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Abstract: The accurate prediction of mining area surface deformation is essential to preventing large-
scale coal mining-related surface collapse and ensure safety and daily life continuity. Monitoring
subsidence in mining areas is challenged by environmental interference, causing data noise. This
paper employs the Sparrow Search Algorithm, which integrates Sine Cosine and Cauchy mutation
(SCSSA), to optimize variational mode decomposition (VMD) and combine multi-models for predic-
tion. Firstly, SCSSA is employed to adaptively determine the parameters of VMD using envelope
entropy as the fitness value. Subsequently, the VMD method optimized using SCSSA adaptively
decomposes the original mining area subsidence data sequence into various sub-sequences. Then,
SCSSA-VMD is applied to adaptively decompose the original mining subsidence data sequence
into multiple sub-sequences. Meanwhile, using sample entropy, the sub-sequences are categorized
into trend sequences and fluctuation sequences, and different models are employed to predict sub-
sequences at different frequencies. Finally, the prediction results from different sub-sequences are
integrated to obtain the final prediction of mining area subsidence. To validate the predictive perfor-
mance of the established model, experiments are conducted using GNSS monitoring data from the
110801 working face of Banji Coal Mine in Bozhou. The results demonstrate the following: (1) The
hybrid model enhanced the prediction accuracy and trends by decomposing the data and optimizing
the parameters with VMD. It outperformed single models, reducing errors and improving predictive
trends. (2) The hybrid model significantly improved the prediction accuracy for subsidence data at
work surface monitoring stations. It is particularly effective at critical subsidence points, making it a
valuable reference for safety in mining operations.

Keywords: GNSS monitoring station; variational mode decomposition; multi-model; ground
subsidence prediction; hybrid model

1. Introduction

Energy serves as the fundamental pillar supporting a nation’s prosperity and sus-
tainable economic development [1]. Coal has consistently served as a primary energy
source in China. For the sustainable development of the national economy, it is impera-
tive to judiciously develop coal resources and ensure their secure and consistent supply.
However, as mining areas expand, surface cracks emerge, posing significant threats to
critical infrastructure situated above these regions, including cracking and subsidence. The
extensive land subsidence induced by large-scale coal mining has led to the creation of coal
mining subsidence areas, causing irreparable harm to the original ecological environment
and structures within the mining region. To alleviate the adverse consequences of surface
subsidence and deformation resulting from mining-induced voids, engaging in subsidence
monitoring, analyzing monitoring data, and promptly and accurately comprehending
subsidence patterns are essential. This is vital for effectively mitigating diverse geological
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hazards resulting from mining-induced subsidence. Therefore, comprehensive research
on subsidence patterns due to mining-induced surface subsidence, along with the applica-
tion of scientific monitoring techniques and predictive models, is crucial for ensuring the
sustainable development of the coal industry [2].

The rapid advancement in engineering construction has led to an increased focus on
deformation-related concerns. Establishing a deformation monitoring technology that is
both safe and reliable holds immense significance. To ensure the safety of mining operations
and reduce geological hazards caused by stress and subsidence resulting from mining, high-
precision surface deformation monitoring of mining areas is indispensable [3]. Presently,
prevalent deformation-monitoring technologies encompass geometric leveling measure-
ment technology [4], three-dimensional laser scanning technology [5], synthetic aperture
radar differential interferometry measurement technology [6], and GNSS measurement
technology [7]. With the progression of GNSS technology, its application in monitoring
surface subsidence, landslides, dam deformations, and various other deformation aspects
within mining areas has become widespread [8]. GNSS technology offers notable advan-
tages, including high automation, rapid data acquisition, and exceptional accuracy. The
utilization of GNSS technology for automated monitoring eliminates the necessity for
monitoring stations to have a direct line of sight to each other. Each monitoring station can
conduct observations independently, enabling the establishment of real-time monitoring
networks. These networks facilitate the acquisition of deformation information, provid-
ing a comprehensive understanding of surface subsidence patterns. Faced with complex
deformation processes, many scholars have conducted a series of studies on deformation
prediction methods, leading to the widespread development of various theoretical models,
such as GM(1,1) [9], Kalman filtering models [10], time series models [11], and neural
network models [12]. However, as research has progressed, many scholars have found that
using a single prediction model often had its limitations and does not comprehensively
reflect subsidence patterns, making it less suitable for complex subsidence systems. When
predicting surface subsidence using GNSS automated monitoring systems that include
various random interference factors (such as mining depth, mining thickness, coal seam
dip angle, mining speed, etc.), it is challenging to achieve high accuracy using a single
prediction method. Therefore, seeking a combination prediction model that integrates the
advantages of multiple models and effectively improves prediction accuracy is of signifi-
cant importance. Without a doubt, combined prediction has become a popular research
direction in the field of deformation prediction. J.M. Bates and C.W.J. Granger [13] first
proposed the concept of a combined model, combining single prediction models using
the method of minimum variance, greatly improving prediction accuracy. Du et al. [14]
constructed a composite prediction model for open-pit slope deformation by combining an
adaptive network fuzzy inference system and a support vector machine. Han et al. [15]
established the SA-RELM model based on time series, achieving improved accuracy in
ground subsidence prediction for excavation. Xu et al. [16] constructed an ARIMA-LSTM
model to predict nonlinear feature data in dam deformations. Kim et al. [17,18] employed
machine learning algorithms to effectively predict tunnel surface settlement, enhancing
the prediction capabilities for surface settlement in urban tunnel construction sites under
complex excavation conditions. In addition, the use of combination models with different
machine learning methods and various optimization algorithms for predicting ground
vibrations caused by blasting and tunnel excavation-induced surface settlement has found
applications, effectively improving the prediction of ground settlement [19–25].

Utilizing different preprocessing models to decompose or filter data can effectively
segregate nonlinear data into more regular and stable sub-sequences or eliminate spu-
rious features with minimal correlation, thus enhancing model accuracy [26]. Presently,
the spectrum of effective information extraction and denoising methods for long-term
complex sequential data primarily encompasses wavelet analysis [27], empirical mode
decomposition (EMD) [28], local mean decomposition (LMD) [29], and variational mode
decomposition (VMD) [30]. In comparison to other methodologies like EMD and LMD,
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VMD adeptly circumvents mode mixing, over-enveloping, boundary effects, and simi-
lar challenges. It demonstrates robust noise resistance and higher operational efficiency,
along with exceptional precision in decomposing complex data and resilience to inter-
ference. These characteristics permit improved data decomposition. The determination
of parameters and the quadratic penalty factor in the VMD method significantly affect
the decomposition results [31]. VMD parameters are often determined through empirical
judgment based on multiple tests [32]. In recent years, with the continuous development of
optimization algorithms, many scholars have used them to optimize VMD parameters; they
include the Genetic Algorithm (GA) [33], Grey Wolf Optimizer (GWO) [34], and Sparrow
Search Algorithm (SSA) [35], etc. To better resist noise interference and make an adaptive
selection of VMD parameters, an improved Sparrow Search Algorithm (SCSSA) is used to
search for the optimal parameter combination for VMD with the smallest mode envelope
entropy as the objective function. Therefore, an improved VMD decomposition model
method based on SCSSA is proposed to effectively decompose settlement data sequences.
Additionally, the decomposed sub-sequences have different levels of complexity, which
will affect the prediction results. Sample entropy (SE) is used to measure the complexity of
each sub-sequence [36].

In summary, due to diverse noise interferences and nonlinearity in mining subsidence
monitoring data sequences, achieving high prediction accuracy is often challenging. This
paper proposes a hybrid prediction model based on SCSSA-VMD-SE and ARIMA-BP
by optimizing VMD parameters through the integration of sine and cosine with Cauchy
variance in SCSSA to find the optimal decomposition. Firstly, SCSSA is utilized to optimize
the VMD parameters, enabling the selection of the best VMD parameter combination.
Secondly, based on the sample entropy of the sub-series derived from the decomposition of
the original data, sequences exhibiting distinct characteristic trends and fluctuations are
identified. Lastly, the ARIMA time series model is employed to predict trend sequences,
while the backpropagation (BP) neural network model predicts fluctuation sequences. The
predictions from both models are aggregated to yield the final settlement prediction result.
Comparisons are made with a single prediction model, and the effectiveness and feasibility
of the combined model are verified through an analysis of the prediction results obtained
by processing GNSS monitoring data for the Banji mine.

2. Methodology
2.1. Variational Mode Decomposition

Variational mode decomposition (VMD) is a signal processing technique used to
decompose complex raw data signals into a series of Intrinsic Mode Functions (IMFs) [37].
Through the optimization of a formulated problem, it adaptively decomposes the original
subsidence data in the mining area and effectively extracts the main components and
features of the signal, reducing the influence of nonlinearity and non-stationarity on the
prediction results. Steps of the VMD algorithm: Firstly, perform the Hilbert transform on
the original data to obtain various modal functions µκ(t) and compute their one-sided
spectra. Secondly, transform these spectra into a fundamental frequency band to estimate
bandwidths and formulate the corresponding constrained variational problem. Finally,
introduce Lagrange multipliers λ(t) and the quadratic penalty factor α, converting it
into an unconstrained variational problem. The specific formulas for the VMD algorithm
are as follows:

L({µκ}, {ωκ}, λ) = α∑k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ µκ(t)

]
e−jωκ

t
∥∥∥∥2

2
+
∥∥∥ f (t)−∑k µκ(t)

∥∥∥2

2
+
〈

λ(t), f (t)−∑k µκ(t)
〉

(1)

In Equation (1), µκ represents the mode component, and ωκ represents the correspond-
ing center frequency. Since setting different numbers of decomposition modes (k) and
the quadratic penalty parameter (α) will affect the decomposition results, the selection of
parameters k and α is crucial in VMD.
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2.2. SCSSA

The Sparrow Search Algorithm (SSA) is an optimization algorithm that was designed
by simulating the foraging and anti-predatory behavior of sparrows. It possesses several
advantages, including high search accuracy, robust optimization capabilities, and ease
of implementation. These qualities have led to its widespread application across vari-
ous domains. Xue [38] provided a detailed introduction to the principles and the entire
optimization process.

To address the issue of population diversity loss in the later stages of optimization with
the SSA algorithm, leading to problems such as falling into local extremes and insufficient
convergence accuracy [39].

In this paper, a reflection-based reverse-learning mechanism is utilized to initialize
the sparrow population. N sparrow positions, xi,j, are randomly initialized within the
optimization range. The reflected reverse population is generated using Equation (2):

x∗i,j =
lj + uj

2
+

lj + uj

2k
−

xi,j

k
(2)

In this formula, xi,j represents the position of the i-th sparrow in the j-th dimension
(i = 1, 2, . . ., d; j = 1,2,. . ., N), where d represents the population size, and N represents the
dimensionality; x∗i,j represents the reflected reverse position; lj and uj are the minimum
and maximum values of the search space in the j-th dimension; and k is the scaling factor.
Based on the ascending order of the fitness values, we select the top N sparrow individuals
as the initial population.

Due to the loss of population diversity caused by the stagnation of the entire pop-
ulation, followers often forage around the optimal discoverer, and the foraging process
may involve competition for food, where followers attempt to become the new discoverers,
thus increasing the possibility of falling into a local optimum. Therefore, the Sine Cosine
Algorithm (SCA) is introduced to update the positions of the discoverers, as it can maintain
the diversity of discoverer individuals, thus helping to enhance the global search capability
of the Sparrow Search Algorithm [40]. The update to the discoverer’s position Xt+1

i,j is
achieved through Equation (3):

r1 = a×
(

1−
(

t
Itermax

)η)1/η

ω = e
t

Itermax −1
e−1

Xt+1
i,j =

ω× Xt
i,j + r1 × sin r2 ×

∣∣∣r3 × Xbest − Xt
i,j

∣∣∣, R < ST

ω× Xt
i,j + r1 × sin r2 ×

∣∣∣r3 × Xbest − Xt
i,j

∣∣∣, R ≥ ST

(3)

In Equation (3), r1 represents the linearly decreasing search factor; a = 1; Itermax is
the maximum number of iterations; t is the iteration count; η is the adjustment factor,
η ≥ 2;ω is the nonlinear weighting factor; Xbest is the current overall best position; r2, r3
are random numbers in the range [0, 2π], determining the sparrow’s movement distance
and controlling the influence of the best individual on the sparrow’s subsequent position;
and R ∈ [0, 1] and ST ∈ [0.5, 1] represent vigilance and safety values, respectively.

Then, the Cauchy mutation strategy is introduced to enhance global optimization
capability. The update to the follower’s position is carried out according to Equation (4):

Xt+1
i,j = Xbest(t) + cauchy(0, 1)⊕ Xbest(t) (4)

In Equation (4), cauchy(0, 1) represents the standard Cauchy distribution function,
and “⊕” denotes element-wise multiplication.



Processes 2023, 11, 3309 5 of 24

Finally, we determine whether the current iteration count meets the termination
condition. If the condition is satisfied, we output the optimal fitness value and the best
position [41].

2.3. SCSSA-VMD

The selection of VMD parameters affects the decomposition results, and the number
of decomposition modes (k) and the quadratic penalty parameter (α) have a significant
impact on the decomposition results. Therefore, studying the optimal values for k and α is
crucial. Empirical values are typically used for other parameters [42].

Information entropy can be used to assess the sparsity of a signal, and the value of
information entropy also reflects the uncertainty of the signal. A higher entropy value
indicates greater uncertainty in the signal. The entropy value of the decomposed sub-
sequence ej is the envelope entropy, which can reflect the sparsity characteristics of the
original signal. The envelope entropy Ee of the signal x(j) can be expressed as:{

Ee = −∑N
j=1 ejlgej

ej = a(j)/∑N
j=1 a(j)

(5)

In Equation (5), ej represents the normalized form of a(j), and a(j) represents the
envelope information of the signal x(j) after the Hilbert transform.

In order to search for the global optimum (k, α), the entire optimization process
utilizes the local minimum envelope entropy value as the fitness value and minimizes
the local minimum envelope entropy value as the final parameter optimization goal. The
SCSSA algorithm is used to adaptively optimize VMD and determine the best two preset
parameters (k, α) for VMD. The specific process of the SCSSA-VMD method is as follows:

(1) Initialize the specific parameters for SSA and VMD;
(2) Utilize a refracted backpropagation learning mechanism to initialize the sparrow

population, decompose the original subsidence data using VMD, and use envelope
entropy as the fitness function for global search.

(3) Update the discoverer’s positions of the original Sparrow Algorithm using the Sine
Cosine Strategy, improve the step-size search factor for the Sine Cosine Strategy, and
update the follower’s positions of the original Sparrow Algorithm using the Cauchy
mutation strategy.

(4) Following steps 2 to 3, when the envelope entropy value reaches the minimum, obtain
the current best two parameters (k, α) for VMD. Utilize these optimal parameters to
perform VMD decomposition on the original subsidence data.

2.4. Sample Entropy

Sample entropy (SE) is a statistical measure used to analyze time series data, describ-
ing the complexity and irregularity of the data. It can be utilized to detect regularity or
periodicity in time series data. Higher values of sample entropy indicate higher irregu-
larity and complexity in the time series data, potentially indicating noise or randomness.
Conversely, lower values indicate higher regularity in the time series data, suggesting peri-
odicity or pattern regularity. It can be expressed using a pseudo-mathematical expression
as follows [43]:

SE = E(w, m, r) (6)

In Equation (6), w represents the time series, and m is the embedding dimension. The
similarity tolerance r is set to 0.2 times the standard deviation (std) of the time series.

3. Prediction Model
3.1. ARIMA Model

In the equation, ej represents the normalized form of a(j), and a(j) represents the
envelope information of the signal x(j) after Hilbert transform. The ARIMA model is
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a classical time series analysis method used for modeling and forecasting stationary or
non-stationary time series [44]. It is a simple yet effective method that is widely utilized
in practical applications. The ARIMA model is a statistical method based on time series
data, treating the fluctuation of data over time as a random sequence and attempting to
characterize and describe the regularities of this random sequence using a mathematical
model. In the modeling process, the model is mainly controlled using three parameters, p,
d, and q, where p represents the number of autoregressive terms, q represents the number
of moving average terms, and d represents the order of differencing. The structure of the
ARIMA(p, d, q) model is as follows:{(

1− φ1B− φ2B2 − · · · − φpBp)∇dxt =
(
1− θ1B− θ2B2 − · · · − θqBq)δt

E(δt) = 0, Var(δt) = σ2
ε , E(δtδs) = 0, s 6= t

(7)

In Equation (7), xt is the system signal, δt is the model error, B is the lag operator, d
is the differencing operator, φp is the autoregressive coefficient, and θq is the moving
average coefficient.

3.2. BP Model

The BP neural network is a multi-layer feedforward neural network based on the
error backpropagation algorithm. It is one of the most successful and widely used neural
network models. The BP neural network approximates the desired output by continuously
adjusting the network’s weights and thresholds. During the training process, input samples
are forwarded through the network to the output layer. The error between the actual output
and the expected output is calculated, and this error is then used to adjust the network
parameters in a backward fashion [29]. The structure of a BP neural network consists of
an input layer, hidden layers, and an output layer. The BP neural network structure is
illustrated in Figure 1 below:
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x1, x2, . . ., xn are input values; a represents the weights between the input layer and
the hidden layer; b represents the weights between the hidden layer and the output layer;
and y1, y2, . . ., ym are the output results. The initial number of nodes in the hidden layer is
obtained through an empirical formula, as follows:

h =
√

n + m + c (8)

In Equation (8), h represents the number of nodes in the hidden layer, n represents the
number of nodes in the input layer, m represents the number of nodes in the output layer,
and c is a random positive integer, typically less than 10.
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3.3. SCSSA-VMD-SE and ARIMA-BP Model

The combined SCSSA-VMD-SE and ARIMA-BP model is shown in Figure 2. The
modeling steps for the entire process are as follows:
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The combined subsidence prediction model proposed in this paper encompasses four
fundamental steps:

Step 1: Preprocess the original monitoring data by removing outliers. Due to de-
bugging issues, such as equipment calibration and platform upgrades during long-term
monitoring, short-term data interruptions occur. Cubic spline interpolation can be em-
ployed to provide a smoother curve and is less likely to cause Runge’s phenomenon
compared to other interpolation methods [45]. Therefore, use cubic spline interpolation to
complete the missing values in the original data.

Step 2: Utilize SCSSA for adaptive parameter optimization of VMD. Subsequently, apply
the optimized VMD to decompose the original data, resulting in various mode components.

Step 3: Calculate the sample entropy values for each mode component and reconstruct
the decomposed data into trend and fluctuation components.

Step 4: Use the ARIMA model and BP neural network model, respectively, to predict
the trend and fluctuation components. Sum up the predictions for each component to
obtain the final prediction result.
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4. Engineering Overview

Banji Coal Mine is situated at the border of Lixin County and Yingshang County,
extending approximately 5.3 km in an east–west direction and about 2.5 to 6.7 km in a
north–south direction, covering an area of roughly 30 square kilometers. The designed
annual production capacity of Banji Coal Mine is one million tons of high-quality thermal
coal, with a planned service life of 53 years. The mining operation for the 110801 initial
mining face was scheduled to commence in April 2021. Banji Coal Mine adopts a single-
wing mining approach, situating the entire mining area to the west of the industrial square.
The loose layer spans approximately 542 to 713 m in thickness, and the bottom of the loose
layer contains a water-bearing layer directly overlying the coal-bearing strata. To monitor
the mining impact on the 110801 initial mining face, surface movement and deformation are
monitored. Real-time dynamic GNSS monitoring is conducted in significant affected areas.
A monitoring network for surface movement and deformation is established to promptly
collect data and create theoretical prediction models. This aids in anticipating potential
impacts on structures within the industrial square, including mine shafts, well frames, and
loading warehouses, during the mining process, and proposing safety measures in a timely
manner. Technical support is also provided for coal pillar retention design and subsidence
prediction for the mine through the establishment of a GNSS real-time dynamic monitoring
system. The GNSS real-time dynamic monitoring system comprises one reference station
and eight real-time monitoring stations. The reference station is positioned on the roof of
the industrial square office building. During the 110801 mining face’s extraction period,
four real-time monitoring stations are situated in crucial areas affected by the 110801
mining face. The reference station BJCMP is installed on the rooftop of the Banji Coal Mine
office building, composed of stainless steel. For the 110801 mining face, four real-time
monitoring stations are installed. One of the real-time monitoring stations is placed at the
intersection of the trend observation line and the dip observation line of the 110801 mining
face (MCORS02). The setup of the BJCMP reference station and GNSS monitoring station
equipment is depicted in Figure 3. The location marked within the red box represents the
BJCMP reference station. The Chinese letters in the figure signify “Banji Coal Mine”. Three
real-time monitoring stations (MCORS06, MCORS07, MCORS08) are located in vital areas
along the trend observation line, toward the factory square, and in the middle of the 110801
mining face, as indicated in the GNSS monitoring station setup diagram in Figure 4.
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The surface deformation monitoring stations utilize independently designed and
assembled BeiDou displacement monitoring devices (E-8s) for data collection. The specific
receiver parameters are indicated in Table 1.

Table 1. E-8s displacement monitoring device main parameters.

Real-Time Dynamic
Plane Accuracy

Real-Time Dynamic
Vertical Accuracy

Static Differential
Horizontal Accuracy

Static Differential
Vertical Accuracy Power Data Transmission

8 mm + 1 ppm 15 mm + 1 ppm 2.5 mm + 1 ppm 5 mm + 1 ppm 2–6 W Built-in 4G SIM card
communication module

5. Engineering Case Analysis
5.1. Subsection

This study utilized elevation component monitoring data from four GNSS monitoring
stations at the 110801 working face of Banji Coal Mine as experimental data. The observa-
tion period extended from 13 July to 22 September 2021, totaling 72 days. Observations
were conducted at 6 h intervals, resulting in 288 sets of experimental data for the elevation
component. The last eight sets of monitoring data were used for prediction, spanning a
total of two days. The continuous settlement data exhibited notable deviations in some
individual points due to factors such as equipment and the surrounding environment.
Values that did not conform to the anticipated settlement patterns were manually removed,
and missing data were addressed through cubic spline interpolation during preprocessing.
The settlement data for each monitoring station, presented in Figure 5, illustrate the im-
pact of these steps. As mining progresses from west to east, the monitoring stations are
labeled accordingly: MCORS02, MCORS06, MCORS07, and MCORS08. Notably, MCORS02
demonstrates the highest settlement magnitude and relatively stable settlement. Con-
versely, MCORS06 and MCORS07 exhibit more fluctuation in their settlement data, albeit
generally following the descending trend associated with mining subsidence. MCORS08,
being further from the mining point, experiences relatively intense fluctuations. Over a
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shorter timeframe, it undergoes less settlement, displaying a comparatively stable settle-
ment pattern. In summary, the settlement values at each monitoring station align with the
surface settlement patterns in the mining area. Proximity to the mining point correlates
with larger and more stable settlement values, whereas stations further from the mining
point experience less settlement and demonstrate greater fluctuations.
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The experimental hardware setup includes an i7-12700F CPU, 32 GB RAM, Nvidia
GTX 2060, and a Windows 10 operating system. All models run on MATLAB R2022a.

By analyzing the subsidence monitoring data of the maximum subsidence point
MCORS02 and monitoring stations MCORS06, MCORS07, and MCORS08 in the im-
portant area towards the factory square in the middle of the 110801 working face, this
study demonstrates the establishment of the combined model based on SCSSA-VMD-SE
and ARIMA-BP.

5.2. VMD Result Analysis
5.2.1. Optimization Result of VMD Using SCSSA

To demonstrate the effectiveness of the SCSSA algorithm, four test functions were
selected for simulation analysis. The test functions are shown in Table 2. Additionally, to
demonstrate the optimization ability of the SCSSA algorithm, comparisons were made
with SSA, GWO, and PSO. The population size was set to 30, the maximum number of
iterations was set to 500, and the dimensionality was set to 30. The specific parameters for
each algorithm are shown in Table 3. These four test functions all have a certain level of
difficulty in solving, making them suitable for testing the optimization performance of the
algorithm. The convergence curves for each algorithm for the four functions are shown in
Figure 6. For each test function, SCSSA consistently demonstrated a better convergence
speed compared to other optimization algorithms. From the figures, it can be seen that
for each test function, the SCSSA algorithm consistently demonstrates better convergence
speed than the other optimization algorithms. Moreover, it is capable of escaping local
optima and finding the global optimum. The SCSSA algorithm exhibits higher stability
and faster convergence speed. In summary, the proposed SCSSA optimization algorithm
exhibits faster convergence speed and stronger global search capabilities, giving it a signifi-
cant advantage in optimization performance. Compared to the other three optimization
algorithms, SCSSA consistently demonstrates superior optimization performance.
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Table 2. Benchmark test functions.

Function Dim Range

F1 =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10]

F2 = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]

F3 = −20exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32]

F4 =
n
∑

i=1
−xisin

√
|xi| 30 [−500, 500]

Table 3. Parameter settings of the optimization algorithm.

Algorithm Parameter Settings

PSO The inertia weight w is 0.8, learning factor c1 = c2 = 1.5, r1 and
r2 are random values between 0 and 1.

GWO The convergence factor a = 2 − t × (2/itermax), r1 and r2 are
random values between 0 and 1.

SSA Same as the ISSA algorithm.
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5.2.2. Decomposition of Settlement Data Using SCSSA-VMD

To obtain the optimal parameter combination (k, α) for VMD, SCSSA was used to
acquire the best parameters for VMD. The SCSSA-VMD parameter settings are shown
in Table 4, and Figure 7 depicts the iteration process for optimizing VMD parameters
using SCSSA and SSA for the data from the four CORS monitoring stations. In contrast
to SSA, the SCSSA curve not only consistently maintains its position at the bottom, but
also showcases robust and efficient optimization capabilities, demonstrating rapid con-
vergence. This distinguishing feature highlights the effectiveness of SCSSA in enhancing
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the performance and convergence speed of the optimization process when compared to
traditional SSA methods.

Table 4. Parameter settings for SCSSA-VMD.

Populations Number of Iterations Value Range of K Value Range of α

20 50 [1, 15] [100, 2500]
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The final parameters for SCSSA-optimized VMD for the four monitoring stations’ data
are presented in Table 5.

Table 5. The VMD parameters generated by SCSSA for each monitoring station.

Datasets
Parameters

k α

MCORS02 13 201
MCORS06 15 2368
MCORS07 15 1909
MCORS08 15 2466

The original elevation series and decomposed Intrinsic Mode Functions (IMFs) of
subsidence data from each CORS monitoring station are shown in Figure 8. Each plot,
from top to bottom, represents IMF1 to IMFn. It can be seen from the figures that the
sub-sequences decomposed by SCSSA-VMD are more stable and regular, which helps to
improve the predictability of the time series.
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5.3. VMD Result Analysis

SCSSA-VMD decomposes a finite number of IMF components with different complex-
ities. Utilizing appropriate models for sub-sequences with different complexities helps
to leverage the capabilities of the models and improve prediction performance. The sam-
ple entropy parameter settings were as follows: embedding dimension for phase space
reconstruction, dim = 2, and delay time, tau = +1. Figure 9 shows the sample entropy
values of each IMF after decomposition for the four CORS monitoring stations. From
Figure 9, it can be seen that the sample entropy value of IMF1 is the smallest. Through
multiple experiments, different values were selected from [0.1, 0.2, . . ., 0.5, 0.6] to determine
the SE threshold. Through multiple experiments, the SE threshold was set to 0.1, where
the fluctuation component is below 0.1 and the high-frequency component is above 0.1.
Reconstruction was carried out based on the SE values, where the first component of the
four datasets represents the trend component, while the rest represent the fluctuation
components. The reconstruction results are shown in Figure 10.
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5.4. The Combined Model Prediction

Through the analysis of subsidence data from the MCORS02 monitoring station, the
establishment of the SCSSA-VMD-SE-ARIMA-BP hybrid model is explained, with the
specific process shown in Figure 11.

5.4.1. Trend Component Prediction

The trend component sequence was predicted using the ARIMA model. First, an
Augmented Dickey–Fuller (ADF) test was conducted on the data to assess their stationarity.
Since differencing can result in data loss, d is generally set to 1 or 2 to avoid the loss of
data. Then, the values of p and q in the ARIMA model were determined by calculating
the Akaike Information Criterion (AIC). An exhaustive search method was used, and the
best forecasting performance was achieved when p was set to 2 and q to 4. Figure 12 shows
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that the modeling results have a good fit with the subsidence data trend component during
the training process, demonstrating the model’s ability to predict the trend component
sequence effectively.
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5.4.2. Fluctuation Component Prediction

The BP neural network model was utilized to predict the fluctuation component
sequence. The advantages of the Levenberg–Marquardt algorithm’s good local optimization
effect are used for precise solving in a small range, thereby improving the neural network’s
convergence speed, accuracy, and prediction precision [46]. The network is configured with
a maximum training limit of 1000 iterations, a target error of 0.00001, and a learning rate
of 0.01. The tansig function is chosen as the transfer function from the input layer to the
hidden layer, while the purelin function serves as the transfer function from the hidden
layer to the output layer. The network’s training accuracy and convergence speed and
the number of hidden layer nodes have a significant relationship. The number of nodes is
commonly selected using empirical Formula (8). After multiple adjustments, it is found
that the network performs best when h = 3; therefore, three hidden layer nodes are chosen.
Figure 13 demonstrates the results of using the BP neural network to predict the fluctuation
component sequence.

5.4.3. Accumulated Subsidence Prediction

The predicted results of the trend component and the fluctuation component were
added to obtain the cumulative subsidence prediction result, as shown in Figure 14.
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6. Discussion

The predictive capabilities of the proposed SCSSA-VMD-SE and ARIMA-BP hybrid
models were compared with the single prediction models BP and ARIMA. During the
experiment, the SCSSA-VMD-BP and SCSSA-VMD-ARIMA models were constructed. The
data were not segregated into trend and fluctuation components based on the value of SE;
instead, each decomposed subsequence was separately predicted using BP and ARIMA.
Diverse preprocessing techniques with various optimization algorithms were utilized to
construct the SSA-VMD-SE and ARIMA-BP hybrid models for comparison. The final
predictive results of each model and the actual subsidence data sequences at the four
monitoring stations are presented in Figures 15–18. Observing the figures, it becomes
evident that the single models, ARIMA and BP, exhibited poor prediction performance. The
introduction of SCSSA-VMD for decomposing the original subsidence data sequences led
to notable improvements in the prediction performance of the single models. Furthermore,
decomposing the data using the optimized VMD into trend and fluctuation components
for separate prediction demonstrated promising results. SCSSA-VMD exhibited superior
performance compared to SSA-VMD in preprocessing the data, aligning well with the
prediction trend. This validation supports that the proposed SCSSA-VMD-SE-ARIMA-BP
hybrid model provides superior prediction results encompassing both the overall trend
and detailed information compared to other models.
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To accurately and objectively assess the predictive performance of the prediction
model, this paper employed the root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE), with the respective formulas
calculated as follows:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (9)

MAE =
1
n∑n

i=1(yi − ŷi)
2 (10)

MAPE =
1
n∑n

i=1|yi − ŷi| (11)

A comprehensive statistical analysis of the prediction results for the four GNSS moni-
toring stations was conducted to thoroughly evaluate the prediction results of each model.
The prediction accuracy for the four monitoring stations is presented in Table 6, and we
interpret the data in the table as follows: For the MCORS02 monitoring station, being the
closest to the mining subsidence point, it is most significantly affected by mining subsi-
dence. The prediction accuracy of the single models is generally lower compared to the
SCSSA-VMD-ARIMA-BP hybrid model proposed in this paper, and some turning points
have poor prediction accuracy. For MCORS06, MCORS07, and MCORS08, which are rela-
tively further from the mining subsidence point and less affected by mining subsidence, the
SCSSA-VMD-ARIMA-BP hybrid model still exhibits the best prediction accuracy compared
to the other models. Introducing VMD for data preprocessing effectively reduces data noise
and modeling difficulty, enhances the richness of the original data, and improves prediction
accuracy. When optimizing VMD using different optimization algorithms, SCSSA-VMD is
more effective in decomposing data and extracting valuable information from subsidence
data. The prediction accuracy is further improved for each monitoring station. MCORS08,
being the furthest from the mining subsidence point, exhibits less significant subsidence
data changes, resulting in a relatively smaller improvement in prediction accuracy when
comparing SCSSA-VMD to SSA-VMD.

In conclusion, the prediction accuracy of traditional single models is much lower than
that of combined models. The combined model can combine the advantages of each model
and reduce the impact of the randomness and volatility of the settlement data sequence
on the prediction by capturing changes in historical data in certain programming. Mining
settlement is a complex process, and the settlement of key points is monitored, which
can provide better early warning. Due to the lack of coal mine-related parameters, the
prediction of surface subsidence can only be made through the elevation change data
collected by the GNSS monitoring station set up in the 110801 working face of the mining
area. Therefore, better prediction results were obtained by combining the splitting method
with the combined model method. The splitting method first splits the original data into a
small amount and uses different prediction methods to predict the small amount, thereby
improving the prediction accuracy. By comparing the prediction data of various monitoring
stations, the model proposed in this article has greatly improved prediction accuracy.

However, this study has certain limitations. While the proposed model demonstrates
good prediction accuracy, the model’s training demands are substantial, requiring a large
dataset, and its generalizability remains limited. In future research, model parameters
can be determined by introducing sensitivity analysis and using methods such as weight
sharing to improve the prediction accuracy of the model [47,48]. Furthermore, this pa-
per primarily focuses on the deformation information related to surface subsidence in
the mining area. Consequently, the modeling process exclusively undertakes prediction
and analysis for elevation data, omitting a specific examination of three-dimensional sur-
face deformation. To enhance predictive accuracy, it would be beneficial to incorporate
additional parameters such as coal mine geology, rock characteristics, hydrogeology, devel-
opment methods, and other relevant factors during the prediction process [49]. Further
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in-depth exploration and research are needed in future studies to reconstruct and model
three-dimensional data [50].

Table 6. Model error values of each site.

Site Model RMSE (mm) MSE (mm) MAE (mm)

MCORS02

ARIMA 25.2937 0.063977 25.1135
BP 6.0569 0.003607 5.1651

SCSSA-VMD-ARIMA 3.4066 0.001116 3.0128
SCSSA-VMD-BP 6.8467 0.003950 5.9933

SSA-VMD-ARIMA-BP 6.3112 0.0039831 5.2908
SCSSA-VMD-ARIMA-BP 1.0529 0.0001108 0.8904

MCORS06

ARIMA 1.7966 0.003228 1.5076
BP 3.1568 0.009965 1.6678

SCSSA-VMD-ARIMA 1.1310 0.001279 1.0385
SCSSA-VMD-BP 1.8952 0.003592 1.4600

SSA-VMD-ARIMA-BP 1.2840 0.001649 1.0819
SCSSA-VMD-ARIMA-BP 0.7847 0.0006157 0.7029

MCORS07

ARIMA 2.3492 0.005519 2.0234
BP 1.0872 0.001182 0.6648

SCSSA-VMD-ARIMA 1.3797 0.001903 1.1796
SCSSA-VMD-BP 0.9178 0.000842 0.8801

SSA-VMD-ARIMA-BP 2.2488 0.005057 1.8573
SCSSA-VMD-ARIMA-BP 0.7197 0.0005179 0.6539

MCORS08

ARIMA 0.9810 0.0009643 0.7512
BP 2.2736 0.0051693 2.0039

SCSSA-VMD-ARIMA 0.6135 0.0003764 0.5474
SCSSA-VMD-BP 1.0698 0.0011445 0.9839

SSA-VMD-ARIMA-BP 0.5242 0.0002748 0.4165
SCSSA-VMD-ARIMA-BP 0.4635 0.0002148 0.4186

7. Conclusions

Addressing the challenges posed by the nonlinearity and non-stationary interference
in GNSS monitoring data, along with the various types of noise generated during data
acquisition, the accurate prediction of surface subsidence becomes a complex task. This
paper introduces a hybrid prediction method, namely, the SCSSA-VMD-SE-ARIMA-BP
model. In summary, the SCSSA-VMD technique is utilized to decompose the original
GNSS monitoring data sequence, thereby enhancing the predictability of the sequence.
Subsequently, based on the sample entropy values of each sub-sequence, judgments are
made, and the sub-sequences are reconstructed accordingly. Finally, different prediction
models, ARIMA and BP, are applied to forecast the reconstructed sequences separately, and
their respective predictions are aggregated to obtain the final prediction. Furthermore, the
performance of the proposed model is validated by comparing it with various benchmark
models. The key conclusions are as follows:

(1) Upon proposing a novel optimization approach named the Sine Cosine Algorithm
with a refraction reverse-learning mechanism and incorporating a Cauchy mutation
strategy into SSA, we introduce the resulting method, referred to as SCSSA, to opti-
mize VMD. Comparative analysis with other optimization algorithms reveals that
SCSSA exhibits superior performance, characterized by faster convergence speed and
higher optimization accuracy.

(2) By utilizing the optimized VMD in an adaptive manner, the subsidence data sequences
from the monitoring stations were effectively decomposed. The results indicate that
SCSSA-VMD, when compared to other data preprocessing methods, demonstrates
robust resistance to noise interference and maintains stable predictive performance.

(3) Based on the SE values of the decomposed subsequences, effective data reconstruction
can be achieved. The reconstructed sequences were forecasted using both the ARIMA
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model and the BP neural network model. The experimental results demonstrate that
this approach further enhances prediction accuracy.

(4) The experiments were independently conducted on data from the four GNSS monitor-
ing stations on the 110801 working face. The experimental results indicate that SCSSA-
VMD-SE-ARIMA-BP demonstrates the highest prediction accuracy. Furthermore, it
displays excellent applicability across various monitoring station data, facilitating
precise predictions for crucial subsidence points in the mining area.
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