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Abstract: The semi-bridgeless power factor correction (PFC) rectifier is widely used due to its high
power factor, high efficiency, and low electromagnetic interference. However, in this rectifier, the
inductor current will flow through the body diode of the metal–oxide–semiconductor field-effect
transistor (MOSFET) when the MOSFET does not work, causing a problem in detecting the inductor
current. Consequently, the current transformers are generally used as current sensors. This means
that using many current sensors will make the cost and the peripheral detection circuit complicated.
In this paper, our new method is to use a gallium nitride field-effect transistor (GaNFET) to replace
the metal–oxide–semiconductor field-effect transistor (MOSFET) in the main switch selection. The
reverse-biased conduction voltage of the third quadrant of the GaNFET is higher than the forward-
biased conduction voltage of the diode, which solves the problem in detecting the inductor current,
reduces the number of current sensors, and simplifies the corresponding peripheral circuits and com-
ponents. Eventually, via mathematical deduction and hardware implementation, a semi-bridgeless
PFC prototype with a GaNFET was built to verify the effectiveness of the proposed structure.

Keywords: semi-bridgeless PFC; current sensor; GaNFET; average current-mode control

1. Introduction

With the rapid development of information and technology, there are more and
more electronic devices for industry, business, and even the home. Cell phones, personal
computers, home appliances, and other electronic products are also undergoing rapid and
continuous innovation. The power supply used by these electronic devices is DC voltage,
but most of the current power systems provide AC power, so it is necessary to convert the
AC power to DC voltage. The simplest way to do this is to use a bridge rectifier consisting
of diodes to rectify the AC power supply, which is then filtered by a bulk capacitor to obtain
the DC voltage [1–3]. However, the input current is a steep pulse due to the charging current
in the capacitor. Consequently, the current harmonics are large, causing serious harmonic
pollution to the power grid and resulting in interference with the normal operation of
other electrical equipment connected to the power grid. Accordingly, it is necessary to
take measures to limit the current harmonics generated by these electronic devices, and
the International Electrotechnical Commission (IEC) has issued the IEC 61000-3-2 current
harmonic standard, which formally regulates the current harmonics created by electronic
devices in detail [4–6].

In order to comply with the limit values of the IEC 61000-3-2 current harmonic stan-
dard, the power factor correction (PFC) must be added to make the input current sinusoidal
and in phase with the input voltage of the power supply to increase the effective power
so that the harmonic components of the input current will be reduced. The power factor
correction (PFC) rectifier can be categorized as passive or active [7]. The traditional active
PFC rectifier has a bridge rectifier at the front end, which accounts for a significant portion
of the power loss. Therefore, if the power loss of this bridge rectifier can be reduced, the
overall efficiency will be improved.
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Figure 1 shows the basic, widely used semi-bridgeless PFC rectifier [8–10], which
improves the overall efficiency by replacing two diodes with two MOSFETs. The dis-
advantages of this structure are the inconvenience of detecting the input voltage and
inductor current [11–13] and the problem of electromagnetic interference (EMI) between
the input and output due to the common-mode noise generated by high-switching power
semiconductor devices [14,15].
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Furthermore, due to these two diodes, the input voltage can be detected directly by the 
resistive voltage divider. However, the inductor current will flow through the body diode 
of the inactivated MOSFET main switch, leading to an error in detecting the inductor cur-
rent, causing a more complex current-detecting circuit to be required. 
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In order to solve the problem of detecting the inductor current, [30] suggests three 
methods to obtain the detected inductor current signal CS: Hall sensor detection, differ-
ential amplifier detection, and current transformer detection. These three methods are de-
scribed below: 

(1) Hall effect sensor detection 
This method only requires the Hall effect sensor to be placed directly on the input to 

detect the inductor current, as shown in Figure 3. This method is simple, and the detected 
value is accurate and reliable, but the Hall sensor is more expensive. 

Figure 1. Basic, widely used semi-bridgeless PFC rectifier.

Figure 2 shows the semi-bridgeless PFC rectifier [16–29], which is a modified version of
the basic, widely used semi-bridgeless PFC rectifier. In this modified circuit, two additional
slow diodes, D3 and D4, are connected between the negative and positive terminals of the
input AC voltage vin and the negative terminal of the output capacitor Co, respectively, to
reduce the common-mode noise and, hence, to solve the EMI problem [14,15]. Furthermore,
due to these two diodes, the input voltage can be detected directly by the resistive voltage
divider. However, the inductor current will flow through the body diode of the inactivated
MOSFET main switch, leading to an error in detecting the inductor current, causing a more
complex current-detecting circuit to be required.
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In order to solve the problem of detecting the inductor current, [30] suggests three
methods to obtain the detected inductor current signal CS: Hall sensor detection, differ-
ential amplifier detection, and current transformer detection. These three methods are
described below:

(1) Hall effect sensor detection
This method only requires the Hall effect sensor to be placed directly on the input to

detect the inductor current, as shown in Figure 3. This method is simple, and the detected
value is accurate and reliable, but the Hall sensor is more expensive.
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(2) Differential amplifier detection
This method is to connect a current-detecting resistor RS in series with the input, and

then to use a differential amplifier DA to detect the inductor current signal on RS, as shown
in Figure 4. This method is simple and relatively inexpensive. Since the current-sampling
resistor is placed at the negative terminal of the AC input voltage vin, the detected CS is
easily interfered with by the common-mode noise, resulting in a relatively low power factor.
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(3) Current transformer detection
As shown in Figure 5, this method requires the use of three current transformers;

the main switch S1 and the main switch S2 are each connected in series with the current
transformers CT1 and CT2, the diodes D5 and D6, and the resistors R1 and R2, respec-
tively, whereas the output is also connected in series with the current transformer CT3, the
diode D7, and the resistor R3. The following is a brief description of the corresponding
operating principle:
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(a) When vin > 0, the main switch S1 is turned on, the inductor L1 stores energy, the
inductor current flows through the current transformer CT1, and CS is detected. When
vin > 0, the main switch S1 is cut off, the inductor L1 releases energy through diode D1, the
inductor current flows through current transformer CT3, and CS is detected.

(b) When vin < 0, the main switch S2 is turned on, the inductor L2 stores energy, the
inductor current flows through the comparator CT2, and CS is detected. When vin < 0, the
main switch S2 is cut off, the inductor L2 releases energy through diode D2, the inductor
current flows through current transformer CT3, and CS is detected.

By integrating the detected inductor current signals from the above three current
transformers, these inductor current signals are then converted into voltage signals that
can be used by the controller via the peripheral circuits. Therefore, this method uses a large
number of current transformers and complex peripheral circuits.

In this paper, our new method is to replace the metal–oxide–semiconductor field-effect
transistor (MOSFET) with a gallium nitride field-effect transistor (GaNFET) in the selection
of the main switch. The reverse-biased conduction voltage of the third quadrant of the
GaNFET is much higher than the forward-biased voltage of the diode, which solves the
problem of detecting the inductor current, reduces the number of current sensors, and
simplifies the corresponding peripheral circuits and components.

2. Operating Principle of the Semi-Bridgeless PFC Rectifier Using MOSFET
Main Switches

Figure 6 shows the waveforms relevant to the circuit operation during the positive
and negative half-cycles of the input AC voltage, as well as these waveforms under high-
frequency switching corresponding to the peak value of the sine-wave voltage. From
this figure, it can be seen that the circuit has four operating states. When the input AC
voltage vin is under the positive half-cycle, the main switch S1 is turned on/off under
high-frequency switching and the main switch S2 is always cut off. When the input AC
voltage vin is under the negative half-cycle, the main switch S1 is cut off and the main
switch S2 is turned on/off under a high switching frequency. There are four operating
states for this semi-bridge rectifier, and they are described in the following text.
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State 1: [t0 ≤ t ≤ t1]

As shown in Figure 7, when the input AC voltage vin is under the positive half-cycle,
i.e., vin > 0, the main switch S1 conducts, the main switch S2 is cut off, the diode D3
conducts, and the diodes D1, D2, and D4 are all cut off. The input current iin flows through
the inductor L1, the main switch S1, and the diode D3, and another small portion of the
current flows through the body diode of the main switch S2 and the inductor L2. At the
same time, the voltage vL1 across the inductor L1 is the input voltage vin, and the inductor
L1 is in a state of magnetization due to the positive voltage across the inductor L1. During
this state, the inductor current iL1 rises linearly, and the inductor L1 stores energy. The
energy required for the output resistor Ro is supplied by the output capacitor Co.
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To speak more lucidly, in Figure 7, the main switch S1 is on, so the body diode of S2
and the diode D3 are both forward-biased; hence, there are two inductor current paths
returning to the input voltage vin. One path has the diode D3 connected in series with
the inductor L1, whereas the other path has the body diode of S2 connected in series with
the inductors L1 and L2. Accordingly, the impedance of the path with the body diode
of S2 is higher than that of the path with diode D3, so a small portion of the inductor
current will flow through the body diode of S2, and the majority of the inductor current
will flow through the diode D3. Note that the switching frequency is much higher than the
line frequency. Therefore, the voltage drop due to the line frequency is quite low, so the
forward-biased voltage of the body diode of the main switch S1 is similar to the voltage
forward-biased voltage of the diode D3, causing the small portion to seem constant.

State 2: [t1 ≤ t ≤ t2]

As shown in Figure 8, when the input voltage vin is under the positive half-cycle,
i.e., vin > 0, the main switches S1 and S2 are cut off, the diodes D1 and D3 are turned on,
and the diodes D2 and D4 are cut off. The input current iin flows through the inductor L1,
the diodes D1 and D3, the output capacitor Co, and the output resistor Ro, and another
small portion of the current flows through the body diode of the main switch S2 and the
inductor L2. At the same time, the voltage vL1 across the inductor L1 is the input voltage
vin minus the output voltage Vo, and the inductor L1 is in a state of demagnetization due
to the negative voltage across the inductor L1. During this state, the inductor current iL1
decreases linearly and the inductor L1 releases energy. The energy required for the output
resistor Ro is supplied by the input voltage vin and the inductor L1, which also charge the
output capacitor Co.

State 3: [t3 ≤ t ≤ t4]

As shown in Figure 9, when the input AC voltage vin is under the negative half-cycle,
i.e., vin < 0, the main switch S1 is cut off, the main switch S2 conducts, the diode D4 is
turned on, and the diodes D1, D2, and D3 are all cut off. The input current iin flows through
the inductor L2, the main switch S2, and the diode D4, and another small portion of the
current flows through the body diode of the main switch S1 and the inductor L1. At the
same time, the voltage vL2 across the inductor L2 is the input voltage vin, and the inductor
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L2 is in a state of magnetization due to the positive voltage across the inductor L2. During
this state, the inductor current iL2 rises linearly, and the inductor L2 stores energy. The
energy required for the output resistor Ro is supplied by the output capacitor Co.
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State 4: [t4 ≤ t ≤ t5]

As shown in Figure 10, when the input AC voltage vin is under the negative half-cycle,
i.e., vin < 0, the main switches S1 and S2 are cut off, the diodes D2 and D4 are turned on, and
the diodes D1 and D3 are cut off. The input current iin flows through the inductor L2, the
diodes D2 and D4, the output capacitor Co, and the output resistor Ro, and a small portion of
the current flows through the body diode of the main switch S1 and the inductor L1. At the
same time, the voltage vL2 across the inductor L2 is the input voltage vin minus the output
voltage Vo, and the inductor L2 is in a state of demagnetization due to the negative voltage
across the inductor L2. During this state, the inductor current iL2 decreases linearly, and the
inductor L2 releases energy. The energy required for the output resistor Ro is supplied by
the input voltage vin and the inductor L2, which charge the output capacitor Co.
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3. Current Sensor Improvement Based on a GaNFET

In the following subsections, we will mainly discuss how to reduce the number of
current sensors.

3.1. Operational Characteristics of the GaNFET in the Third Quadrant

From the literature [31], it can be seen that the structure of the GaNFET has a channel
that generates two-dimensional electron gas (2DEG) by connecting the source and drain
electrodes, and the gate voltage is used to control the conductivity of this channel, as shown
in Figure 11.
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To speak lucidly, there are three operating cases for the GaNFET in Figure 11, as de-
scribed below, where Vth is the threshold voltage and Ron is the channel’s turn-on resistance:

Case 1: As Vgs > Vth and VDS > 0, the channel is turned on. The current IDS is operated
in the first and third quadrants, and this operation feature is the same as that of the
MOSFET. The corresponding drain–source voltage VDS equation, called the forward-biased
conduction voltage, can be expressed as follows:

VDS = IDS · Ron (1)

Case 2: As Vgs < Vth and VDS > 0, the channel is turned off. The current IDS is not
operated in the first quadrant, and this is the same as for the MOSFET.

Case 3: As Vgs < Vth and VDS < 0, the channel has a chance to be turned on, with IDS
operated in the third quadrant. The corresponding source–drain voltage VSD equation,
called the reverse-biased conduction voltage, can be expressed as follows:

VSD ≈
(
Vth − Vgs

)
+ ISD · Ron (2)

As compared with the MOSFET, since VDS < 0, the body diode of the MOSFET will be
turned on and operated in the third quadrant, with a forward-biased voltage of about 0.6 V
to 1.5 V, but without (2). But the GaNFET has a relatively high reverse-biased conduction
voltage VSD, with the voltage Vth − Vgs typically being higher than 0.6 V when the voltage
Vgs is set to zero. For example, the threshold voltage Vth of a commercially available 650 V
GaNFET is about 1.7 V. Therefore, the improvement proposed in this paper is to utilize
the fact that the reverse-biased conduction voltage VSD of the GaNFET is higher than the
forward-biased conduction voltage VDS of the diode when the GaNFET is operated in the
third quadrant.

The operating range of VDS for the GaNFET is based on industrial applications. The
blue line is suitable for bidirectional operation, for example, battery charging and dis-
charging, whereas the red line is suitable for regenerative operations, for example, motor
regeneration (Figure 12).
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3.2. Current Flow with GaNFETs Used as Main Switches

In this paper, a method is proposed to improve the inductor current detection for
semi-bridgeless PFC rectifiers by replacing the MOSFET main switches with the GaNFET
main switches shown in Figure 7. As shown in [31], the reverse-biased conduction voltage
VSD of the GaNFET main switches S1 and S2 in the third quadrant is much higher than
the forward-biased voltage of the diodes D3 and D4, such that there is no inductor current
flowing through the inactivated main switch and the inductor. The key to this improvement
lies in the fact that there is only one inductor current path at any time, and it only necessary
to connect a current-detecting resistor RS in series between the sources of the GaNFET
main switches S1 and S2 and the anodes of the diodes D3 and D4, as shown in Figure 13.
Accordingly, the voltage across the current-detecting resistor RS contains information on
the real inductor current. In this way, the inductor current can be accurately detected,
thus reducing the number of current sensors and simplifying the corresponding peripheral
circuits and components.
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4. Design Considerations

In this section, the system configuration adopted, the system specifications defined,
and the component specifications used will be described, along with the GaNFET main
switches used.

4.1. System Configuration Adopted

Figure 14 shows the overall system configuration of the semi-bridgeless PFC rectifier.
This system consists of the main power stage circuit, input voltage divider, output voltage
divider, current-sensing resistor RS, AC phase detector, gate drivers, and PFC controller.
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From Figure 14, it can be seen that the output voltage is sensed by the voltage divider.
Also, from this figure, it can be seen that the PFC controller adopts the average current-
mode control, i.e., dual-loop control. For the voltage loop control to be considered, the
output voltage signal is measured by the output voltage divider and subtracted from the
voltage reference, and then the error value and the measured input voltage signal are
fed into the waveform generator to create the current command value in phase with the
mains voltage. For the current loop control to be considered, the inductor current signal
measured by the current-sensing resistor RS is subtracted from this command value, so as
to yield the desired control force. For each switching cycle, the control system calculates
the turn-on time of the main switch so that the input current will be controlled in phase
with the input voltage as tightly as possible, thereby resulting in a relatively high power
factor and relatively low current harmonics.

4.2. System Specifications Defined

Table 1 displays the system specifications for the semi-bridgeless PFC rectifier.

Table 1. System specifications.

Parameter Specification

Inductor Operation Mode Continuous Conduction Mode (CCM)

Control Strategy Average Current-Mode Control

Input Voltage (vin) AC 90~264 V

Output Voltage (Vo) DC 400 V

Rated Output Current (Io,rated) 1.5 A

Rated Output Power (Po,rated) 600 W

Switching Frequency (fs) 65 kHz

Rated Load Efficiency (η) 95%



Processes 2023, 11, 3259 10 of 21

4.3. Component Specifications Used

Table 2 displays the component specifications used in the semi-bridgeless PFC rectifier.

Table 2. Component specifications.

Component Specification

GaNFETs S1, S2 NV6128

Diodes D1, D2 IDH10G65C6

Bridge Diodes D3, D4 LL25XB60

Inductors L1, L2 Inductance: 300 µH

Output Capacitor Co 120 µF/450 V × 3

AC Phase Detector TEA2206

Gate Drivers UCC27424

PFC Controller TEA2017

5. Experimental Results

Some measured waveforms and data are given to verify the effectiveness of the
proposed method.

5.1. Measured Steady-State Waveforms

Some steady-state waveforms were measured at rated loads under input voltages
of AC 90, 115, 230, and 264 V. The input voltage and inductor current were measured as
shown in Figures 15–18. From these waveforms, it can be seen that there is no inductor
current flowing through the inactivated main switch and the inductor during the time
when the inductor stores and releases energy.
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Next, the input voltage and input current were measured as shown in Figures 19–22.
From these waveforms, it can be seen that the input current tightly follows the input
voltage, so that the power factor correction can be achieved.

After this, the gate driving signal, main switch voltage, and inductor current were
measured at AC voltage peaks as shown in Figures 23–26, and there was no voltage spike
on the main switches. Therefore, from these abovementioned waveforms, it can be seen
that the outputs are stable at rated loads for the whole range of input voltage.
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5.2. Measured Dynamic Response Waveforms

Next, we measured some dynamic response waveforms relevant to the output current,
output voltage, and input current at different input voltages due to upload and download,
as shown in Figures 27–30. The input voltages were AC 90, 115, 230 and 264 V, and the
output loads were varied from 20% of the rated load to the rated load and from the rated
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load to 20% of the rated load. From these waveforms, it can be seen that from 20% of the
rated load to the rated load, the corresponding change in output voltage is about 6.5%, with
a recovery time of about 150 ms, while from the rated load to 20% of the rated load, the
corresponding change in output voltage is about 4.5%, with a recovery time of about 75 ms.
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From the waveforms shown in Sections 5.1 and 5.2, it can be seen that the effectiveness
of the semi-bridgeless PFC rectifier with GaNFET main switches can be verified.

5.3. Measured Data

Next, the power factor PF, total harmonic distortion THD, input power Pin, and output
power Pout from the rated load to 10% of the rated load, in 10% intervals, were measured
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under input voltages of AC 115 and 230 V, as shown in Tables 3 and 4. In addition, based
on Pin and Pout, the efficiency Eff. can be calculated. Based on Tables 3 and 4, the curves
of PF vs. load current, THD vs. load current, and Eff. vs. load current were plotted as
shown in Figures 31–33, respectively. According to these experimental results, under an
input voltage of AC 115 V and the rated output power, the PF is 0.994 and the efficiency is
96.42%, whereas under an input voltage of AC 230 V and the rated output power, the PF is
0.996 and the efficiency is 98.45%. Accordingly, this semi-bridgeless PFC rectifier prototype
possesses high PF and high efficiency.

Table 3. Measured data under an input voltage of AC 115 V.

Output Load (%) PF THD (%) Pin (W) Pout (W) Eff. (%)

100 0.994 6.48 624.90 602.52 96.42

90 0.994 6.92 561.05 542.10 96.62

80 0.994 7.38 497.94 481.93 96.78

70 0.993 7.92 435.19 421.69 96.90

60 0.993 8.55 372.91 361.58 96.96

50 0.993 9.28 310.96 301.55 96.97

40 0.993 10.16 249.23 241.49 96.89

30 0.992 10.80 187.21 181.24 96.81

20 0.991 12.07 125.96 121.40 96.38

10 0.974 14.80 64.63 61.31 94.86

Table 4. Measured data under an input voltage of AC 230 V.

Output Load (%) PF THD (%) Pin (W) Pout (W) Eff. (%)

100 0.996 6.51 612.30 602.82 98.45

90 0.996 6.77 550.99 542.45 98.45

80 0.995 7.03 489.89 482.21 98.43

70 0.993 7.36 428.99 422.13 98.40

60 0.991 7.67 368.00 361.88 98.34

50 0.986 8.28 307.24 301.78 98.22

40 0.977 8.86 246.49 241.70 98.06

30 0.957 9.95 185.72 181.57 97.76

20 0.905 10.84 125.00 121.40 97.12

10 0.720 10.99 64.30 61.30 95.34
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Finally, a digital power analyzer (Chroma 66202), manufactured by Chroma Inc.,
Taoyuan City, Taiwan, was used to measure the harmonic values of the input currents
at rated loads under input voltages of AC 115 and 230 V. The test values and the limit values
of IEC61000-3-2 Class D were tabulated, as shown in Tables 5 and 6. Figures 34 and 35
were plotted based on these two tables. From these two figures, it can be seen that the
semi-bridgeless PFC rectifier prototype meets the IEC 61000-3-2 Class D harmonic standard.

Table 5. Current harmonic limit values and test values under an input voltage of AC 115 V.

Harmonic Order IEC 61000-3-2 Class D Limit (A) Harmonic Test Value (A)

3 2.3000 0.1390

5 1.1400 0.1400

7 0.7700 0.1599

9 0.4000 0.1475

11 0.3300 0.1308

13 0.2100 0.1025

15 0.1500 0.0695

17 0.1324 0.0330

19 0.1184 0.0034

21 0.1071 0.0238

23 0.0978 0.0392

25 0.0900 0.0410

27 0.0833 0.0376

29 0.0776 0.0228
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Table 5. Cont.

Harmonic Order IEC 61000-3-2 Class D Limit (A) Harmonic Test Value (A)

31 0.0726 0.0090

33 0.0682 0.0099

35 0.0643 0.0219

37 0.0608 0.0282

39 0.0577 0.0289

Table 6. Current harmonic limit values and test values under an input voltage of AC 230 V.

Harmonic Order IEC 61000-3-2 Class D Limit (A) Harmonic Test Value (A)

3 2.3000 0.1085

5 1.1400 0.0919

7 0.7700 0.0717

9 0.4000 0.0504

11 0.3300 0.0362

13 0.2100 0.0290

15 0.1500 0.0294

17 0.1324 0.0122

19 0.1184 0.0037

21 0.1071 0.0053

23 0.0978 0.0089

25 0.0900 0.0083

27 0.0833 0.0073

29 0.0776 0.0056

31 0.0726 0.0011

33 0.0682 0.0061

35 0.0643 0.0030

37 0.0608 0.0077

39 0.0577 0.0074
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6. Conclusions

In this paper, the problem of detecting the inductor current of a semi-bridgeless PFC
rectifier was improved. Firstly, we introduced the GaNFET feature that the reverse-biased
conduction voltage VSD in the third quadrant is higher than the forward-biased conduction
voltage of the diode. This feature was used to improve the current-detecting circuit.
Accordingly, a semi-bridgeless PFC rectifier prototype was implemented to demonstrate
the effectiveness of the proposed strategy.

From the experimental results, it can be seen that under different input voltages and
output power ratings, the inductor current path has only one loop and does not flow
through the inactivated main switch and the inductor. It was confirmed that the proposed
strategy is effective, thereby reducing the number of current sensors and simplifying the
number of peripheral circuits and components.

Furthermore, under an input voltage of AC 115 V and the rated output power, the
PF is 0.994 and the efficiency is 96.42%, whereas under an input voltage of AC 230 V and
the rated output power, the PF is 0.996 and the efficiency is 98.45%. This confirms that the
semi-bridgeless PFC rectifier prototype with GaNFET main switches possesses high PF and
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high efficiency. Moreover, the IEC61000-3-2 Class D current harmonic standard can be met
under both of these two cases.
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