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Abstract: The optimal power flow (OPF) is an important tool for the secure and economic operation
of the power system. It attracts many researchers to pay close attention. Many algorithms are used to
solve the OPF problem. The decomposition-based multi-objective algorithm (MOEA/D) is one of
them. However, the effectiveness of the algorithm decreases as the size of the power system increases.
Therefore, an improved MOEA/D (IMOEA/D) is proposed in this paper to solve the OPF problem.
The main goal of IMOEA/D is to speed up the convergence of the algorithm and increase species
diversity. To achieve this goal, three improvement strategies are introduced. Firstly, the competition
strategy between the barnacle optimization algorithm and differential evolution algorithm is adopted
to overcome the reduced species diversity. Secondly, an adaptive mutation strategy is employed
to enhance species diversity at the latter stage of iteration. Finally, the selective candidate with
similarity selection is used to balance the exploration and exploitation capabilities of the proposed
algorithm. Simulation experiments are performed on IEEE 30-bus and IEEE 57-bus test systems. The
obtained results show that the above three measures can effectively improve the diversity of the
population, and also demonstrate the competitiveness and effectiveness of the proposed algorithm
for the OPF problem.

Keywords: multi-objective optimal power flow; MOEA/D algorithm; competition strategy; adaptive
mutation strategy; selective candidate with similarity selection

1. Introduction

The OPF optimizes specified objective functions by adjusting control variables and is
subject to the operating constraints [1]. In power systems, the OPF problem is a complex
and constrained optimization problem that frequently requires the optimization of many
objectives. At the same time, different objective functions in a multi-objective OPF problem
often contradict each other, which might make classical optimization approaches, such as
traditional interior point methods [2], Newton methods [3], and programming methods [4],
difficult to solve. Unlike classical optimization methods, which can only find one optimal
solution in one trial, multi-objective evolutionary algorithms (MOEAs) can obtain a set
of multiple non-dominated Pareto solutions in one trial and have demonstrated great
performances on the multi-objective OPF problem.

Depending on different methods, MOEAs can be classified into Pareto-based ap-
proaches and decomposition-based approaches. The NSGA-II [5] and SPEA-II [6] algo-
rithms are classical Pareto-based algorithms. However, the performance of these algorithms
is unsatisfactory when applied to the multi-objective OPF problem [7]. Because as the num-
ber of objectives increases, the population size of non-dominant individuals also increases.
Compared with Pareto-based approaches, decomposition-based approaches provide a new
idea for solving the multi-objective OPF problem [8–10], in which MOEA/D [11] is the
most prominent and has attracted great interest from scholars in recent years.
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In MOEA/D, a multi-objective optimization problem is decomposed into a set of scalar
optimization sub-problems, which are solved at the same time. The traditional MOEA/D
and its variants have been widely used in the multi-objective OPF problem and have been
proven to have a good performance. Zhu et al. adopted the MOEA/D algorithm to solve the
environmental economic dispatch problem [12]. Zhu et al. also used MOEA/D to optimize
the cost and emissions of a wind thermal power generation system and obtained better
solution quality and computational efficiency [13]. Li and Fang proposed an improved
MOEA/D-M2M framework to solve the environmental/economic dynamic dispatching
problem [14]. Biswas et al. combined MOEA/D with the superiority of feasible solutions
to deal with constraints in an OPF problem [15]. Zhang et al. proposed a multi-stage
dynamic resource allocation strategy MOEA/D to solve the OPF problem [16]. In the
above-mentioned literature, the improvement of the update method for the individual is
relatively limited. Therefore, it is necessary to carry out deeper research on the individual
update approach of MOEA/D to solve the multi-objective OPF problem effectively.

In the standard MOEA/D algorithm, new individuals are generated by the differential
evolution algorithm (DE). The way of updating individuals is single, which may lead to
slow convergence and insufficient species diversity. In this paper, the population diversity
of the MOEA/D algorithm is systematically studied, and three improvements are proposed:
Firstly, we use the barnacle optimization algorithm (BMO) to compete with DE to improve
population diversity. Secondly, an adaptive mutation strategy is employed instead of a
fixed mutation rate. Finally, the use of similarity selection balances the exploration and
exploitation capabilities of the algorithm.

The main contributions of this paper are as follows:
(1) The competitive evolution strategy, adaptive mutation strategy, and selective

candidate with similarity selection are introduced to improve the performance of MOEA/D.
(2) An improved MOEA/D is proposed to better solve the OPF problem.
(3) IEEE 30 and 57-bus systems are employed to verify the efficiency of the proposed

IMOEA/D. The simulation results demonstrate that the convergence and diversity of the
IMOEA/D are enhanced when dealing with the OPF problem.

The rest of the paper is organized as follows: In Section 2, we first briefly introduce
the mathematical model of the multi-objective OPF problem. Then, the framework of the
MOEA/D and related concepts are described in Section 3. In Section 4, we describe the
improved strategy and IMOEA/D in detail. In Section 5, we explain the results and data
analysis of the proposed IMOEA/D for the IEEE 30-bus system and the IEEE 57-bus system.
Section 6 is the conclusion.

2. OPF Mathematical Model

When solving a multi-objective OPF problem, it is necessary not only to deal with
multiple conflicting objective functions but also to satisfy the basic constraints. Therefore,
the general formulation of the multi-objective optimization problem is described as follows:

min[ f1(x) f2(x) · · · fM(x)]
s. t.{

gi(x) > 0 i = 1, 2, · · · , G
hj(x) = 0 j = 1, 2, · · · , H

(1)

where M is the number of objectives, fk(x) is the k-th objective function, k = 1,2, . . . M.
gi(x) is the i-th inequality constraint, hj(x) is the j-th inequality constraint, G and H are the
numbers of inequality and equality constraints, respectively. The objectives and constraints
of the multi-OPF problem are presented next.

2.1. Objectives

This paper selects four common objective functions, which are fuel cost, emission, real
power loss, and voltage deviation [17,18].
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Cost: Fuel cost is the most fundamental objective function in the power system. The
relationship between cost and power is shown in Equation (2).

Cost =
NG

∑
i=1

ai + biPGi + ciP2
Gi (2)

where NG is the number of generators, ai, bi, and ci are the cost coefficients of the i-th
generator, and PGi is the active power of the i-th generator.

Emission: Harmful gases such as SOx, NOx, and COx are generated when using fuel
to generate electricity. With the improvement of people’s awareness of environmental
protection, power plants must reduce the emission of harmful gases while ensuring the
quality of power generation. The relationship between emission and real power is given by
Equation (3).

Emission =
NG

∑
i=1

[(
αi + βiPGi + γiP2

Gi

)
+ ωie(µi PGi)

]
(3)

where αi, βi, γi, ωi, and µi are the emission coefficients.
Power loss: Power loss is inevitable during power transmission due to the resistance

of power transmission lines. The power loss is computed by Equation (4).

Loss =
nl

∑
q=1

Gq(ij)

[
V2

i + V2
j − 2ViVjcos

(
δij
)]

(4)

where δij = δi − δj is the voltage angle difference between buses i and j. Vi and Vj are the
voltage magnitude of the i-th bus and the j-th bus, respectively (either generator or load).
Gq(ij) is the transfer conductance of branch q connecting buses i and j, and nl is the number
of transmission lines.

Voltage deviation: The voltage deviation is an important indicator to measure the
safety of a power system. The indicator is defined as the cumulative sum of deviations of
voltages at all load buses in the network from the desired value. The aggregate voltage
deviation is calculated by Equation (5).

VD =

(
NL

∑
p=1

∣∣VLp − 1
∣∣) (5)

where VLp is the voltage magnitude of the p-th load bus.

2.2. Constraints

Equality constraints: The equality constraints are the power balance equations, pre-
sented in Equations (6) and (7).

PGi − PDi −Vi

NB

∑
j=1

Vj
[
Gijcos

(
δij
)
+ Bijsin

(
δij
)]

= 0 ∀i ∈ NB (6)

QGi −QDi −Vi

NB

∑
j=1

Vj
[
Gijsin

(
δij
)
− Bijcos

(
δij
)]

= 0 ∀i ∈ NB (7)

where NB is the total number of buses, and PD and QD are active and reactive power
demands, respectively. Gij is the transfer conductance and Bij is the susceptance between
buses i and j.

Generator constraints:

Vmin
Gi ≤ VGi ≤ Vmax

Gi ∀i ∈ NG (8)
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Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀i ∈ NG (9)

Tmin
j ≤ Tj ≤ Tmax

j ∀j ∈ NT (10)

where Tj is the tap of the transformer at the j-th branch, and NT is the number of transformers.
Shunt compensator constraints:

Qmin
Ck ≤ QCk ≤ Qmax

Ck ∀k ∈ NC (11)

where QCk is the shunt compensation at the k-th bus, and NC is the number of shunt VAR
compensators.

Security constraints:
Vmin

Lp ≤ VLp ≤ Vmax
Lp ∀p ∈ NL (12)

Slq ≤ Smax
lq ∀q ∈ nl (13)

where Slq is the loading of the q-th line. VLp is the voltage magnitude of the p-th load bus.
NL and nl are the numbers of load buses and transmission lines, respectively.

3. MOEA/D Algorithm and Related Concepts
3.1. Pareto Optimality

The model of a multi-objective problem is shown in Equation (1), where Ω represents
the decision space, and the Rm represents the target space. Let u, v∈Rm. If ui ≥ vi for any
i and uj > vj for at least one index j (i, j ∈ {1, 2, ..., m}), then we say that u dominates v.
If there is no point F(y) that can dominate the point F(x) in the decision space, then x
is the Pareto optimal, and F(x) is called the Pareto optimal vector. In other words, the
improvement of the Pareto optimal point on a certain objective function will cause the
degradation of at least one other objective function. The set of all Pareto optimal solutions
is called the Pareto set, and the set of all optimal vectors is called the Pareto front [19].

3.2. Tchebycheff Aggregation Function

In a multi-objective problem, when the number of objectives is more than three, the
sorting of the quality of the optimization results will be more complicated. MOEA/D uses
the Tchebycheff aggregation function to convert multiple target values into a single target
value, making it easier to judge the quality of the results [10].

gte(x | λm, z∗) = max
1≤i≤M

{
λm

i

∣∣∣∣∣ fi(x)− z∗i
znad

i − z∗i

∣∣∣∣∣
}

(14)

where λm is the weight vector. m is the number of the objectives, and m ∈ {1, 2, ..., N}.
fi(x) is the i-th objective function value. znad

i is the maximum value of the i-th objective
function., z∗i is the minimum value of the i-th objective function.

3.3. Introduction of the MOEA/D Algorithm

As mentioned above, MOEA/D uses the decomposition method to divide the overall
multi-objective problem into N individuals. Each individual is optimized simultaneously
in the iterative process, and the aggregation function is used to normalize them to obtain
a single objective value to reflect the quality of the optimization results. The MOEA/D
algorithm process is as follows [10]:

Step1: Initialization
(1) Initialize the population variable {x1, x2, . . . , xN} and calculate the target value

{ F
(

x1), F
(

x2), . . . , F
(

xN) }, where N is thepopulationsize, F
(
xi) = { f1

(
xi), f2

(
xi), . . . , fM

(
xi)}

(i ∈ {1, 2, . . . , N}), M is the number of objectives.
(2) Initialize the weight vectors{λ1, λ2, . . . , λN} and determine the neighborhood of

each individual.
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(3) Let zi be the optimal value of F
(

xi) in the current generation, and the ideal point is
z∗ ∈

{
z1, z2, . . . , zN}.

Step2: Update
For each individual in the population, use the following three steps to update:
(1) Generation of new individuals: Two solutions are randomly selected from the

neighborhood of the individual x, and the DE algorithm is used to perform crossover and
mutation operations on the individual to generate a new solution y. Calculate the target
value F(y) and aggregation function value g(y).

(2) Update individual: If g(y) > g(x), replace x with y and update the neighborhood.
Otherwise, no update will be performed.

(3) Update ideal point: If Fi(y) < zi, then zi = Fi(y).
Step3: Stop until the maximum number of iterations is reached. Otherwise, go back to

step 2.

4. Improved MOEA/D Algorithm (IMOEA/D)
4.1. Algorithm Improvements
4.1.1. The Evolutionary Strategy of Competition between BMO and DE Operator

BMO is a primitive heuristic algorithm whose principle comes from the mating be-
havior of barnacles in nature [20]. Barnacles are hermaphroditic creatures that produce
offspring in two ways: self-mating and normal mating. The choice of the barnacle mating
method depends on the distance between paternal and maternal generations. As marine
organisms, sperm and eggs can form fertilized eggs in water even if there is a certain dis-
tance between the father and the mother. However, when the distance between the father
and the mother exceeds the pl value, the barnacles will produce offspring by self-mating.
The iterative steps are represented as follows:

If distance < pl
xN−new

i = pxN
barnacle−d + qxN

barnacle−m
else

xn−new
i = rand()× xn

barnacle_ m
End

where p is a random number in the range 0 to 1, and q = 1− p. xn
barnacle−d and xn

barnacle−m
are the selected variables for paternal and maternal barnacles, respectively. It can be
understood that p and q represent the percentage of the characteristics of the father and
mother in the next generation, respectively. Thus, the offspring inherit the behavior of their
father and mother according to a random number probability between 0 and 1. It is worth
emphasizing that the value of pl plays an important role in determining the process of
exploration and exploitation. In this paper, pl is set to 9.

The competitive evolution strategy: At the beginning of the algorithm, the DE algo-
rithm is used to perform the iteration and record the number of updated individuals after
each round of updates. When the number of updated individuals is reduced, it means the
evolution speed slows down. At this time, the BMO algorithm replaces the DE algorithm
to perform the iteration. When using BMO for iterative operations, if the number of up-
dated individuals is reduced after a round of updates, the DE algorithm replaces the BMO
algorithm to perform the iteration again. The two algorithms are used alternately to update
the population through this mechanism, which improves the diversity of species.

4.1.2. Adaptive Mutation

In the process of population evolution, species diversity changes from high to low.
The mutation rate is adjusted according to this rule. Figure 1a shows that the mutation rate
changes exponentially with the number of iterations [21]. In the early stage of evolution,
species diversity was better and the mutation rate was higher. In the process of evolution,
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the mutation rate increases continuously with the decrease of species diversity and finally
tends to be stable. The probability of mutation is computed by Equation (15).

Muta_rate = 0.1 ∗
(
−e−

gen
γ + 1

)
(15)

where gen is the number of generations, and γ is the scaling factor. Here, γ is set to 500.
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4.1.3. Selective Candidate with Similarity Selection (SCSS)

To prevent the algorithm from falling into local optima, SCSS is utilized to balance
exploration and exploitation [22]. The rule is based on DE. It executes the DE algorithm
twice to generate two candidate solutions—ui

1 and ui
2. Select the candidate solutions

according to the following rules to complete the replacement of the current solution.

If rand()× 2× GD > rank(i)
N

Select the closest candidate from
{

ui
1, ui

2
}

for the current solution xi

else
Select the farthest candidate from

{
ui

1, ui
2
}

for the current solution xi

End

where rank(i) is the solution quality ranking, and N is the population size. High-quality
solutions tend to be replaced by closer solutions, while the inferior solution prefers the
farther one. GD is a fixed value. The value of GD is the key to the selection rule, which
controls the balance between exploitation and exploration. The larger GD is, the more
current solutions select closer candidates, and the algorithm becomes more exploitative. On
the contrary, the smaller GD value is, the more current solutions select further candidate
solutions, and the exploration capability of the algorithm is enhanced. After several
attempts, we found a proper value for GD. When GD is taken to be 0.5, the algorithm has
a more balanced exploitation and exploration capability.

4.2. Superiority of Feasible Solutions

This paper adopts the superiority of feasible solutions to deal with many constraints
in the OPF problem [23]. The total constraint violation is calculated by Equation (16).

ε(x) =
∑NC

k=1 wk(Uk(x))

∑NC
k=1 wk

(16)
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where Uk(x) is the violation value of solution x for all constraints. wk = 1/Uk,max, Uk,max
is the maximum value of Uk(x), and NC is the number of constraints. The quality of the
solution is judged by the degree of a constraint violation. The smaller the value of ε(x),
the better the quality of the solution. ε(x) = 0 means no constraint violation, where x is a
feasible solution.

Given that xi and xj are any two solutions in the population, the quality of the solution
xi is better than xj in the following cases:

(1) ε(xi) < ε
(

xj
)

(2) ε(xi) = ε
(

xj
)

and g(xi) < g
(
xj
)

When a new individual is created, compare the quality between the new solution and
the original solution according to the above rules and judge whether to update.

4.3. IMOEA/D

The IMOEA/D algorithm is based on the framework of the MOEA/D algorithm. The
implementation steps of the IMOEA/D algorithm are as follows:

Step1: Initialization
Initialize N individuals; each individual includes the following parameters:
(1) The solution is xi, and its target value is F(xi) = { f1(xi), f2(xi), . . . , fM(xi)},

(i ∈ {1, 2, . . . , N}); M is the number of the objectives.
(2) The weight vector is λi =

{
λi

1, λi
2, . . . , λi

M
}

.
(3) The neighborhood is B(i), T presents the size of the neighborhood. T is set to 30.
(4) The minimum value of the i-th objective function is z∗i , the maximum value of the

i-th objective function is znad
i .

(5) The utility value for each individual is πi.
(6) The total constraint violation is ε(xi).
Step2: Selection of individuals and update of solutions
In each generation, about 20% of the total individuals are selected using the 10-tournament

selection method [24]. The current solutions associated with the selected indices of individ-
uals are picked up in the generation. The algorithm performs the following operations for
each selected solution xi [25]:

(1) Calculate the mutation rate based on the current iteration number
(2) According to the evolutionary strategy, two individuals xj and xk are randomly

selected from the neighborhood B(i), and the BMO or DE operator is selected for cross-
evolution based on the population evolution speed, resulting in a new individual y1.

(3) Perform step (2) again to generate another candidate solution y2 and select one
solution from {y1, y2}, according to the similarity selection. The final selected new solution
is named y.

(4) For the individual x, if y produces fewer constraint violations than x, replace x
with y. If the constraint violation values for x and y are the same, compare the target fitness
values of the related individuals, and the solution with the smaller target value will be
retained. This step ensures that the new solutions will move toward the feasible region,
and the improvement of the solution is completed when the violation constraint of the new
individual gradually decreases and finally becomes “0”.

Step3: Update of individual utility value
The utility values of all individuals will be updated every 50 generations [24]. The

individual utility value is updated according to Equations (17) and (18).

πm =

{
1 i f ∆m > 0.001(

0.95 + 0.05 ∆m

0.001

)
πm otherwise

(17)

∆m =
gtch(xi

t−∆t | λi, z∗
)
− gtch(xi

t | λi, z∗
)

gtch
(

xi
t−∆t | λ, z∗

) (18)
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where t is the current generation, gtch is the Tchebycheff aggregation function, xi
t−∆t is the

solution of individual i at the generation of t−∆t and xi
t is the one at the current generation

t. ∆m represents the degree of change in the objective function.
Step4: Stop after reaching the maximum number of iterations. Otherwise, go back to

step 2.
Table 1 shows the parameters involved in the IMOEA/D algorithm when dealing with

the OPF problem. Some of these parameters, such as population size, crossover rate, and
the maximum number of fitness evaluations, are different from the conventional MOEA/D.
Different population sizes are set for the cases with different target numbers. In this
way, a uniform Pareto front can be obtained, and the computation time can be shortened.
Greedy degree (GD), pl, and crossover rate (CR) values are chosen after a few trials. The
optimization effect of the algorithm is related to the neighborhood, so it is necessary to
maintain a high probability of neighbor updates. The algorithm is implemented by using
MATLAB software, and a computer equipped with Intel Core i5 CPU @2.7 GHz and 4 GB
RAM is used to run the simulations.

Table 1. Parameter settings for the IMOEA/D algorithm.

Symbol Parameter Value

N Population size 200 for 2 objectives’ problem
300 for 3 objectives’ problem
455 for 4 objectives’ problem

T Neighborhood size 0.1 × N

nr

Max number of members replaced with
better new solutions for each individual at
every generation

0.01 × N

Max_veal Maximum number of fitness evaluations 100,000
CR Crossover rate 0.7

pl Distance between paternal and
maternal generations 9

GD Greedy degree 0.5
∆req Frequency of utility function update 50 generations

5. Results

To illustrate the effectiveness of IMOEA/D, in this paper, IEEE 30-bus and IEEE
57-bus systems are employed as the test cases in solving the multi-objective OPF problem.
The optimization results are compared with other multi-objective algorithms. Except for
MOEA/D-SF, the optimization results of other multi-objective optimization algorithms are
directly quoted. The main parameter settings of MOEA/D-SF are the same as IMOEA/D.

5.1. Comparison of Multi-Objective Algorithm Indicator

The IGD metric [26] is the average of the minimum distance of all individuals in the
actual Pareto front to the ideal Pareto front, which reflects the degree of convergence of the
algorithm. The IGD definition is shown in Equation (19).

IGD(S, P∗) = ∑x∈P∗ dist(x, S)
|P∗| (19)

where P∗ is the ideal Pareto front and S is the actual Pareto front. dist(x, S) is the Euclidean
distance between individual x on the ideal Pareto front P∗ to the nearest individual on
S. |P∗| normalizes the IGD value. The smaller the IGD value, the better the degree of
convergence and diversity of S. HV metric [27] is the volume of the target space enclosed
by the set of non-dominated solutions of the algorithm and the reference points. The HV
metric is calculated by Equation (20).

HV(S) = VOL(∪x∈s[ f1(x), r∗1 ]× . . . [ fm(x), r∗m]) (20)
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where r∗ is a set of reference points in the target space, r∗ =
(
r∗1 , r∗2 , . . . , r∗m

)
, r∗ is dominated

by all solutions in S. VOL() indicates the Lebesgue measure [28]. The higher the HV value,
the more S is approximated to the entire Pareto front. Table 2 lists the mean, maximum, and
standard deviations of HV over 10 runs for each case. Likewise, Table 3 lists the minimum
and average IGD values in 10 runs for each case, along with the standard deviation. It
can be seen from Table 3, except in case 2 and case 10, that the maximum HV value of
IMOEA/D is slightly lower than that of MOEA/D-SF. The HV value obtained by IMOEA/D
is significantly higher than that of MOEA/D-SF. It can be seen from Table 4 that the average
IGD of IMOEA/D is significantly lower than that of MOEA/D-SF in case 1 and cases 3–10.
In cases 7 and 8, IMOEA/D achieves better minimum IGD values. In addition, the standard
deviation of HV and IGD of IMOEA/D is better than that of MOEA/D-SF in most cases.

Table 2. Comparison of HV for study case 1-case 10.

Test cases IMOEA/D MOEA/D-SF

Mean MaxHV Std Mean MaxHV Std

Case 1 0.8274 0.8288 0.0011 0.672 0.7053 0.0245
Case 2 0.7857 0.8686 0.0909 0.7848 0.8956 0.1055
Case 3 0.6996 0.7013 0.0011 0.6986 0.7002 0.001
Case 4 0.8262 0.8306 0.0028 0.8212 0.8244 0.0023
Case 5 0.7792 0.7856 0.0035 0.7646 0.7681 0.0032
Case 6 0.6773 0.686 0.0043 0.6706 0.6858 0.0091
Case 7 0.8389 0.8509 0.0084 0.8258 0.8332 0.005
Case 8 0.8667 0.9475 0.0555 0.8484 0.9327 0.0647
Case 9 0.8479 0.8619 0.0075 0.8201 0.8568 0.0268
Case 10 0.7443 0.7581 0.0086 0.7436 0.7582 0.0133

Bold indicates the best values.

Table 3. Comparison of IGD for study case 1-case 10.

Test cases IMOEA/D MOEA/D-SF

Mean MinIGD Std Mean MinIGD Std

Case 1 0.2221 0.2067 0.014 0.98 0.448 0.3667
Case 2 0.1 0.0095 0.0878 0.0756 0.0144 0.0999
Case 3 0.2889 0.2446 0.0366 0.3246 0.265 0.0365
Case 4 0.3618 0.2993 0.05 0.3762 0.2844 0.067
Case 5 0.4906 0.4134 0.0733 0.5281 0.4435 0.0756
Case 6 0.4691 0.3609 0.0647 0.6148 0.5196 0.0957
Case 7 7.2109 5.2896 2.0687 8.976 1.8343 3.8577
Case 8 8.624 6.5318 1.5779 15.0639 2.4823 20.5443
Case 9 7.4198 5.8653 1.3495 8.2303 5.9423 1.8555
Case 10 8.624 6.5318 1.5779 11.2508 8.914 1.579

Bold indicates the best values.

Table 4. Comparison of best compromise solutions for study case 1.

Methods Cost Emission

IMOEA/D 828.674 0.2512
MOEA/D [29] 833.72 0.2438
MOEA/D-SF [15] 829.515 0.259
MOPSO [29] 833.86 0.2483
NSGA-II [29] 833.59 0.2449
MOMICA [30] 865.066 0.2221
ESDE [31] 833.474 0.254
ESDE-MC [31] 830.718 0.2483
ISPEA [6] 865.95 0.2234
GBICA [32] 830.852 0.2488
MGBICA [32] 830.851 0.2484

Bold indicates the best values.
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5.2. IEEE 30-Bus System: Detailed Results

Tables 4–9 compare the best compromise solutions of IMOEA/D and other algorithms
in different cases. In case 1, both cost and emission are optimized simultaneously. The best
compromise solutions for IMOEA/D are 826.674 $/h and 0.2512 t/h. MSFLA has the best
cost value but also gives the highest emission value of all algorithms. MOMICA provides
the lowest emission value, but the cost is also significantly higher than other algorithms.
In case 2, cost and voltage deviation are optimized at the same time. Although the cost
values of MOEA/D, MOPSO, and NSGA-II are lower than IMOEA/D, the best compromise
solutions provided by these three algorithms are infeasible. In 3-objective optimizations of
cases 3, 4, and 5, according to the data in the table, IMOEA/D obtains better compromise
solutions. Among the best compromise solutions of IMOEA/D, the cost objective is the
lowest in case 3, while the voltage deviation is the least in cases 4 and 5. In the 4-objective
case 6, IMOEA/D achieves the best value of cost and voltage deviation.

Table 5. Comparison of best compromise solutions for study case 2.

Method Cost VD

IMOEA/D 802.374 0.1391
MOEA/D 799.99 0.354
MOEA/D-SF 802.406 0.1362
MOPSO 800.03 0.4422
NSGA-II 800.06 0.4486
MOMICA 804.96 0.0952

Bold indicates the best values.

Table 6. Comparison of best compromise solutions for study case 3.

Methods Cost Emission Loss

IMOEA/D 878.652 0.2164 4.1257
MOEA/D 902.54 0.2107 3.4594
MOEA/D-SF 881.02 0.2164 4.4144
MOPSO 891.48 0.2144 3.9557
NSGA-II 903.79 0.2103 3.7917

Bold indicates the best values.

Table 7. Comparison of best compromise solutions for study case 4.

Methods Cost Emission VD

IMOEA/D 836.650 0.2462 0.1153
MOEA/D 850.28 0.2332 0.1155
MOEA/D-SF 842.446 0.2406 0.1093
MOPSO 846.93 0.2386 0.2188
NSGA-II 825.86 0.2648 0.1421

Bold indicates the best values.

Table 8. Comparison of best compromise solutions for study case 5.

Methods Cost VD Loss

IMOEA/D 835.8 0.1244 5.8176
MOEA/D 831.81 0.1355 5.9926
MOEA/D-SF 836.711 0.1258 5.8233
MOPSO 827.82 0.1588 6.5929
NSGA-II 843.14 0.1931 6.4917
B-MMOFPA [33] 843.18 0.1745 5.7886

Bold indicates the best values.
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Table 9. Comparison of best compromise solutions for study case 6.

Methods Cost Emission VD Loss

IMOEA/D 869.260 0.2251 0.1214 4.7533
MOEA/D-SF 883.322 0.2187 0.1322 4.4527
MOMICA 830.188 0.2523 0.2978 5.585

Bold indicates the best values.

Figure 2a compares the Pareto fronts (PFs) of IMOEA/D and MOEA/D with the
penalty factor approach (MOEA/D-penalty) in case 1. All PFs here represent the best PF
with maximum HV value among all trial runs in a case study. In Figure 2a, the Pareto
front of IMOEA/D is similar to that of MOEA/D-penalty. However, it is worthwhile
that some solutions of MOEA/D-penalty are infeasible. Figure 2b shows that the Pareto
solutions of MOEA/D-SF dominate the majority of the non-dominated solutions given
by MOEA/D-penalty in case 3. In general, the Pareto front distribution of IMOEA/D is
relatively uniform in most cases. Figure 3 compares the Pareto fronts of IMOEA/D and
MOEA/D-penalty in cases 2, 5, and 6, respectively. As shown in Figure 3, IMOEA/D
achieves PFs with better convergence and more uniform distribution, which confirms the
effectiveness of the improved algorithm.
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5.3. IEEE 57-Bus System: Detailed Results

Tables 10–13 compare the best compromise solutions for various multi-objective al-
gorithms. In case 7, MOMICA achieves the lowest cost but with higher emission. ESDE-
MC [26] achieves the lowest emission level with a higher cost than some other comparable
algorithms. While the cost value of IMOEA/D is better than most of the comparison
algorithms, the emission value is lower than GBICA, MOICA, and MOMICA. In case 8,
IMOEA/D achieves better cost. In case 9, the best values of voltage deviation and loss
are given by IMOEA/D. In 4-objective optimization case 10, although the cost value of
IMOEA/D is the highest, the other three objective function values of emission, voltage
deviation and power loss are the lowest.

Table 10. Comparison of best compromise solutions for study case 7.

Method Cost Emission

IMOEA/D 42,297.43 1.298
ISPEA 42,444.55 1.2904
NSGA-II 43,567.77 1.2979
ESDE 42,863.32 1.2662
ESDE-MC 42,857.49 1.2191
GBICA 42,138.37 1.3941
MGBICA 42,369.07 1.2940
MOMICA 41,886.8 1.4784
MOICA [30] 41,919.71 1.6010
MODFA [34] 43,174.57 1.2679

Bold indicates the best values.

Table 11. Comparison of best compromise solutions for study case 8.

Method Cost Emission

IMOEA/D 41,794.49 0.6068
MDE [35] 41,843 0.5962

Bold indicates the best values.

Figure 4 shows the comparison of PFs for IMOEA/D and MOEA/D-penalty in cases
7 and 9. Similar to case 1, the best PF of the two algorithms almost coincides with case
7. Considering constraint violations, IMOEA/D performs slightly better. It can be seen
from Figure 4 that the diversity and the convergence ability of IMOEA/D are stronger
than MOEA/D-penalty. In case 9 of the 3-objective optimization, IMOEA/D achieves a
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set of Pareto solutions with more regular distribution, which further demonstrates the
effectiveness of the algorithm improvement.

Table 12. Comparison of best compromise solutions for study case 9.

Method Cost Loss VD

IMOEA/D 42,295.469 12.1544 0.6462
MDE 42,070 12.4024 0.6933
CMICA4 [36] 41,781.73 13.9936 0.8127
NSGA-II 41,930.94 21.5325 2.6699
MOPSO 41,901.36 16.8022 2.0059

Bold indicates the best values.

Table 13. Comparison of best compromise solutions for study case 10.

Method Cost Emission VD Loss

IMOEA/D 42,609.03 1.382 0.668 11.936
MOMICA 41,983.06 1.496 0.797 13.697
MOICA 41,998.57 1.7605 0.8748 13.335

Bold indicates the best values.
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6. Conclusions

The OPF problem is a complex nonlinear optimization problem [35,36]. In this paper,
an improved MOEA/D (IMOEA/D) algorithm is proposed for solving the multi-objective
OPF problem. Despite the applicability of the MOEA/D in solving complicated problems,
its performance is degraded when the dimension size of the OPF’s test system is increased.
In this respect, the evolution strategy of MOEA/D is improved by introducing three im-
provement strategies: BMO and DE competitive evolution, adaptive mutation strategy, and
similarity selection. The main purpose of IMOEA/D is to improve convergence speed and
maintain population diversity. The effectiveness of the proposed IMOEA/D algorithm
was experimentally evaluated using standard IEEE 30-bus and IEEE 57-bus test systems
to optimize multi-objective functions of the OPF under the system constraints. At the
same time, the optimization results are also compared with classical multi-objective opti-
mization algorithms. The comparison of the simulation results shows that the IMOEA/D
algorithm can provide better solutions than other comparative algorithms in solving the
multi-objective OPF problem.
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