against the BDD-based alert attacker.

To evaluate the hiddenness of RHMTD, we apply the RHMTD algorithm under
100 load conditions with 0.20 MTD magnitude. For comparison, we also generate 10 RMTD
groups with 0.20 MTD magnitude. The projection of RHMTD, 10 RMTD, and no MTD
measurements in the R2 space is shown in Figure 10. As seen, under 0.20 MTD magnitude,
all RMTD groups form new clusters that locate far from the cluster of no MTD measure-
ments. All data points of RHMTD remain inside of the cluster of the no MTD, as shown in
Figure 11. Therefore, these RHMTDs are hidden to the data-driven attacker. Since RHMTDs
with 0.20 MTD magnitude could remain hidden, it infers that the RHMTD with a smaller
MTD magnitude could also remain hidden, according to the impact of the MTD magnitude
on the MTD stealthiness.

We compare the hiddenness of RHMTD with two existing HMTD methods, i.e.,
watermarking HMTD [21] and model-based HMTD [4] against three alert attacker models
in Table 2. We can see that the proposed RHMTD is hidden to three alert attackers, consistent
with the hiddenness theorems in Section 3.3. In addition, these three HMTD methods are all
hidden to BDD-based alert attackers. This is because the BDD-based alert attacker is the first
alert attacker model proposed in the literature, such that these HMTD methods consider
the estimation residual changes in the alert attacker’s BDD. All three HMTD methods
are hidden to a data-driven alert attacker since these HMTD methods avoid significant
measurement changes before and after MTD. For the proposed model-based alert attacker,
the DSP of watermarking HMTD is lower than its DSP against BDD-based alert attackers.
It is because the randomness in the watermarking HMTD makes the attacker’s estimated
line parameters different from the actual dispatched parameters. The difference results in
an increase in the attacker’s estimation residual. Even though the model-based HMTD
is hidden to the model-based alert attacker, the attacker can accurately estimate actual
dispatched line parameters due to the lack of randomness in model-based HMTD. As a
consequence, the model-based HMTD cannot detect the attacks by the model-based alert
attacker, which is shown in Section 4.4.
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Table 2. DSP of existing HMTD methods and the RHMTD against three alert attackers.

Method BDD-AA DD-AA M-AA

Watermarking HMTD 94% 100% 83%

Model-based HMTD 93% 100% 96%

RHMTD 95% 100% 96%

4.4. Attack Detection Effectiveness of the RHMTD against Three Alert Attackers

In this subsection, we evaluate the attack detection effectiveness of the RHMTD against
three alert attackers. First, we prepare the defense pool of RHMTD. We increase the MTD
magnitude from 0.02 to 0.2 with an increment of 0.02, and then generate 100 RHMTD
operation setpoints for each MTD magnitude. In total, there are 1000 RHMTD operation
setpoints as the defense pool. In the simulation, the widely used attack detection probability
is applied to measure the attack detection effectiveness of an MTD, which is defined as the
ratio of the number of FDIs detected by the MTD to the total number of FDI attacks.

For the BDD-based attacker, RHMTD misleads the attacker to construct traditional
FDI attacks without the aid of topology learning. Therefore, the BDD-based alert attacker
constructs 100 single-bus FDI attacks using H0 for each RHMTD in the defense pool. The
ADP of RHMTD against the BDD-based alert attacker under different MTD magnitudes is
shown in Figure 12. The ADP increases with the MTD magnitude. This is because the tiny
line changes cannot cause sufficient residual incremental in the defender’s BDD, and thus
the ADP under the low MTD magnitudes is low. When the MTD magnitude is larger than
0.08, the ADP becomes 93.3%. This is because MTD cannot detect the single-bus FDI attack
on Bus 8, which only has one transmission line. This is the drawback of MTD identified by
our previous work [30].

The model-based attacker utilizes the same RHMTD model to estimate the reactance of

D-FACTS lines and uses
^
H to construct FDI attacks. We compare the detection effectiveness

of the RHMTD and HMTD against the model-based attacker. We generate 100 HMTD
under each MTD magnitude. For each HMTD and RHMTD, the model-based attacker
launches 100 FDI attacks. The ADP of RHMTD and HMTD against the model-based alert
attacker under different MTD magnitudes is shown in Figure 13. It is seen that HMTD
cannot detect the attacks by the model-based attacker. The lack of uncertainties causes
the model-based attacker to accurately estimate the reactance of D-FACTS lines, and the
attacks can bypass the defender’s BDD. Compared with the low ADP of HMTD, the ADP
of the RHMTD can reach 80%. We can see that the ADP of RHMTD against the model-
based attacker is lower than the ADP of RHMTD against the BDD-based attacker. This
is because the reactance of some D-FACTS lines estimated by the attacker is very close
to the actual reactance dispatched by the defender. For a single-bus FDI attack by the
model-based attacker, if line parameters of all connected lines associated with the target bus
are accurately or approximately estimated, the FDI attack is very likely to remain stealthy to
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the RHMTD. The detection effectiveness of RHMTD against the model-based alert attacker
is analyzed in Section 3.4.
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reactance of D-FACTS lines and uses Ĥ to construct FDI attacks. We compare the
detection effectiveness of the RHMTD and HMTD against the model-based attacker. We
generate 100 HMTD under each MTD magnitude. For each HMTD and RHMTD, the
model-based attacker launches 100 FDI attacks. The ADP of RHMTD and HMTD against
the model-based alert attacker under different MTD magnitudes is shown in Figure 13.
It is seen that HMTD cannot detect the attacks by the model-based attacker. The lack of
uncertainties causes the model-based attacker to accurately estimate the reactance of
D-FACTS lines, and the attacks can bypass the defender’s BDD. Compared with the low
ADP of HMTD, the ADP of the RHMTD can reach 80%. We can see that the ADP of
RHMTD against the model-based attacker is lower than the ADP of RHMTD against the
BDD-based attacker. This is because the reactance of some D-FACTS lines estimated by
the attacker is very close to the actual reactance dispatched by the defender. For a
single-bus FDI attack by the model-based attacker, if line parameters of all connected
lines associated with the target bus are accurately or approximately estimated, the FDI
attack is very likely to remain stealthy to the RHMTD. The detection effectiveness of
RHMTD against the model-based alert attacker is analyzed in Section 3.4.

Figure 12. The ADP of RHMTD against the BDD-based alert attacker under different MTD magni-
tudes.

Processes 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 13. The ADP of RHMTD and HMTD against the model-based alert attacker under different
MTD magnitudes.

The data-driven attacker constructs PCA-FDI attacks under RHMTD with 0.2 MTD
magnitude. It is assumed that the attacker collects the historical measurements of 5000
time instants. The RHMTD is conducted under each time instant. In the PCA-FDI attacks,
the number of the attacked buses are 1, 3, and 5, respectively. Here, the incremental
voltage of the PCA-FDI attack is defined as 0k c θ , where 0θ is the actual voltage
angle of the power system at the attacked time instant, and k is the FDI magnitude
varying from 0.05 to 0.4. The ADP of RHMTD against the PCA-FDI attacks by the
data-driven alert attacker is shown in Figure 14. It is seen that the ADP increases with
the FDI attack magnitude and the number of attacked buses.

Figure 14. The ADP of RHMTD against the data-driven alert attacker.

We compare the attack detection effectiveness of RHMTD with two existing HMTD
methods against three alert attacker models in Table 4. We use the Chi-2 detector for
three HMTD methods to detect FDI attacks. Due to small line parameter changes, the
watermarking HMTD has low ADP against three attackers. Model-based HMTD has the
same ADP as RHMTD against the BDD-based alert attacker. However, the ADP of
model-based HMTD against the model-based alert attacker is close to zero. This is
because the attacks constructed by the model-based alert attacker are based on
accurately estimated line parameters. RHMTD has higher ADP than other HMTD
methods due to its randomness and sufficient line impedance changes.

Table 4. ADP of existing HMTD methods and RHMTD against three alert attackers.

Method BDD-AA M-AA DD-AA
Watermarking HMTD 37.8% 47.3% 33.0%
Model-based HMTD 93.9% 6.0% 59.0%

RHMTD 93.6% 75.1% 68.0%

Figure 13. The ADP of RHMTD and HMTD against the model-based alert attacker under different
MTD magnitudes.

The data-driven attacker constructs PCA-FDI attacks under RHMTD with 0.2 MTD
magnitude. It is assumed that the attacker collects the historical measurements of 5000 time
instants. The RHMTD is conducted under each time instant. In the PCA-FDI attacks, the
number of the attacked buses are 1, 3, and 5, respectively. Here, the incremental voltage
of the PCA-FDI attack is defined as c = k× θ0, where θ0 is the actual voltage angle of the
power system at the attacked time instant, and k is the FDI magnitude varying from 0.05 to
0.4. The ADP of RHMTD against the PCA-FDI attacks by the data-driven alert attacker is
shown in Figure 14. It is seen that the ADP increases with the FDI attack magnitude and
the number of attacked buses.

We compare the attack detection effectiveness of RHMTD with two existing HMTD
methods against three alert attacker models in Table 3. We use the Chi-2 detector for
three HMTD methods to detect FDI attacks. Due to small line parameter changes, the
watermarking HMTD has low ADP against three attackers. Model-based HMTD has the
same ADP as RHMTD against the BDD-based alert attacker. However, the ADP of model-
based HMTD against the model-based alert attacker is close to zero. This is because the
attacks constructed by the model-based alert attacker are based on accurately estimated line
parameters. RHMTD has higher ADP than other HMTD methods due to its randomness
and sufficient line impedance changes.
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Table 3. ADP of existing HMTD methods and RHMTD against three alert attackers.

Method BDD-AA M-AA DD-AA

Watermarking HMTD 37.8% 47.3% 33.0%

Model-based HMTD 93.9% 6.0% 59.0%

RHMTD 93.6% 75.1% 68.0%

5. Conclusions

This paper points out the drawbacks of existing HMTD operation methods, including
the delay of attack detection, extra costs on secure meters, and the lack of randomness. To
fully evaluate the hiddenness of HMTD methods, this paper first summarizes the BDD-
based alert attacker model and the data-driven alert attacker model, and then proposes a
novel model-based alert attacker model. By analyzing the three alert attackers, this paper
proposes a novel random-enabled HMTD, which maximizes the weighted square of line re-
actance changes, and introduces random variables into the weights of the objective function.
In addition, the proposed model utilizes the novel derived hiddenness operation conditions
as constraints to ensure the measurements before and after MTD remain unchanged. We
theoretically prove the hiddenness of the proposed RHMTD to three alert attacker models,
and analyze the effectiveness of RHMTD in detecting FDI attacks constructed by three
alert attackers.

The simulation results show that the random weights in RHMTD successfully intro-
duce the randomness into the setpoints of D-FACTS devices. The randomness increases the
difficulty of the model-based alert attacker to accurately estimate the defender’s dispatched
setpoints of D-FACTS devices. The RHMTD method is hidden to both the BDD-based and
model-based alert attackers with more than 95% DSP. The RHMTD method is also hidden
to the data-driven alert attacker since the projection of RHMTD and no MTD measurements
overlaps after the dimension reduction. Simulation results also evaluate the detection
effectiveness of RHMTD against three alert attackers. The traditional HMTD fails to detect
FDI attacks by the model-based alert attacker, while RHMTD can detect these attacks with
80% ADP. RHMTD is effective in detecting FDI attacks by the BDD-based and data-driven
alert attackers with more than 90% ADP.

In the future, we will extend the proposed HMTD operation method in the DC power
system model to the AC power system model. In addition, we will define more alert
adversary models using advanced machine learning techniques and limited data resources.



Processes 2023, 11, 348 19 of 20

Author Contributions: Conceptualization, B.L. and H.W.; methodology, B.L., H.W., Q.Y. and H.Z.;
software, B.L. and H.W.; validation, B.L., H.W., Q.Y. and H.Z.; formal analysis, B.L., H.W., Q.Y. and
H.Z.; investigation, B.L., H.W., Q.Y. and H.Z.; resources, B.L., H.W., Q.Y. and H.Z.; data curation, B.L.,
H.W., Q.Y. and H.Z.; writing—original draft preparation, B.L. and H.W.; writing—review and editing,
B.L., H.W., Q.Y. and H.Z.; visualization, B.L., H.W., Q.Y. and H.Z.; supervision, B.L., H.W., Q.Y. and
H.Z.; project administration, B.L.; funding acquisition, H.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by U.S. National Science Foundation, grant number No. 1929147
and No. 2146156.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MTD: moving target defense; FDI, false data injection; SE, state estimation; PCA, principal com-
ponent analysis; D-FACTS, distributed flexible AC transmission system; BDD, Bad Data Detection.

Nomenclature

Symbol Definition
θ Voltage angle of buses excluding reference bus
z Measurement vector
a FDI attack vector
H0 DC measurement matrix in SE before MTD
H DC measurement matrix in SE after MTD
A Incident matrix of power system graph
X Diagonal line reactance matrix
xij The reactance of line i–j (between bus i and j)
n Total number of system buses
m Total number of measurements
p Total number of lines
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