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Abstract: Accurate and timely fault detection and isolation (FDI) improve the availability, safety,
and reliability of target systems and enable cost-effective operations. In this study, a shared nearest
neighbor (SNN)-based method is proposed to identify the fault variables of a circulating fluidized
bed boiler. SNN is a derivative method of the k-nearest neighbor (kNN), which utilizes shared
neighbor information. The distance information between these neighbors can be applied to FDI. In
particular, the proposed method can effectively detect faults by weighing the distance values based
on the number of neighbors they share, thereby readjusting the distance values based on the shared
neighbors. Moreover, the data distribution is not constrained; therefore, it can be applied to various
processes. Unlike principal component analysis and independent component analysis, which are
widely used to identify fault variables, the main advantage of SNN is that it does not suffer from
smearing effects, because it calculates the contributions from the original input space. The proposed
method is applied to two case studies and to the failure case of a real circulating fluidized bed boiler
to confirm its effectiveness. The results show that the proposed method can detect faults earlier (1 h
39 min 46 s) and identify fault variables more effectively than conventional methods.

Keywords: fluidized bed boiler; fault isolation; shared nearest neighbor; k-nearest neighbor

1. Introduction

Modern industrial processes continue to grow owing to efforts to expand facility sizes
and establish efficient operational strategies. To support the growth rate of these processes,
monitoring technologies such as fault detection and diagnosis (FDD) that are capable of
ensuring facility safety are required [1]. Faults can occur for various reasons, including
equipment defects and malfunctions. For example, in a circulating fluidized bed boiler,
critical equipment, such as turbines, compressors, and generators, operates in hazardous
environments (e.g., high pressure and temperature). Such operating conditions cause
potential failures; if the fault is not diagnosed early, the smearing effect can ultimately lead
to unplanned downtime. Accordingly, monitoring technology is crucial for preventing
failures. Since early FDD can avoid unexpected downtimes and high maintenance costs,
many scholars have recently proposed methods for fault diagnosis technology in recent
years [2–4].

Process monitoring is performed in four steps: fault detection, isolation, diagnosis, and
recovery [5]. Fault detection and isolation (FDI) determines whether a fault has occurred in
the target system and then identifies the variables related to the failure. Fault diagnosis
determines the type of failure in which the variables determined in the previous step are
based on the failure logging history. Finally, the recovery stage repairs any failures that
occur in the target system and restores them to a normal state.

As explained above, it is essential to identify the variables that cause the failure of an
accurate fault diagnosis. Commonly employed methods for detecting and identifying fault
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variables include multivariate statistical process monitoring (MSPM) methods, such as
principal component analysis (PCA) [6,7], independent component analysis (ICA) [8,9], and
partial least squares (PLS) [10,11]. In the past decades, MSPM has been successfully applied
to various processes [1]. However, in multivariate processes, accurate fault diagnosis is
difficult because of the smearing effect of fault variables. The smearing effect is a problem
in which a fault variable affects a normal variable such that the normal variable is regarded
a fault. If the fault smearing is large, the isolation results through contribution analysis may
confuse technicians and engineers, and accurate diagnosis results cannot be guaranteed. As
industrial systems become larger and more interconnected, additional process knowledge
is required to determine the root cause. Thus, conventional methods have clear limitations.
Therefore, a method for identifying the fault variables that considers the reflection effect
is essential.

Fault isolation is primarily divided into contribution analyses [12] and reconstruction-
based contribution (RBC) methods [13]. The contribution analysis calculates the contri-
bution of each variable in the failure situation and selects the variable with the largest
contribution as the cause of failure [14]. The calculated contribution of each variable
can be compared to the normal operating condition (NOC), which is the upper limit of
the contribution of normal data, to identify the faulty variable easily. Methods derived
from contribution analysis include complete decomposition contribution (CDC), partial
decomposition contribution (PDC), and diagonal contribution (DC), which have been pro-
posed [15]. Kourti [16] conducted a contribution analysis for a high-pressure, low-density
polyethylene reactor. Liu [17] proposed a modified contribution plot-based approach to
reduce the back-burying effect of non-fault variables. However, traditional contribution
analysis methods may increase or decrease the contributions of normal variables owing
to the smearing effect, leading to misdiagnosis [18]. Westerhuis [12] showed that tradi-
tional attribution analysis methods are affected by the ask-back effect, which can lead
to a misdiagnosis. In contrast, reconstruction-based methods reconstruct fault detection
indices to calculate the contributions of the variables. Alcala [15] demonstrated that RBC
methods can accurately identify fault variables in processes with smearing effects. Owing
to these advantages, research on RBC methods continues to be conducted. Xu [19] pro-
posed a weighted RBC fault isolation method based on the Tennessee Eastman (TE) process.
Wang [20] used a reconstruction method based on the distance calculated by kNN instead
of the test statistic derived from PCA to identify fault variables. Zhou [18] proposed a
new isolation index based on kNN. Compared with conventional methods, these methods
reconstruct the detection index based on the variables of the original measurement space,
thereby preventing the smearing effect. However, the kNN must select the number of close
neighbors for FDI. These conditions have the potential to degrade the model performance.
For example, if the neighbors selected from healthy and faulty data are located within the
decision boundaries of normal, FDI performance will degrade. Therefore, FDI performance
can be improved by removing unnecessary neighbors for fault detection.

In this study, we propose a FDI method based on a shared nearest neighbor (SNN).
As depicted in Figure 1, the FDI procedure of the proposed method is divided into off-
line monitoring, which includes the selection of SNN neighbors and weighting of SNN
neighbors, and on-line monitoring, which identifies the process variables that cause the fault
from the period after the fault occurs until the target system is stopped. First, the normal
operation data stored in the database are normalized to equalize the mean and variance
of the process variables. Data normalization was first performed, because it ensures that
important variables for FDI are not hidden by other variables. Upon performing data
normalization, neighbors between the training data and the query vector are searched
using the SNN. Unlike kNN, the neighbor selection of SNN determines a shared neighbor
among adjacent neighbors as the final neighbor. Since the training data consist of normal
data, neighbors that share it with each other are likely to be close to the normal data. In
other words, it has a more robust performance than kNN. In particular, the proposed
method assigns weights based on the number of shared neighbors among the neighbors to
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adjust the distance value to be lower when they are close to the normal data. If a sample
has no shared neighbors, the farthest neighbor is selected and assigned a higher weight,
resulting in a greater distance. The distance calculated from each neighbor was used as a
detection index to identify the fault variable.
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The highlighted advantages of the proposed method are as follows: (1) It does not re-
quire knowledge of the process required for fault isolation. (2) Unlike statistical monitoring
methods, this method can be applied without assuming a specific data distribution. (3) The
number of neighbors does not need to be assigned. (4) The influence of faulty data can be
reduced by selecting shared neighbors as the final neighbors. (5) The FDI performance can
be improved by assigning weights to each shared neighbor. (6) Smearing is prevented by
reconstructing the detection index in the original space. (7) This can also be applied to the
process by applying multimode normalization.

The remainder of this paper is organized as follows: Section 2 explains the FDI method
using the SNN. Section 3 describes the experimental data used to verify the model’s
performance and the SNN’s neighbor selection. In Section 4, we discuss case studies of
two types of failures (single and multiple) and the results of fault isolation in an actual
circulating fluidized bed boiler. Finally, we discuss our conclusions and future work in
Section 5.

2. Proposed Method

This section introduces this concept and provides a detailed description of SNNs
for FDI.

2.1. Shared Nearest Neighbor

The SNN is a method derived from kNN that calculates the similarity between two
points using common neighbors [21]. This method can be applied to nonlinear systems
and multimodal and time-varying processes, because it can determine normality or failure
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based on the similarity of common neighbors between the query vector and training
data [22]. The detailed concept of SNNs can be found in [21]. In this study, the distance was
adjusted based on the number of neighbors by assigning weights to the selected neighbors
in the conventional SNN to represent the difference in the location of the normal and
fault data. The fault isolation procedure of the proposed method is performed as follows:
(1) search for the nearest neighbor using a distance function, (2) search for shared neighbors
among neighbors, and (3) weight allocation based on the number of shared neighbors and
calculation of a new distance value (detection index) using the final number of neighbors
and weights.

(1) Collect normal operation data (xtrn ∈ ℜn×m with n samples m variables) from the
target system. Normal data are used to assign weights to the query vector. The similarity
between the query vector (xquery ∈ ℜ1×m with m variables) and the training data (xtrn)
stored in the database is calculated using the Euclidean distance, as shown in Equation (1):

d(xtrn, xquery) =
√
(x1

trn − x1
query)

2
+ (x2

trn − x2
query)

2
+, . . . ,+(xm

trn − xm
query)

2, (1)

where xtrn and xquery denote the training data and query vectors, respectively. Select k
training data samples adjacent to xquery based on the distance calculated using Equation (1).
In the case of kNN, faulty data adjacent to normal data can be considered normal because of
the need to select neighbors for the query vector. In contrast, the SNN calculates similarity
by selecting common neighbors; thus, it can effectively detect the fault even when there is
fault data adjacent to the query vector.

(2) The common neighbors of xtrn and xquery are selected as follows based on the
distance values calculated in Equation (1):

SNNi(xi
trn, xquery) = Γ(xi

trn) ∩ Γ(xquery), i = 1, . . . , n, (2)

where Γ indicates the cardinality of the corresponding neighbor. Unlike kNN, SNN selects
neighbors only when common neighbors exist. If common neighbors do not exist, the
neighbor with the furthest distance is selected from among the k neighbors adjacent to
xquery. For example, even if three neighbors are selected in kNN, if only one shared neighbor
exists, only one final neighbor is selected.

(3) To calculate the detection index, the distance values of the selected neighbors are
calculated as shown in Equation (3):

D2
i =

s

∑
j=1

d2
i,j, s = 1, . . . , k, (3)

where D2
i is the squared distance and number of common neighbors, respectively. The

calculated distribution of D2
i approximately follows a non-central chi-square distribution,

and the distance value of D2
i is adjusted such that the weight is multiplied by the number of

neighbors. For example, if more than 50% of the neighbors are shared, the distance value is
adjusted by multiplying it by a weight of 0.05. Consequently, if the query vector is located
within the normal data distribution, the distance decreases.

2.2. Nearest Neighbor Difference Normalization

Modern industrial processes are operated in various modes. Accordingly, the process
data may follow different distributions, such as Gaussian and non-Gaussian distribu-
tions [23]. Data normalization is necessary to detect and isolate faults effectively. If data
normalization is not performed, there exists a risk that mode data with a large difference in
value compared to other normal mode data may be considered a fault. Therefore, in this
study, we performed nearest neighbor difference (NND)-based normalization to normalize
multimodal data to unimodal data. The NND was proposed by [1] to improve the fault
detection performance of processes using multimodal data. A detailed description of NND
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can be found in [1], and the procedure for normalization is as follows: (1) first-order NND
calculation and (2) second-order NND calculation.

(1) To compute the NND, kNN is used to explore the nearest neighbors. The neighbors of
a query vector are subtracted from the corresponding query vector to compute the
first-order NND, as shown in Equation (4):

x̃ = xquery − x(k)trn, (4)

where xquery and x(k)trn denote the nearest neighbors of the training data and query
vectors, respectively. The first-order NND, computed using Equation (4), removes the
multicenter structure, while preserving the position information between the current
sample and its nearest neighbors.

(2) Subsequently, the second-order NND was calculated to convert the multimode data
into single-mode data, as shown in Equation (5):

x̃’ = ω[x̃query − x̃(k)trn], (5)

where ω = 1/
∥∥∥x̃(k)trn

∥∥∥ denotes a weight parameter used to map to a single mode.
∥∥∥x̃(k)trn

∥∥∥
is the Euclidean distance between the query vector and the kth neighbor training
data. The original data are converted into a single mode with multiple modes using a
second-order NND. In addition, after the second-order NND, each variable follows
a multivariate Gaussian distribution. A detailed explanation of how multimode
characteristics are removed using NND can be found in [1]. In this study, a SNN was
applied to data from which multimode characteristics were removed to calculate the
detection index for identifying failure variables.

3. Numerical Simulation Study

In this section, two failure processes (single and multiple) were studied to verify the
fault isolation performance of the proposed method. Section 3.1 describes the simulation
data used to identify the fault variables and compares the fault isolation performance
of conventional methods and the proposed method. We used CPU Intel Core i9–9900K
(Intel, Santa Clara, CA, USA) and GPU Nvidia RTX 2070 (Nvidia, Santa Clara, CA, USA)
hardware to run these tests. The algorithm was implemented in MATLAB 2021b.

3.1. Multimode Numerical Example

Carlos [15] proposed a simple numerical example to compare the diagnostic results
when single or multiple faults of moderate sizes occur. As shown in Equation (6), this
example is calculated using the simulation model. Zhou [18] used simulation data to
compare the performances of the proposed model. This example consists of six variables
that can be generated using the following system:

x1
x2
x3
x4
x5
x6

 =



−0.3441 0.4815 0.6637
−0.2312 −0.5936 0.3545
−0.5060 0.2495 0.0739
−0.5552 −0.2405 −0.1123
−0.3371 0.3822 −0.6115
−0.3877 −0.3868 −0.2045


 t1

t2
t3

+ noise, (6)

where t1, t2, t3 are random variables with uniform distributions in [0, 1], [0, 1.6], and [0, 1.2],
respectively. noise refers to white noise with zero mean and a standard deviation of 0.01.

The training data and query vectors generated in Equation (6) are 3000 and 1500,
respectively. The query vectors operate normally from 1 to 500, and in samples 501 to 1500,
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a fault of an appropriate size occurs in single or multiple variables. Single or multiple
variable failures were added, as shown in Equation (7):

xsingle fault = x* + ξp fp, (7)

xmultiple fault = x* + ξp fp + ξq fq, (p ̸= q), (8)

where the fault-free measurements (x*) are normal variables generated using Equation (8).
The defect size ( fp) is uniformly distributed between 0 and 5. The fault variables (p and q)
were chosen uniformly at random from the six variables (p and q were not equal).

• Case 1. The system was initially running normally, and then an arbitrary bias-type
single fault was added from the 501st to the 1500th sample.

• Case 2. The system was initially running normally, and then arbitrary bias-type
multiple faults were added from the 501st to 1500th samples.

To identify the fault variables, the threshold of the conventional and proposed methods
was set to 0.01. The number of principal components for PCA, DPCA, ICA, and DICA was
set to five under the same conditions, and the lag variables for DPCA and DICA were set
to two. The LOF sets the number of neighbors to 60. The NND and k values of the SNN
were set to 15 and 45, respectively. In SNN, the weight based on the number of common
neighbors was set to 0.1 for over 90%, 0.5 for over 70%, and k when in the absence of
shared neighbors.

First, fault detection is performed to identify the faults. The false alarm rate (FAR)
indicates the result of detecting samples in the section after the faulty section of the query
vector as faults and is used to compare the fault detection performance of each model. The
fault detection indices of the PCA, DPCA, ICA, and DICA are the squared prediction error
(SPE), and LOF and SNN are the LOF and D2, respectively. LOF is a method of detecting
failures using the density of neighbors selected in kNN [24]. It was used as a comparison
model, because it can detect faults more effectively than the conventional kNN.

Table 1 compares the FAR of the proposed and conventional methods for single and
multiple faults. Among conventional methods, DPCA and DICA can effectively detect
single faults. The performance of the dynamic-based method was improved compared to
PCA and ICA by increasing the number of original variables through lagged variables. LOF
resulted in a higher FAR than the other methods, because the normal data were distributed
around the faulty data. In the case of multiple faults, the detection index value of the
models increases when two variables have faults. Therefore, faults can be detected more
easily than a single fault. DICA had a FAR of 0.4 compared to a single fault, which was
lower than other conventional methods. LOF has a lower FAR compared to a single fault
but still exhibits a higher error compared to the other models. In contrast, the proposed
method has a higher performance than conventional models, with an FAR of zero for both
single and multiple fault cases. Compared with LOF, faults can be effectively detected
even though they are located adjacent to normal data. The proposed method readjusts the
distance according to the neighbors shared by each other in the calculated distance value to
capture the failure data adjacent to the normal data quickly. Consequently, the results show
that the proposed method can effectively detect faults even when the fault size is small
compared to conventional methods.

Table 1. Performance indices of the proposed method and comparison methods (lower is better).

Method PCA
(SPE)

DPCA
(SPE)

ICA
(SPE)

DICA
(SPE)

LOF
(LOF)

SNN
(D2)

FAR FAR FAR FAR FAR FAR

Single fault 10.2 6.93 25 2.2 26.1 0

Multiple fault 6.93 2.53 48.7 0.4 15.1 0
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As mentioned above, fault isolation during process monitoring is performed after
fault detection. The occurrence of a single fault ranged from 501 to 1500 samples, and the
randomly selected failure variable (p) is 3. Figure 2 shows the fault isolation results for each
model for a single fault. The greater the contribution to failure, the darker the color of the
graph. Generally, statistical-based methods (PCA, ICA, DPCA, and DICA) suffer from the
smearing effect, which causes the contribution color to be attributed to the fault variable
even though the other variables are normal. As a result, PCA, DPCA, ICA, and DICA
show that the normal variables appear as red bars, similar to the fault variables after failure
occurs. The LOF was not affected by smearing; therefore, the color of the normal variable
did not change to that of the fault variable. However, it could not accurately identify the
fault variables. On the other hand, the proposed method was not affected by the smearing
effect and only calculated the contribution of the faulty variables.
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Figure 2. Single fault case. Comparison of fault isolation results: (a) PCA, (b) DPCA, (c) ICA,
(d) DICA, (e) LOF, (f) SNN.

The fault isolation results for multiple faults are shown in Figure 3. Multiple faults also
occur from the 501st sample to 1500, and the randomly selected fault variables (p and q) are
three and four. PCA and DPCA resulted in large contribution values for fault variables 3
and 4. However, because the fault variables affected other variables, other normal variables
were identified as failures, as in the single fault cases. ICA failed to identify fault variables
under the same conditions as PCA and DPCA (principal components = 5); therefore, all
variables were considered faults. DICA calculated the high contribution of fault variables 3
and 4, as well as other variables (5 and 6). Unlike conventional statistical methods, LOF
did not show the smearing effect of other variables and did not accurately identify the fault
variable. In contrast, the proposed method maintains the contribution values in yellow
until the 500th sample, when the contributions of variables 3 and 4 increase, and the graph
changes. In particular, we show that only the fault variables can be found without being
affected by the smearing effect, compared to other methods. This is because the detection
index is calculated in the original space; therefore, it does not affect the other variables.
Moreover, it rescales the distance values by assigning weights based on common neighbors.
The results demonstrated that the proposed method can effectively identify fault variables
while avoiding smearing effects.
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4. Actual Failure Case Study

In this section, two cases are studied to verify the performance of fault isolation
between the proposed and conventional methods in an unplanned shutdown case that
occurs in an actual circulating fluidized bed boiler. Section 4.1 describes the structure and
data of the circulating fluidized bed boiler and compares the early fault detection time and
fault isolation performance before an actual failure occurs. We used CPU Intel i9–9900K
and GPU Nvidia RTX 2070 hardware to run these tests. The algorithm was implemented
in MATLAB 2021b. The target system used in the experiment was a circulation boiler
operating in the Saha-gu industrial complex in Busan, South Korea.

4.1. Circulating Fluidized Bed Boiler Structure

A circulating fluidized bed combustion boiler (CFBC) is a power generation system
that produces electrical energy using biomass and domestic waste fuel. They are widely
utilized in small- and medium-sized power generation owing to their low combustion
temperatures, low NOx emissions, and ease of SO2 reduction [25]. As depicted in Figure 4,
a CFBC is largely composed of a combustion furnace, superheater, reheater, cyclone, and an
economizer. Unlike other power generation systems, CFBCs are gaining popularity, because
they can increase fuel flexibility and combustion efficiency using a fluid medium [26–29].
However, bed materials such as industrial waste, sand, and alkali salt contained in the
exhaust gas adhere to the bed material and heat pipe in the boiler, causing erosion, corrosion,
and agglomeration [30]. The bed material can be quickly deposited as it passes through the
rough areas on the inner surface of the pipe. For example, the KCI(s) in domestic waste
fuels react with Cr and Cr2O3 oxide films in boiler pipes to produce K2CrO4 and Cl(g)
films, respectively. This erosive activity in the circulating bed results in problems such
as flow disorders, pipe overheating, and waterside and fireside corrosion. Tube-related
failures were observed several hours before the boiler was shut down, because the response
varied based on the location of the steam leak [31]. Consequently, FDI technologies based
on sensors measured in the CFBC are required. In this study, we compare the performance
of FDI between the proposed method and conventional methods for cases where unplanned
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shutdowns occurred owing to tube holes in the superheater, economizer, and sediment in
the furnace.
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The CFBC failed when the boiler was opened and inspected at 2:35 p.m. on 9 Septem-
ber 2020, owing to the increased moisture in the combustion furnace. The main causes
of failure include leakage in the tubes of the superheater and economizer and sediment
formation in the furnace and cyclone. The training and validation datasets for identifying
the cause of failure were 80,000 and 4471, respectively. As presented in Table 2, the 110
boiler and steam-related variables measured at each facility of the circulating fluidized
bed boiler were used. Based on the knowledge of the CFBC operators, critical variables
were set among the values measured at various facilities. Unlike conventional power
generation, the operating modes of the target system change over time based on the steam
output. Therefore, the multimode data were normalized to single-mode data using NND
before applying the SNN. Figure 5 shows the main causes of unplanned shutdowns, such
as leakage in superheaters and economizers and deposits in furnaces and cyclones. As
depicted in Figure 5a,b, the tube leaks owing to pipe overheating and roadside corrosion.
It was confirmed that the size of the holes gradually increased, affecting other facilities and
combustion furnaces. Figure 5c,d show the dislodged deposits in the furnace and cyclone,
respectively.

Table 2. Summary of monitored variables for CFBC.

No. Description Unit No. Description Unit No. Description Unit

x1 Amount of
H2O % x38 Steam press. of

SCR mmH2O x75
Inlet temp.

inlet of upper
place furnace

◦C

x2 Amount of O2
in eco. % x39

Press. of steam
supplied of
upper place

furnace

MPa x76 Inlet temp.
inlet of furnace

◦C
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Table 2. Cont.

No. Description Unit No. Description Unit No. Description Unit

x3
Diff. of press.

furnace and top
of cy.

mmH2O x40

Combustor bed
press. of lower

furnace
feedwater
(sensor A)

mmH2O x77
Inlet temp. inlet
of cyclone and

boiler front-end

◦C

x4 Diff. of press.
2nd and 1st S/H. mmH2O x41

Combustor bed
press. of lower

furnace
feedwater
(sensor B)

mmH2O x78
Inlet temp. inlet
of cyclone and
boiler terminal

◦C

x5
Diff. of press. 1st

S/H and 2nd
eco.

mmH2O x42 Press. of lower
place furnace mmH2O x79 Diff. of temp.

2nd and 1st S/H
◦C

x6 Diff. of press.
2nd and 1st eco. mmH2O x43 Press. of middle

place furnace mmH2O x80 Inlet temp. inlet
of 1st S/H

◦C

x7 Diff. of press. of
1st and new eco. mmH2O x44 Press. of upper

place furnace mmH2O x81
Diff. of temp. 1st

S/H and 2nd
eco.

◦C

x8 Diff. of press. of
new eco. mmH2O x45

Press. between
cyclone and

boiler
mmH2O x82 Inlet temp. inlet

of 2nd S/H
◦C

x9 Output of steam
ratio (sensor A) % x46 Press. of 1st S/H mmH2O x83 Diff. of temp.

2nd and 1st eco.
◦C

x10 Output of steam
ratio (sensor B) % x47 Press. of 2nd

economizer mmH2O x84 Inlet temp. inlet
of 1st eco.

◦C

x11 Output of steam
ratio (sensor C) % x48 Press. of Air

pre-heater mmH2O x85
Diff. of temp. 1st

S/H and new
eco.

◦C

x12
Steam output of
feedwater pipe

1(sensor A)
t/h x49

Press. of lower
supply cyclone

(sensor A)
mmH2O x86 Inlet temp. inlet

of 2nd eco.
◦C

x13
Steam output of
feedwater pipe

1(sensor B)
t/h x50 Press. of middle

place cyclone mmH2O x87
Diff. of temp.

new eco. and bag
filter

◦C

x14
Steam output of
feedwater pipe 2

(sensor C)
t/h x51 Press. of middle

place furnace mmH2O x88
Outlet temp. of
air pre-heater

terminal

◦C

x15
Steam output of

fluidized bed
material supply

t/h x52 Press. of lower
place furnace mmH2O x89

Outlet temp. of
dry reactor
front-end

◦C

x16
Aux. steam

output of lower
feedwater pipe

t/h x53
Press. of dry

reactor and bag
filter

mmH2O x90
Diff. of temp.
cyclone and

boiler

◦C

x17 Inlet output of
feedwater pipe 1 % x54

Steam flow of air
pre-heater and

dry reactor
mmH2O x91

Inlet temp. of
cyclone fluidized

bed material
supply

◦C

x18 Outlet output of
feedwater pipe 1 % x55

Output of
feedwater ratio

(sensor A)
% x92 Steam output of

steam drum t/h

x19 Outlet output of
feedwater pipe 2 % x56

Output of
feedwater ratio

(sensor B)
% x93

Amount of outlet
steam flow 2nd

S/H
t/h

x20
Steam flow of
fluidized bed

material supply
t/h x57

Inlet temp. of
dry reactor and

bag filter

◦C x94
Amount of inlet
steam flow 2nd

S/H
t/h
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Table 2. Cont.

No. Description Unit No. Description Unit No. Description Unit

x21

Steam flow
between

feedwater pipe 1
and 2

t/h x58 Inlet temp. of
SCR and SGR

◦C x95
Steam drum

level of
feedwater tank

mm

x22

Steam flow
between

feedwater pipe 1
and 2

t/h x59
Inlet temp. of

SGR and
combustor

◦C x96 Steam drum
level of eco. t/h

x23 Metering bin A
outlet conveyor rpm x60 Outlet temp. of

feedwater pipe 1
◦C x97 Outlet press. of

2nd S/H 1-1 MPa

x24
Diff. press.
between

feedwater pipe 1
mmH2O x61 Outlet temp. of

feedwater pipe 2
◦C x98 Outlet press. 2nd

S/H MPa

x25
Diff. press. of

feedwater pipe 1
(sensor A and B)

mmH2O x62
Outlet temp. of

upper place
furnace

◦C x99 Inlet press. 2nd
S/H MPa

x26

Diff. press.
between dry

reactor and bag
filter

mmH2O x63

Inlet temp. inlet
of cyclone and
boiler middle

point

◦C x100
Outlet press.

steam supplied
of 2nd S/H

MPa

x27

Sum of steam
output of

feedwater pipe 1
and 2

mmH2O x64
Outlet temp. of

upper place
boiler

◦C x101 Outlet press. of
2nd S/H 1-1 MPa

x28 Furnace press. of
feedwater pipe 2 mmH2O x65

Inlet temp. of
feedwater pipe 1

(sensor B)

◦C x102
Temp. of steam

supplied of
boiler silencer

◦C

x29
Furnace press. of
feedwater pipe 2

(sensor A)
mmH2O x66

Inlet temp. of
feedwater pipe 2

(sensor B)

◦C x103 Outlet temp. of
1st S/H

◦C

x30
Furnace press. of
feedwater pipe

(sensor B)
mmH2O x67 Inlet temp. of

feedwater pipe 1
◦C x104

Temp. of steam
supplied of

boiler silencer

◦C

x31
Press. of

fluidized bed
material supply

mmH2O x68 Inlet temp. of
feedwater pipe 2

◦C x105 Output of steam
drum %

x32 Press. of 2nd
S/H mmH2O x69

Inlet temp. of
feedwater pipe 1

(sensor A)

◦C x106 Outlet temp. of
1st S/H

◦C

x33
Press. of lower
supply cyclone

(sensor B)
mmH2O x70

Inlet temp. of
feedwater pipe 1

(sensor A)

◦C x107
Inlet temp. of

2nd S/H (sensor
A)

◦C

x34 Inlet press. of
feedwater pipe 2 mmH2O x71

Inlet temp. of
feedwater pipe 2

(sensor A)

◦C x108
Inlet temp. of

2nd S/H (sensor
B)

◦C

x35
Press. of air

pre-heater and
dry reactor

mmH2O x72
Inlet temp. inlet
of fluidized bed
material supply

◦C x109 Inlet temp. of 1st
S/H (sensor A)

◦C

x36 Press of upper
place combustor mmH2O x73

Inlet temp. inlet
of lower place

furnace
(sensor A)

◦C x110 Inlet temp. of 1st
S/H (sensor B)

◦C

x37 Press. of SCR
terminal mmH2O x74

Inlet temp. inlet
of lower place

furnace
(sensor B)

◦C
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Figure 5. Tube leakages and deposits of CFBC: (a) superheater tube leakage, (b) economizer tube
leakage, (c) sediment in cyclone, (d) sediment in furnace.

Figure 6 illustrates the pressure in the furnace and temperature in the feedwater pipe
of the CFBC. As described previously, the target system changes its operating modes based
on the steam output; therefore, the mean and variance of the data are different for each
mode. Each operation mode should not be considered a failure because it contains normal
operational data. Therefore, in this study, NND was used to convert and normalize the
multiple modes to a single mode. After normalization, the multimodal structure is removed,
and each process variable follows a multivariate Gaussian distribution. Figure 6c,d present
the results of normalization with NND. The modes are converted into a single mode com-
pared to existing operational modes. In particular, it can be observed that the phenomenon
of bouncing values is maintained while changing to a single mode of operation.

Figure 7 shows the fault detection results based on the number of neighbors of the
NND and SNN, which are the parameters used in the proposed method. The parameter
settings of the proposed method involve fault detection by increasing k. The parameter with
the smallest error is selected as the appropriate value for the model. As depicted in Figure 7,
when NND = 12 and k = 16, the fault detection is faster than before the boiler shutdown,
and the FAR is lower. However, when k exceeds 20, the calculated D2 continuously exceeds
the threshold. In other words, values greater than 25 were excluded from the model setup,
because this proved to be challenging to perform early fault detection. As a result, the
numbers of neighbors for NND and SNN were set to 12 and 16, respectively. The threshold
value for fault detection was set using the kernel density estimation (KDE). KDE is a
widely used method in fault diagnosis for estimating the distribution of normal operation
data. The probability distribution of D2 calculated from the SNN was estimated using the
‘ksdensity’ function built into MATLAB, and the significant level (α) was set to 0.01.
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Figure 6. Distribution diagram of CFBC and clinker and clogged nozzle of furnace: (a) pressure
in furnace before normalization, (b) temperature in feedwater before normalization, (c) pressure in
furnace after normalization, (d) temperature in feedwater after normalization.

Figure 8 shows the CFBC fault detection results of the conventional and proposed
methods. The fault detection times were compared based on the unplanned shutdown on 9
September 2020, at 2:35:06 p.m. (data point: 1080). The conventional method uses PCA,
DPCA, ICA, and DICA, which are widely used statistical methods in fault detection, and
LOF, which is a non-parametric method for detecting faults based on nearest neighbors.
Cumulative percentage variance (CPV) was used to determine the number of data reduc-
tions for each statistical model, and the threshold value of CPV was set to 90%. The number
of neighbors in the LOF was 10. In the proposed method, NND and k are set to 12 and 16,
respectively. Fault detection was considered successful when the value derived from the
model consistently exceeded a threshold value. Table 3 presents a comparison of the early
failure detection times for each model. PCA exceeds the threshold from the 1074th sample
until an unplanned shutdown occurs. The fault detection time was 2:34:05 p.m., which
detected a failure one minute before the target system stopped. DPCA began to deviate
from the threshold for the 998th sample, which was earlier than that of PCA. The fault
detection time was 2:06:26 p.m., which was approximately 28 min and 40 s early. For DPCA,
the performance improvement over PCA appears to be owing to the increased number of
variables that can be utilized. The ICA and DICA failed to detect the fault, because they
deviated from the threshold value after an unplanned shutdown. For both methods, the
poor performance can be attributed to the fact that the decision is based on the number of
principal components selected in PCA and DPCA for fault detection comparison. In general,
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the number of principal components in the ICA and DICA is set to the number of principal
components determined by the PCA; therefore, an improved method is required. The LOF
shows that the query vector is outside the threshold starting from the 994th sample (2:20:56
p.m.). In other words, the LOF detected the fault 14 m 10 s before boiler shutdown. The
fault detection result of the proposed method was 12:26:06 p.m., which was approximately
2 h 9 m. In particular, it was confirmed that abnormal signs were detected 1 h 39 m 46 s
faster than DPCA, which detected failure first among the conventional methods. Therefore,
the proposed method can also be applied to fault detection.
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Figure 7. Distribution diagram of CFBC and clinker and clogged nozzle of furnace: (a) FAR according
to the neighbors of NND, (b) FAR according to neighbors of SNN.
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Figure 8. Comparison of the fault detection results: (a) PCA, (b) DPCA, (c) ICA, (d) DICA, (e) LOF,
(f) SNN.

Table 3. Fault detection time of the proposed method and comparison methods.

PCA DPCA ICA DICA LOF SNN

Failure time 14 h 35 m 6 s

Detection time 14 h 34 m 14 h 27 m - - 14 h 20 m 12 h 26 m

Early detection time 1 m ago 28 m 40 s ago - - 14 m 16 s ago 2 h 9 m ago

Figure 9 shows the contributions of the conventional and proposed methods. The
contribution of each variable was compared from the time the SNN detected the earliest
fault (12:26:06 p.m.) to the time the unplanned shutdown occurred (2:35:06 p.m.). In general,
statistical-based methods (PCA, DPCA, ICA, and DICA) can confirm that the contributions
of all variables are high, because the fault variable affects other variables owing to the
smearing effect. Consequently, the contribution colors of the normal variables in PCA,
DPCA, ICA, and DICA appear in red. Owing to tube leakage and sediment generation, the
output volume of the feedwater pipe, temperature of the SGR and combustion passage,
and internal temperature of the S/H in the PCA, DPCA, ICA, and DICA contributions
were calculated to be high. However, the contributions of the other normal variables also
increased, failing to accurately identify the fault variable. Although ICA and DICA failed
to detect faults, the contribution of the variables related to tube leakage was calculated to
be higher than that of PCA and DPCA. Compared with statistical-based methods, LOF can
identify fault variables without suffering from the smearing effect. LOF yielded the highest
contribution value for the output of the feedwater pipe as a failure-causing variable owing
to tube leakage. In addition, the S/H variable also made a high contribution. LOF can
identify variables related to the cause of failure compared with statistical-based methods.
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Finally, the proposed method can prevent the smearing effect, which is the same as
LOF. LOF had a low contribution of variables other than the output amount of the feedwater
pipe, but as observed in Figure 10, the proposed method’s difference in the pressure furnace
and top of the cyclone and the difference in the pressure show that the pressure difference
between second and first S/H, the temperature inside the economizer, and the variables
of the cyclone’s fluidized bed material input can be considered failures. In particular, the
proposed method shows the contribution of variables related to failure changes by detecting
faults earlier than the other models. In other words, the proposed method can effectively
identify the variables related to failures caused by unplanned shutdowns of circulating
fluidized bed boilers compared with conventional methods. Furthermore, by applying
multimodal normalization, it was shown that the method can be applied to time-varying
processes owing to variations in the boiler output.
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5. Conclusions

In this study, a SNN-based FDI method was proposed to identify the cause of failure in
a circulating fluidized bed boiler. First, data normalization to a single mode was performed
for FDI of the target system operating in multiple modes. Normalization was performed,
and the SNN was used to detect the faults and identify the variables causing the faults.
The performance of the proposed method was evaluated by applying the conventional
and proposed methods to simulated data with single and multiple faults and unplanned
shutdowns in a real circulating fluidized bed boiler. The experimental results demonstrated
that the proposed method can effectively detect faults and identify fault variables while
avoiding the smearing effect. In the case of circulating fluidized bed failure, the proposed
method was able to detect a fault earlier than conventional methods before an unplanned
shutdown occurs. It detected the fault 1 h 39 m earlier than DPCA. In fault detection, the
earlier a fault is detected, the more likely it is that proper maintenance can be performed to
reduce costly downtimes [2,18]. In addition, early fault detection is essential for fault diag-
nosis, because fault isolation can only proceed when fault detection is performed [32–34].
The proposed method provides early fault detection to identify failure signs in advance.
As a result of the fault isolation, the conventional statistical method could not detect the
fault properly, because the contribution of other normal variables was calculated to be high
owing to the smearing effect. LOF captured the variables related to the feedwater supply
owing to tube leakage. However, it does not capture the problems caused by leakage in the
economizer tube or deposits in the furnace and cyclone. By contrast, the proposed method
captured the relevant variables owing to tube leakage and changes related to sediment
formation and shedding. Therefore, the proposed method can be applied to processes
operating in multiple modes.

In future studies, we will consider the following two topics: First, we look at the
number of neighbors of NND and SNN, which are parameters used in the proposed
method, set through repeated experiments; therefore, it takes time to find the appropriate
model parameters. To solve this problem, we plan on setting the parameters using the
optimization method required for the number setting. Second, weighting according to
shared neighbors in a SNN has the disadvantage of having to be set for each target system.
Therefore, we will investigate a weight allocation method based on the distribution of
shared neighbors.
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