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Abstract: In this paper, we deal with the H2/H∞ control problem in the infinite horizon for discrete-
time mean-field stochastic systems with (x, u, v)-dependent noise. First of all, a stochastic-bounded
real lemma, which is the core of H∞ analysis, is derived. Secondly, a sufficient condition in terms
of the solution of coupled difference Riccati equations (CDREs) is obtained for solving the H2/H∞

control problem above. In addition, an iterative algorithm for solving CDREs is proposed and a
numerical example is given for verification of the feasibility of the developed results.
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1. Introduction

Mixed H2/H∞ control is a crucial robust control research subject that has been thor-
oughly investigated by numerous researchers over the past decades. Robust control, as a
control design method that can effectively eliminate the effect of disturbances, has been
refined since the 1960s. However, in engineering practice, it is desired that the controller
not only minimizes performance targets, but also eliminates the influence of disturbances
when the worst disturbance is applied. Therefore, mixed H2/H∞ control is better suited to
the needs of engineering practice. Mixed H2/H∞ control problems regarding deterministic
systems have been discussed in [1,2] and others. H∞ and H2/H∞ control problems of
stochastic systems and their applications have also been extensively studied by many
researchers in recent years. For example, stochastic H2/H∞ control for continuous-time sys-
tems with state-dependent noise has been discussed in [3]. In [4], the H∞ control problem
for a type of nonlinear system with noise that is dependent on the state and disturbance
has been discussed by the authors. Ref. [5] considered H∞ control for discrete-time linear
systems with their states and inputs affected by random perturbations. Ref. [6] proposed
the notion and stochastic PBH criterion of exactly observable linear autonomous systems,
which provided great convenience for the analysis and synthesis of stochastic systems.
Under the presumption that the system is exactly observable, an infinite horizon H2/H∞
controller of discrete-time stochastic systems with state- and disturbance-dependent noise
has been designed in [7]. As the research on stochastic H2/H∞ control continues, many
researchers have begun to focus on systems with Markov jumps. H2/H∞ control for
stochastic systems with Markov jumps not only contributes to improving system perfor-
mance but also holds significant practical significance for areas such as economics and
technology. Ref. [8] investigated the robust control problem for continuous-time systems
that were subject to multiplicative noise and Markovian parameter jumps. And a neces-
sary/sufficient condition was presented for the existence of a controller using two coupled
algebraic Riccati equations. Ref. [9] developed a robust control theory for discrete-time
stochastic systems subject to independent stochastic perturbations and Markov jumps.
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The origins of the mean-field theory can be traced back to the early 20th century, when
physicists began to focus on complex systems in quantum mechanics and statistical physics.
As an approximate method, mean-field theory can effectively solve problems in complex
systems. In recent years, the application of mean-field theory has become increasingly
widespread in fields such as power systems and biology. Many researchers have conducted
numerous studies in this area [10–14]. For example, the LQ control problems of discrete-
time stochastic mean-field systems in the finite and infinite horizon are discussed in [10]
and [11], respectively. Ref. [13] discussed the H2/H∞ control problem of discrete-time
mean-field stochastic systems in the finite horizon, while [14] addressed the H2/H∞ control
problem of continuous-time systems in the finite horizon. The problem of mean-field games
has been studied in [15] to illustrate the feasibility of the mean-field modeling approach
used in economics, and a number of issues worthy of further research were mentioned
at the end of the article. With the gradual maturation of theoretical studies, mean-field
theory has been widely applied, for instance, in [16]; mean-field theory has provided great
convenience for solving the behavior of node interaction behavior in complex networks,
and [17] has used mean-field theory to deal with the problem of large population stochastic
differential games connected to the optimal and robust decentralized control of large-scale
multiagent systems.

Ref. [18] has addressed finite and infinite horizon stochastic H2/H∞ control problems
for stochastic systems with (x, u, v)-dependent noise. The infinite horizon H2/H∞ control
problem for discrete-time mean-field stochastic systems with (x, u, v)-dependent noise
is the topic of this paper. The difference with the considered stochastic systems in [18]
is that the system equation considered in this paper includes both the state x, control
u, and perturbation v, as well as the expectation of the state, control, and perturbation,
i.e., Ex, Eu, Ev, respectively. Expectation terms can reduce the sensitivity of the system to
random events; hence, mean-field theory simplifies complex problems and has attracted a
great deal of attention. In [19–21], the mean-field stochastic maximum principle for dealing
with the mean-field linear–quadratic (LQ) optimal control issue have been discussed.
Separately, there are discussions of mean-field maximum principles for the mean-field
stochastic diffierencial equations (MFSDEs), backward stochastic differential equations
(BSDEs), and forward–backward stochastic differential equations (FBSDEs). Later, [22]
extended the results in [21] to the case of an infinite horizon. For discrete-time mean-
field systems, ref. [10] investigated the finite horizon LQ optimal control problem. Based
on [6,11,23], these works gave the notion of exact detectability of mean-field systems and
derived the existence and uniqueness of the solution of the infinite horizon optimal control
problem. This research has enriched the existing theory about stochastic algebraic equations.
By providing a deeper understanding of the relationships between l2 stability and optimal
control problems, it contributes to the development of more efficient control strategies for
linear mean-field stochastic systems. Ref. [24] investigated the stabilization and optimal
LQ control problems for infinite horizon discrete-time mean-field systems. Unlike previous
works, the authors showed for the first time that, under the exact detectability (exact
observability) assumption, the mean-field system is stabilizable in the mean square sense
with the optimal controller if and only if coupled algebraic Riccati equations have a unique
positive semidefinite (or positive definite) solution. Ref. [12] considered the LQ optimal
control problem for a class of mean-field systems with Markov jump parameters, and the
unique optimal control could be given by the solution to generalized difference Riccati
equations. Currently, driven by the research on mean-field games and mean-field-type
control problems [15], many researchers have contributed to MFSDEs and their applications.
By using a purely random approach, ref. [25] worked on solutions to McKean–Vlasov-type
forward–backward stochastic differential equations (FBSDEs). Ref. [26] investigated the
Markov framework for mean-field backward stochastic differential equations (MFBSDEs).
The authors in [27] investigated the existence and uniqueness of the McKean–Vlasov
FBSDE solution.
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Nonlinear systems and time-delay systems pose inherent difficulties in control due to
their complex behavior. Ref. [4] is an example of extending control strategies to address
nonlinearities in systems, thus further broadening the scope of control theory. Ref. [28]
examined the H2/H∞ control problem for nonlinear stochastic systems with time delay
and state-dependent noise. The work explored the sufficient condition for the existence
of nonlinear stochastic H2/H∞ control and the design method for stochastic H2/H∞ con-
trollers. In [29], a fuzzy method was used to design multiobjective H2/H∞ control for a
class of nonlinear mean-field random jump diffusion systems with uncertainty, and the sta-
bility, robustness, and performance optimization were deeply studied. Ref. [30] discussed
noncooperative and cooperative multiplayer minmax H∞ mean-field target tracking game
strategies for nonlinear mean-field stochastic systems, with applications in the realm of
cyberfinancial systems. Stochastic control problems with time delays are highly challenging
in practice, because delays and uncertainties may lead to the degradation of the system
performance. Ref. [31] focused on the mixed H2/H∞ control problem under an open-loop
information pattern with input delay. In [32], the authors investigated the state feedback
control laws for Markov jump linear systems with state and mode observation delays.
Ref. [33] addressed the robust stability problem and mixed H2/H∞ control for Markovian
jump time-delay systems with uncertain transition probabilities in the discrete-time domain.
The obtained results have generalized several results in the previous literature that consider
Markov transition probabilities as either a priori known or partially unknown.

Recently, robust controls for stochastic mean-field systems have received a great deal
of attention. For instance, ref. [34] treated the discrete-time mean-field systems H∞ output
feedback control problem. Ref. [13] discussed the finite horizon H2/H∞ control problem
for a class of stochastic mean-field systems. Ref. [14] studied a continuous-time stochastic
control problem for mean-field stochastic differential systems with random initial values
and diffusion coefficients that depend on the state, control, and disturbance explicitly, to-
gether with their expectations. The work first established a mean-field stochastic-bounded
real lemma for continuous-time mean field stochastic systems, thereby revealing the equiv-
alence between robust stability and the solvability of two indefinite differential Riccati
equations, which provided a theoretical basis for H∞ control. Based on this significant
result, an equivalent condition for the existence of a controller was proposed by utilizing
the solution of two crosscoupled Riccati equations. In contrast, there are relatively few
studies on the robust control of discrete-time mean-field systems in the infinite horizon.
Compared with the finite horizon case, it is required for the infinite horizon feedback
controller to ensure that the closed-loop system is stable. The primary accomplishments
of this paper are the following: (i) A mean-field stochastic bounded real lemma has been
obtained. This lemma reveals the equivalence between robust stability and the solvability
of algebraic Riccati equations, thereby providing a useful tool for the stability analysis of
H∞ control; (ii) By means of exact detectability, a sufficient condition for the solvability of
the H2/H∞ control problem has been obtained. This condition offers a theoretical basis
for designing robust controllers and ensures the stability of closed-loop systems; (iii) An
iterative algorithm has been proposed to solve the coupled SDREs. This algorithm reduces
computational complexity and enhances the practicality of controller design.

This paper is structured as follows: Section 2 recalls the notions of l2 stability and
exact detectability; The mean-field SBRL is presented in Section 3. Section 4 discusses the
infinite horizon H2/H∞ control problem for the considered system. An iterative algorithm
and a numerical example are given in Section 5.
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2. Preliminaries

Consider the following discrete-time mean-field stochastic system:

xs+1 =Axs + ĀExs + B1us + B̄1Eus + B2vs + B̄2Evs

+ [Cxs + C̄Exs + D1us + D̄1Eus + D2vs + D̄2Evs]ωs,

zs =

[
Kxs
Fus

]
, FT F = I,

x0 =ζ0, s ∈ N := {0, 1, 2, · · · }.

(1)

In (1), Rn denotes the n-dimensional real space, Rn×m is the set of all real n × m
matrices, and I is the identity matrix. xs ∈ Rn, us ∈ Rnu , and vs ∈ Rnv are, respectively,
the system state, control input, and external disturbance; ζ0 ∈ Rn is the initial condition.
{ωs, s ∈ N} indicates the stochastic disturbance, which is a second-order process with
E{ωs+1|ωt, t = 0, 1, . . . , s} = 0 and E{(ωs+1)

2|ωt, t = 0, 1, . . . , s} = 1. We assume that ζ0
and {ωs, s ∈ N} are mutually independent. A, Ā, B1, B̄1, B2, B̄2, C, C̄, D1, D̄1, D2, D̄2, K,
and F are adequate dimensional constant matrices. Let Fs be the σ algebra generated by
{ωt, t = 0, 1, . . . , s}. l2(Ω, Rk) represents the space of Rk-valued square integrable random
vectors, while l2

ω(N, Rk) is the collection of nonanticipative square summable stochastic
processes z = {zs : zs ∈ Rk, s ∈ N}, with zs ∈ l2(Ω, Rk) being Fs−1-measurable, in which

Fs−1 = {φ, Ω}. The norm of l2
ω(N, Rk) is expressed by ‖z‖l2

ω(N,Rk) =
(
∑∞

s=0 E‖zs‖2) 1
2 . Hn(R)

denotes the set of all n× n real symmetric matrices. H0,+
n (R) is the subset of all nonnegative

definite matrices of Hn(R). We define N := {0, 1, 2, . . .}. For ∀S ∈ N, NS := {0, 1, . . . , S}.
Next, we recall the concept of stability for the discrete-time mean-field system and

present some results that will be needed in the following study. Consider the following
unforced stochastic system:

xs+1 =Axs + ĀExs + B2vs + B̄2Evs

+ [Cxs + C̄Exs + D2vs + D̄2Evs]ωs,

zs =Kxs,

x0 =ζ0.

(2)

For simplicity, we denote (2) with [A, Ā, B2, B̄2; C, C̄, D2, D̄2]. Particularly, [A, Ā; C, C̄]
indicates [A, Ā, 0, 0; C, C̄, 0, 0].

Definition 1 ([11]). [A, Ā; C, C̄] is considered to be l2-asymptotically stable (l2-stable for short), if
lims→∞ E|xs|2 = 0.

Taking the mathematical expectation in (2), the system equation of Exs can be written as{
Exs+1 = (A + Ā)Exs + (B2 + B̄2)Evs,

Ex0 = Eζ0.
(3)

By a simple calculation, we obtain the following system equation of xs − Exs:
xs+1 − Exs+1 = A(xs − Exs) + B2(vs − Evs) + [C(xs − Exs) + (C + C̄)Exs

+D2(vs − Evs) + (D2 + D̄2)Evs]ωs,

x0 − Ex0 = ζ0 − Eζ0.

(4)
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Theorem 1 ([11]). The following statements are equivalent:
(i) [A, Ā; C, C̄] is l2-stable;
(ii) For any R, R + R̄ > 0; the Lyapunov equations{

P = AT PA + CT PC + R,
Q = (A + Ā)TQ(A + Ā) + (C + C̄)T P(C + C̄) + R + R̄,

(5)

admit a unique solution (P, Q) with P, Q > 0;
(iii) There exist R, R + R̄ > 0, and the Lyapunov equations (5) to allow a unique solution (P, Q)
with P, Q > 0.

When vs ≡ 0, s ∈ N in (1), l2 stabilizability can be formulated as follows:

Definition 2 ([11]). [A, Ā, B1, B̄1; C, C̄, D1, D̄1] is said to be closed-loop l2-stabilizable if there
exists a pair (U, Ū) such that for any ζ0 ∈ Rn and under control {us = Uxs + ŪExs, s ∈ N}, the
closed-loop system

xs+1 = [(A + B1U)xs + (Ā + B1Ū + B̄1U + B̄1Ū)Exs]

+ [(C + D1U)xs + (C̄ + D1Ū + D̄1U + D̄1Ū)Exs]ωs,

x0 = ζ0, s ∈ N,

is l2-stable. In this instance, we refer to (U, Ū) as a closed-loop l2-stabilizer.

Below, we present the following linear operator:

L(X) = AXAT + CXCT + ĈXĈT , X ∈ H2n(R),

where H2n(R) =
{

X =

[
X1 0
0 X2

]
|X1, X2 ∈ Hn(R)

}
, and

A =

[
A 0
0 A + Ā

]
, C =

[
C 0
0 0

]
, Ĉ =

[
0 C + C̄
0 0

]
.

It is obvious that L is a linear positive operator, i.e., if X ∈ H+
2n(R), we have

L(X) ∈ H+
2n(R), where H+

2n(R) indicates the set of nonnegative definite real matrices of
H2n(R). For any H1, H2 ∈ H2n(R), define the inner product 〈H1, H2〉 = Tr(H1H2). There-
fore, the adjoint operator of L is expressed as follows:

L∗(X) = ATXA+ CTXC + ĈTXĈ, X ∈ H2n(R).

Furthermore, the spectrum of L is σ(L) := {λ|L(X) = λX, XT = X, X 6= 0}.
The following definition is about the exact detectability of discrete-time mean-field systems.

Definition 3 ([11]). In (2), let vs ≡ 0, s ∈ N. [A, Ā; C, C̄|K] is considered to be exactly detectable
if, for any S ∈ N and s ∈ NS, zs ≡ 0 (a.s.) implies that lims→∞ E|xs|2 = 0.

Let

Ys =

[
E[(xs − Exs)(xs − Exs)]T 0

0 ExsExT
s

]
.

It can be seen that lims→∞ E|xs|2 = 0 is equivalent to lims→∞ Ys = 0. By calculation,
one has that

E[zszT
s ] = E[K(xs − Exs)(xs − Exs)

TKT + K(Exs)(Exs)
TKT ] = KYsKT = 0
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with K =

[
K 0
0 K

]
. Now, we introduce the following dynamics:


Ys+1 = LYs,

Y0 =

[
E[(ζ0 − Eζ0)(ζ0 − Eζ0)]

T 0
0 Eζ0EζT

0

]
,

Zs = KYsKT .

(6)

The following lemma extends the result of Theorem 5.6 in [11], and the complete
proof is omitted here because we could easily demonstrate the following result using
Theorem 3 of [35].

Lemma 1. [A, Ā; C, C̄|K] is exactly detectable if and only if, for each X ≥ 0, KXKT 6= 0, where
L(X) = λX, and λ ≥ 1.

The following lemma links the l2-stability with the exactly detectability of the uncon-
trolled system, and the detailed proof process can be refered to in [23].

Lemma 2. [A, Ā; C, C̄] is l2 stable if and only if [A, Ā; C, C̄|K] is exactly detectable and the
following generalized Lyapunov equation holds:

X = L∗(X) +KTK (7)

admits a unique solution X =

[
X1 0
0 X2

]
≥ 0.

3. Stochastic-Bounded Real Lemma

In this section, we will derive a mean-field stochastic-bounded real lemma that plays
a crucial role in the analysis of the stochastic disturbance attenuation problem and H2/H∞
control problems. By utilizing two coupled Riccati difference equations, this lemma estab-
lishes an equivalent condition guaranteeing the stability of a mean-field stochastic system
with an H∞ norm that is less than a given disturbance attenuation level γ.

Definition 4. In system (2), assume that the disturbance input is vs ∈ l2
ω(N, Rnv) and the

controlled output is zs ∈ l2
ω(N, Rnz). The perturbed operator L : l2

ω(N, Rnv) → l2
ω(N, Rnz) is

defined by
Lvs := Kx(s;0,v), ∀vs ∈ l2

ω(N, Rnv), x0 = 0

with its norm

‖L‖ = sup
v∈l2

w(N,Rnv ),vs 6=0,x0=0

‖zs‖l2
w(N,Rnz )

‖vs‖l2
w(N,Rnv )

= sup
v∈l2

w(N,Rnv ),vs 6=0,x0=0

(
∑∞

s=0 E‖Kxs‖2) 1
2

(∑∞
s=0 E‖vs‖2)

1
2

.

Remark 1. The infinite horizon H∞ gain is given by the norm of L. However, it is rather hard to
compute the H∞ gain using the formula directly. Hence, the objective of H∞ analysis is toward
presenting a sufficient and necessary condition in terms of the solution to the CDREs to ensure that
the norm of L is below a prescribed level γ > 0, namely, the bounded real lemma.

The following is the definition of the performance function for the infinite horizon
H∞ control:

Jγ2

∞ (ζ0, v) =
∞

∑
s=0

E[γ2‖vs‖2 − ‖zs‖2]. (8)
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Lemma 3. In system (2), assume that S ∈ N is given and that Ps and Qs are arbitrary matrices in
Hn(R) with s = 0, 1, 2, · · · , S + 1. Thus, for any ζ0 ∈ Rn and vs ∈ l2

w(NS, Rnv), we have that

Jγ2

S (ζ0, v) =
S

∑
s=0

E
(

γ2‖vs‖2 − ‖zs‖2
)

=
S

∑
s=0

E

{[
xs − Exs
vs − Evs

]T

Mγ2

s (P)
[

xs − Exs
vs − Evs

]}

+
S

∑
s=0

[
Exs
Evs

]T

Gγ2

s (P, Q)

[
Exs
Evs

]
+ ζT

0 Q0ζ0 − (ExS+1)
TQS+1(ExS+1)

− E
[
(xS+1 − ExS+1)

T PS+1(xS+1 − ExS+1)
]
,

(9)

where
Ã = A + Ā, B̃2 = B2 + B̄2, C̃ = C + C̄, D̃2 = D2 + D̄2,

Mγ2

s (P) =
[
−Ps + AT Ps+1 A + CT Ps+1C− KTK AT Ps+1B2 + CT Ps+1D2

BT
2 Ps+1 A + DT

2 Ps+1C γ2 I + BT
2 Ps+1B2 + DT

2 Ps+1D2

]
,

and

Gγ2

s (P, Q) =

[
−Qs + ÃTQs+1 Ã + C̃T Ps+1C̃− KTK ÃTQs+1B̃2 + C̃T Ps+1D̃2

B̃T
2 Qs+1 Ã + D̃T

2 Ps+1C̃ γ2 I + B̃T
2 Qs+1B̃2 + D̃T

2 Ps+1D̃2

]
.

Proof of Lemma 3. This is identical to the proof of Lemma 3.1 of [34], so the details
are omitted.

For convenience, we define some notations as follows:

Mr2
(P) =

[
Ls(P) Ks(P)

Ks(P)T Hs(P)

]
,

Gr2
(P, Q) =

[
L̃s(P, Q) K̃s(P, Q)

K̃s(P, Q)T H̃s(P, Q)

]
,

where
Ls(P) = −P + AT PA + CT PC− KTK,

Ks(P) = AT PB2 + CT PD2,

Hs(P) = γ2 I + BT
2 PB2 + DT

2 PD2,

L̃s(P, Q) = −Q + ÃTQÃ + C̃T PC̃− KTK,

K̃s(P, Q) = ÃTQB̃2 + C̃T PD̃2,

H̃s(P, Q) = γ2 I + B̃T
2 QB̃2 + D̃T

2 PD̃2.

Theorem 2. Assume that [A, Ā; C, C̄] is l2 stable. The following generalized difference Riccati
equation (GDRE) is defined as follows:

P = AT PA + CT PC− KTK

− (AT PB2 + CT PD2)(γ
2 I + BT

2 PB2 + DT
2 PD2)

−1[· · · ]T ,

Q = ÃTQÃ + C̃T PC̃− KTK

− (ÃTQB̃2 + C̃T PD̃2)(γ
2 I + B̃T

2 QB̃2 + D̃T
2 PD̃2)

−1[· · · ]T ,

Hs(P) = γ2 I + BT
2 PB2 + DT

2 PD2 > 0,

H̃s(P, Q) = γ2 I + B̃T
2 QB̃2 + D̃T

2 PD̃2 > 0

(10)
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exists as a stabilizing solution (P, Q) with P ≤ 0 and Q ≤ 0 if and only if for a given γ > 0 and
‖L‖ < γ in which [· · · ] denotes the M in MGMT ; in the following, the symbol represents the
same meaning.

Proof of Theorem 2. Necessity. Consider the following associated finite horizon GDRE:

Ps = AT Ps+1 A + CT Ps+1C− KTK−Ks(Ps+1)Hs(Ps+1)
−1[· · · ]T ,

Qs = ÃTQs+1 Ã + C̃T Ps+1C̃− KTK− K̃s(Ps+1, Qs+1)H̃s(Ps+1, Qs+1)
−1[· · · ]T ,

Hs(Ps+1) = γ2 I + BT
2 Ps+1B2 + DT

2 Ps+1D2 > 0,
H̃s(Ps + 1, Qs + 1) = γ2 I + B̃2

TQs+1B̃2 + D̃2
T Ps+1D̃2 > 0,

PS+1 = 0, QS+1 = 0, s ∈ NS,

(11)

and the corresponding cost functional

Jγ2

S (ζ0, v) =
S

∑
s=0

E
(

γ2‖vs‖2 − ‖zs‖2
)
=

S

∑
s=0

E
(

γ2vT
s vs − xT

s KTKxs

)
.

According to Lemma 3 and [13], we have that

min
vs∈l2

w(NS ,Rnv )
Jγ2

S (ζ0, v) = ζT
0 QS(0)ζ0,

and the worst disturbance can be denoted by

v∗S(s) = −H̃S(PS)
−1K̃S(PS)

TExS(s)−HS(PS)
−1KS(PS)

T [xS(s)− ExS(s)], (12)

where {xS(s), s = 0, 1, · · · , S, S + 1} is the solution to (11). From [7], one can obtain that
limS→∞ PS(s) = P ≤ 0. Moreover, because QS(s) is bounded from below and decreases as
S increases, we can derive that

lim
S→∞

QS(s) = lim
S→∞

QS−s(0) = Q.

Therefore, GDRE (10) has a solution (P, Q) with P ≤ 0, Q ≤ 0. By replacing K with

Kδ =

[
K
δI

]
and zs with zs,δ = Kδxs, we obtain the associated perturbation operator Lδ

and the cost functional

Jγ2

S,δ(ζ0, v) =
S

∑
s=0

E
(

γ2‖vs‖2 − ‖zs,δ‖2
)
=

S

∑
s=0

E
(

γ2vT
s vs − xT

s KTKxs − δ2xT
s xs

)
.

Since (2) is l2-stabilizable, xs ∈ l2
ω(N, Rn) can be concluded for every vs ∈ l2

ω(N, Rnv);
thus, ‖Lδ‖ < γ for sufficiently small δ > 0. Similarly, it can be inferred that the GDRE

Ps = AT Ps+1 A + CT Ps+1C− δ2 I − KTK

−Ks(Ps + 1)Hs(Ps + 1)−1[· · · ]T ,

Qs = ÃTQs+1 Ã + C̃T Ps+1C̃− KTK

− δ2 I − K̃s(Ps+1, Qs+1)H̃s(Ps+1, Qs+1)
−1[· · · ]T ,

Hs(Ps+1) = γ2 I + BT
2 Ps+1B2 + DT

2 Ps+1D2 > 0,

H̃s(Ps+1, Qs+1) = γ2 I + B̃2
TQs+1B̃2 + D̃T

2 Ps+1D̃2 > 0,

PS+1 = 0, QS+1 = 0, s ∈ Ns

(13)
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admits a unique solution (PS,δ, QS,δ), and

min
vs∈l2

w(NS ,Rnv )
Jγ2

S,δ(x0, v) = ζT
0 QS,δ(0)ζ0.

According to the time invariance of PS(s), QS(s), PS,δ(s), and QS,δ(s) on NS+1,
i.e., PS(s) = PS−s(0), QS(s) = QS−s(0), PS,δ(s) = PS−s,δ(0), and QS,δ(s) = QS−s,δ(0),
0 ≤ s ≤ S, it can be inferred that, for any ζ0 ∈ Rn,

ζT
0 QS,δ(s)ζ0 = ζT

0 QS−s,δ(0)ζ0 = min
vs∈l2

w(NS−s,Rnv )
Jγ2

S−s,δ(x0, v)

≤ min
vs∈l2

w(NS ,Rnv )
Jγ2

S−s(x0, v) = ζT
0 QS−s(0)ζ0 = ζT

0 QS(s)ζ0.

As ζ0 is arbitrary, we have that PS,δ(s) ≤ PS(s) and QS,δ(s) ≤ QS(s), where s ∈ NS. By
applying the time invariance of PS,δ(s) and QS,δ(s) on NS+1, one can imply that

lim
S→∞

PS,δ(s) = lim
S→∞

PS−s,δ(0) = Pδ, lim
S→∞

QS,δ(s) = lim
S→∞

QS−s,δ(0) = Qδ,

P ≥ Pδ, and Q ≥ Qδ. Moreover, (P, Q) and (Pδ, Qδ) satisfy GDRE (10) and the following GDRE:

Pδ = AT Pδ A + CT PδC− KTK

− (AT PδB2 + CT PδD2)(γ
2 Il + BT

2 PδB2 + DT
2 PδD2)

−1[· · · ]T ,

Qδ = ÃTQδ Ã + C̃T PδC̃− KTK

− (ÃTQδ B̃2 + C̃T PδD̃2)(γ
2 Il + B̃T

2 Qδ B̃2 + D̃T
2 PδD̃2)

−1[· · · ]T ,

Hs(P) = γ2 I + BT
2 PδB2 + DT

2 PδD2 > 0,

H̃s(Pδ, Qδ) = γ2 I + B̃T
2 Qδ B̃2 + D̃T

2 PδD̃2 > 0,

(14)

respectively. Next, we shall prove that [A + B2V, Ā + B2V̄ + B̄2V + B̄2V̄; C + D2V,
C̄ + D2V̄ + D̄2V + D̄2V̄] is l2 stable. To this end, it should be noted that that (10) and (14)
can be rewritten as{

P = (A + B2V)T P(A + B2V) + (C + D2V)T P(C + D2V)− KTK + γ2VTV,
Q = (Ã + B̃2Ṽ)TQ(Ã + B̃2Ṽ) + (C̃ + D̃2Ṽ)T P(C̃ + D̃2Ṽ)− KTK− γ2ṼTṼ,

(15)

and{
Pδ = (A + B2V)T Pδ(A + B2V) + (C + D2V)T Pδ(C + D2V)− KTK + γ2VT

δ Vδ,
Qδ = (Ã + B̃2Ṽ)TQδ(Ã + B̃2Ṽ) + (C̃ + D̃2Ṽ)T Pδ(C̃ + D̃2Ṽ)− KTK− γ2ṼT

δ Ṽδ.
(16)

By subtracting (16) from (15), one obtains

− (P− Pδ) + (A + B2V)T(P− Pδ)(A + B2V) + (C + D2V)T(P− Pδ)(C + D2V)

= −(V −Vδ)
T(γ2 I + BT

2 PδB2 + DT
2 PδD2)(V −Vδ)− δ2 I.

(17)

We propose that P − Pδ must be strictly positive. If not, there exists ζ0 6= 0 such
that (P− Pδ)ζ0 = 0 with P ≥ Pδ. Multiplying the left side by ζT

0 and the right side by ζ0,
(17) yields

0 ≤ ζT
0 (A + B2V)T(P− Pδ)(A + B2V)ζ0 + ζT

0 (C + D2V)T(P− Pδ)(C + D2V)ζ0

= −ζT
0 (V −Vδ)

T(γ2 I + BT
2 PδB2 + DT

2 PδD2)(V −Vδ)ζ0 − δ2ζT
0 ζ0 < 0,
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which is a contradiction. Hence, P− Pδ > 0. And according to a similar discussion, it can
be proven that Q−Qδ > 0. Let R1 = P− Pδ and R2 = Q−Qδ. Since{

−R1 + (A + B2V)T R1(A + B2V) + (C + D2V)T R1(C + D2V) < 0,
−R2 + (Ã + B̃2Ṽ)T R1(Ã + B̃2Ṽ) + (C̃ + D̃2Ṽ)T R2(C̃ + D̃2Ṽ) < 0,

then, by Theorem 1, we deduced that [A + B2V, Ā + B2V̄ + B̄2V + B̄2V̄; C + D2V, C̄ + D2V̄
+ D̄2V + D̄2V̄] is l2-stable. The necessity is proven.
Sufficiency. Considering (11), (13), and Lemma 3, we have that

Jγ2

S (ζ0, v) =
S

∑
s=0

E
(

γ2‖vs‖2 − ‖zs‖2
)

=
S

∑
s=0

E

{[
xs − Exs
vs − Evs

]T

Mγ2
(P)
[

xs − Exs
vs − Evs

]}
+

S

∑
s=0

[
Exs
Evs

]T

Gγ2
(P, Q)

[
Exs
Evs

]
+ ζT

0 Qζ0 − [ExS+1]
TQ[ExS+1]− E

[
(xS+1 − ExS+1)

T P(xS+1 − ExS+1)
]

= ζT
0 Qζ0 − [ExS+1]

TQ[ExS+1] +
∞

∑
s=0

[Evs − Ev∗s ]
TH̃s(P, Q)[Evs − Ev∗s ]

+
∞

∑
s=0

E[(vs − Evs)− (v∗s − Ev∗s )]
THs(P)[(vs − Evs)− (v∗s − Ev∗s )],

where
v∗s − Ev∗s = −H−1

s KT
s (xs − Exs), Ev∗s = −H̃s(P, Q)−1K̃s(P, Q)TExs.

Because [A, Ā; C, C̄] is l2-stable, it can be inferred that xs ∈ l2
ω(N, Rn) when

vs ∈ l2
ω(N, Rnv). Letting S→ ∞, then limS→∞ E|x(S)|2 = 0 is obtained. So

Jγ2

∞ (ζ0, v) = ζT
0 Qζ0 +

S

∑
s=0

[Evs − Ev∗s ]
TH̃s(P, Q)[Evs − Ev∗s ]

+
S

∑
s=0

E[(vs − Evs)− (v∗s − Ev∗s )]
THs(P)[(vs − Evs)− (v∗s − Ev∗s )]

≥ Jγ2

∞ (ζ0, v = v∗) = ζT
0 Qζ0.

When ζ0 = 0, ‖L‖ ≤ γ can be derived from Jγ2

∞ (0, v) ≥ 0. Next, in order to prove that
‖L‖ < γ, we define the following operators:

L1 : l2
ω(N, Rnv)→ l2

ω(N, Rnv), L1(vs − Evs) = (vs − Evs)− (v∗s − Ev∗s ),

L̄1 : l2
ω(N, Rnv)→ l2

ω(N, Rnv), L̄1(Evs) = Evs − Ev∗s

According to (3) and (4), it can be seen that

Evs − Ev∗s = Evs + H̄s(P, Q)−1K̄s(P, Q)TExs

and
(vs − Evs)− (v∗s − Ev∗s ) = (vs − Evs) + Hs(P)−1Ks(P)T(xs − Exs).

Then, L−1
1 and L̄−1

1 exist. Therefore, it holds that{
Exs+1 = [(A + Ā)− (B2 + B̄2)H̄s(P, Q)−1K̄s(P, Q)TExs]Exs + (B2 + B̄2)(Evs − Ev∗s ),

Ex0 = 0,
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with Evs = −H̃s(P, Q)−1K̃s(P, Q)TExs + (Evs − Ev∗s ), and
xs+1 − Exs+1 =[A− B2Hs(P)−1Ks(P)T ](xs − Exs) + B2[(vs − Evs)− (v∗s − Ev∗s )]

+ {[C− D2Hs(P)−1Ks(P)T ](xs − Exs) + D2[(vs − Evs)− (v∗s − Ev∗s )]

+ [C̃− D̃2H̄s(P, Q)−1K̄s(P, Q)T ]Exs + D̃2[Evs − Ev∗s ]}ωs,

x0 − Ex0 = 0,

with vs − Evs = −Hs(P)−1Ks(P)T(xs − Evs) + [(vs − Evs)− (v∗s − Ev∗s )]. Let us assume
that Hs(P) ≥ εI and H̄s(P, Q) ≥ εI for some ε > 0 . Since Hs(P) > 0, H̄s(P, Q) > 0.
Because L−1

1 and L̄−1
1 exist, there exists a constant c > 0 such that

Jγ2

∞ (0, v) =
∞

∑
s=0

[Evs − Ev∗s ]
TH̃s(P, Q)[Evs − Ev∗s ]

+
∞

∑
s=0

E[(vs − Evs)− (v∗s − Ev∗s )]
THs(P)[(vs − Evs)− (v∗s − Ev∗s )]

≥ ε[‖L1(vs − Evs)‖2
l2
ω(N,Rnv )

+ ‖L̄1(Evs)‖2
l2
ω(N,Rnv )

]

≥ c[‖vs − Evs‖2
l2
ω(N,Rnv )

+ ‖Evs‖2
l2
ω(N,Rnv )

]

≥ c‖vs‖2
l2
ω(N,Rnv )

> 0,

which shows that ‖L‖ < γ. The proof is completed.

4. Infinite Horizon Mean-Field Stochastic H2/H∞ Control

In this section, for (1), we shall handle the infinite horizon H2/H∞ control prob-
lem. The design objective is to find a controller that not only can eliminate the effect of
disturbance, but also can minimize the output energy when the worst case disturbance
is implemented, as well as can ensure the internal stability. Hence, the mixed H2/H∞
control design, as one of multiobjective design methods, is better suited to the needs of
engineering practice.

Given the disturbance attenuation level of γ > 0, the corresponding performances are
characterized by

J∞
1 (u, v) =

∞

∑
s=0

E[γ2‖vs‖2 − ‖zs‖2] (18)

and

J∞
2 (u, v) =

∞

∑
s=0

E‖zs‖2. (19)

The infinite horizon H2/H∞ control problem of system (1) can be expressed as follows.
Considering γ > 0, find a state feedback control u∗s ∈ l2

ω(N, Rnu), such that the following
are achieved:

(i) u∗s stabilizes system (1), i.e., when vs ≡ 0, us = u∗s ; the trajectory of (1) with any initial
value x0 = ζ0 satisfies lims→∞ E|xs|2 = 0;

(ii) ‖Lu∗‖ = supvs∈l2
w(N,Rnv ),vs 6=0,x0=0

(∑∞
s=0 E‖Kxs‖2+‖u∗(s)‖2)

1
2

(∑∞
s=0 E‖vs‖2)

1
2

< γ;

(iii) When the worst case disturbance v∗s ∈ l2
ω(N, Rnv) is applied to (1), u∗s minimizes the

output energy to J∞
2 (u, v∗) = ∑∞

s=0 E‖zs‖2.
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The infinite horizon H2/H∞ control problem for the stochastic mean-field system (1)
is said to be solvable if the previously mentioned (u∗, v∗) exist. Clearly, (u∗, v∗) are the
Nash equilibria of (18) and (19), which satisfy

J∞
1 (u∗, v∗) ≤ J∞

1 (u∗, v), J∞
2 (u∗, v∗) ≤ J∞

2 (u, v∗).

The following four coupled matrix-valued equations are introduced before the main
result is presented:

P1 = (A + B1U)T P1(A + B1U) + (C + D1U)T P1(C + D1U)− KTK−UTU
−Ku(P1)Hu(P1)

−1Ku(P1)
T ,

Q1 = (Ã + B̃1Ũ)TQ1(Ã + B̃1Ũ) + (C̃ + D̃1Ũ)T P1(C̃ + D̃1U)− KTK− ŨTŨ
−K̃u(P1, Q1)H̃u(P1, Q1)

−1K̃u(P1, Q1)
T ,

Hu(P1) > 0, H̃u(P1, Q1) > 0, s ∈ N,

(20)

{
V = −Hu(P1)

−1Ku(P1)
T,

Ṽ = V + V̄ = −H̃u(P1, Q1)
−1K̃u(P1, Q1)

T ,
(21)



P2 = (A + B2V)T P2(A + B2V) + (C + D2V)T P2(C + D2V) + KTK + I
−Kv(P2)Hv(P2)

−1Kv(P2)
T ,

Q2 = (Ã + B̃2Ṽ)TQ1(Ã + B̃2Ṽ) + (C̃ + D̃2Ṽ)T P1(C̃ + D̃2Ṽ) + KTK + I
−K̃v(P2, Q2)H̃v(P2, Q2)

−1K̃v(P2, Q2)
T ,

Hv(P2) > 0, H̃v(P2, Q2) > 0, s ∈ N

(22)

{
U = −Hv(P2)

−1Kv(P2)
T ,

Ũ = U + Ū = −H̃v(P2, Q2)
−1K̃v(P2, Q2)

T ,
(23)

where 
Hu(P1) = γ2 I + BT

2 P1B2 + DT
2 P1D2,

Ku(P1) = (A + B1U)T P1B2 + (C + D1U)T P1D2,

H̃u(P1, Q1) = γ2 I + B̃T
2 Q1B̃2 + D̃T

2 P1D̃2,

K̃u(P1, Q1) = (Ã + B̃1Ũ)TQ1B̃2 + (C̃ + D̃1Ũ)T P1D̃2,

(24)

and 
Hv(P2) = I + BT

1 P2B1 + DT
1 P2D1,

Kv(P2) = (A + B2V)T P2B1 + (C + D2V)T P2D1,

H̃v(P2, Q2) = I + B̃T
1 Q2B̃1 + D̃T

1 P2D̃1,

K̃v(P2, Q2) = (Ã + B̃2Ṽ)TQ2B̃1 + (C̃ + D̃2Ṽ)T P2D̃1.

(25)

The following lemma will be used in the proof of our main result.

Lemma 4. Define the following matrices:

K̄1 =

K 0
U 0
I 0

, K̃1 =

[
K U + Ū I
0 0 0

]
,

and

K̄2 =

 K 0
U 0

Hu(P1)
− 1

2 Ku(P1)
T 0

, K̃2 =

[
K U + Ū H̃u(P1, Q1)

− 1
2 K̃u(P1, Q1)

T

0 0 0

]
.

Let

K1 =

[
K̄1 0
0 K̃1

]
, K2 =

[
K̄2 0
0 K̃2

]
.
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Then, the following statements hold:

(i) If [A, Ā; C, C̄|K] is exactly detectable, so is [A + B1U, Ā + B̄1Ũ + B1Ū; C + D1U,
C̄ + D̄1Ũ + D1Ū|K2];

(ii) If [A + B2V, Ā + D̄1Ṽ + D1V̄; C + D2V, C̄ + D̄2Ṽ + D2V̄|K] is exactly detectable, so is
[A + B1U + B2V, Ā + B1Ū + B2V̄ + B̄1Ũ + B̄2Ṽ; C + D1U + D2V, C̄ + D1Ū + D2V̄
+D̄1Ũ + D̄2Ṽ|K1].

Proof of Lemma 4. Suppose that [A, Ā; C, C̄|K] is exactly detectable, but [A + B1U,
Ā + B̄1Ũ + B1Ū; C + D1U, C̄ + D̄1Ũ + D1Ū|K2] is not. According to Lemma 3, there exists
X ≥ 0 such that K2XKT

2 = 0. Since K2XKT
2 = 0 means that KXKT = 0, this contradicts

that [A, Ā; C, C̄|K] is exactly detectable. Along the same line of the proof of (i), (ii) could
be demonstrated.

Theorem 3. For (1), suppose that the above coupled matrix-valued Equations (20)–(23) have a
solution (P1, Q1; P2, Q2; U, Ū; V, V̄) with P1 < 0, Q1 < 0, P2 > 0, and Q2 > 0. If [A, Ā; C, C̄|K]
and [A + B2V, Ā + D̄1Ṽ + D1V̄; C + D2V, C̄ + D̄2Ṽ + D2V̄|K] are exactly detectable, then the
H2/H∞ control problem has a pair of solutions (u∗s , v∗s ) with

u∗s = Uxs + ŪExs, v∗s = Vxs + V̄Exs.

Proof of Theorem 3. We first define the following matrices:

P̂1 =

[
P1 0
0 Q1

]
, A1 =

[
A + B1U 0

0 Ã + B̃1Ũ

]
, C1 =

[
C + D1U 0

0 0

]
,

Ĉ1 =

[
0 C̃ + D̃1Ũ
0 0

]
, U =

[
U 0
0 Ũ

]
, H1 =

[
Hu(P1)

− 1
2 Ku(P1)

T 0
0 H̃u(P1)

− 1
2 K̃u(P1)

T

]
,

P̂2 =

[
P2 0
0 Q2

]
, A2 =

[
A + B1U + B2V 0

0 Ã + B̃1Ũ + B̃2Ṽ

]
, C2 =

[
C + D1U + D2V 0

0 0

]
,

Ĉ2 =

[
0 C̃ + D̃1Ũ + D̃2Ṽ
0 0

]
, H2 =

[
Hv(P2)

− 1
2 Kv(P2)

T 0
0 H̃u(P1)

− 1
2 K̃u(P1)

T

]
.

Notice that (20) and (22) can be written as

P̂1 = AT
1 P̂1A1 + CT

1 P̂1C1 + ĈT
1 P̂1Ĉ1 −KT

2K2 (26)

and
P̂2 = AT

2 P̂2A2 + CT
2 P̂2C2 + Ĉ2

T P̂2Ĉ2 +KT
1K1 (27)

respectively, where K1 and K2 are defined in Lemma 4. Since [A + B2V, Ā + D̄1Ṽ
+D1V̄; C + D2V, C̄ + D̄2Ṽ + D2V̄|K] is exactly detectable, according to Lemma 4,
[A + B1U + B2V, Ā + B1Ū + B2V̄ + B̄1Ũ + B̄2Ṽ; C + D1U + D2V, C̄ + D1Ū + D2V̄ + D̄1Ũ
+D̄2Ṽ|K1] is also exactly detectable, which implies from Lemma 3 and (27) that [A + B1U
+B2V, Ā + B1Ū + B2V̄ + B̄1Ũ + B̄2Ṽ; C + D1U + D2V, C̄ + D1Ū + D2V̄ + D̄1Ũ + D̄2Ṽ] is
l2-stable. Hence,

u∗s = Uxs + ŪExs ∈ l2
ω(N, Rnu), v∗s = Vxs + V̄Exs ∈ l2

ω(N, Rnv).

From Lemma 3, Lemma 4, and (20), [A + B1U, Ā + B1Ū + B̄1Ũ; C + D1U, C̄ + D1Ū
+D̄1Ũ] is l2-stable, i.e., u∗s = Uxs + ŪExs stabilizes system (1).
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Substituting us = u∗s = Uxs + ŪExs into (1), one yields that

xs+1 = (A + B1U)xs + (Ā + B1Ū + B̄1Ũ)Exs + B2vs + B̄2Evs

+ [(C + D1U)xs + (C̄ + D1Ū + D̄1Ũ)Exs + D2vs + D̄2Evs]ωs,

zs =

[
Kxs

F(Uxs + ŪExs)

]
, FT F = I,

x(0) = ζ0 ∈ Rn.

(28)

Because [A + B1U, Ā + B1Ū + B̄1Ũ; C + D1U, C̄ + D1Ū + D̄1Ũ] is l2 stable, for every
vs ∈ l2

ω(N, Rnv), we have that xs ∈ l2
ω(N, Rn). Therefore, it is directly obtained from

Theorem 2 that ‖Lu∗‖ < γ.
Next, we prove that v∗ exists and v∗s = Vxs + V̄Exs. Being identical to the proof of

Lemma 2 and by taking (20), (28), and Lemma 3 into consideration, it is clear that

JS
1 (u
∗, v) =

S

∑
s=0

E
(

γ2‖vs‖2 − ‖zs‖2
)

=
S

∑
s=0

E


[

xs − Exs

vs − Evs

]T

Mγ2

1 (P1)

[
xs − Exs

vs − Evs

]+
S

∑
s=0

[
Exs

Evs

]T

Gγ2

1 (P1, Q1)

[
Exs

Evs

]

+ ζT
0 Q1ζ0 − [ExS+1]

TQ1[ExS+1]− E
[
(xS+1 − ExS+1)

T P1(xS+1 − ExS+1)
]

=
S

∑
s=0

E[(vs − Evs)− (v∗s − Ev∗s )]
THu(P)[(vs − Evs)− (v∗s − Ev∗s )]

+ ζT
0 Q1ζ0 +

S

∑
s=0

[Evs − Ev∗s ]
TH̃u(P1, Q1)[Evs − Ev∗s ],

where

Mγ2

1 (P1) =

[
L1

u(P1) K1
u(P1)

Ku(P1)
T Hu(P1)

]
, Gγ2

1 (P1, Q1) =

[
L̃u(P1, Q1) K̃u(P1, Q1)

K̃u(P1, Q1)
T H̃u(P1, Q1)

]
,

with

L1
u(P1) = −P1 + (A + B1U)T P1(A + B1U) + (C + D1U)T P1(C + D1U)− KTK−UTU,

L̃u(P1, Q1) = −Q1 +
(

Ã + B̃1Ũ
)TQ1

(
Ã + B̃1Ũ

)
+
(
C̃ + D̃1Ũ

)T P1(C̃ + D̃1U)− KTK− ŨTŨ.

Since limS→∞ E‖xS‖2 = 0, one can infer that

J∞
1 (u∗, v) =

∞

∑
s=0

E[(vs − Evs)− (v∗s − Ev∗s )]
THu(P)[(vs − Evs)− (v∗s − Ev∗s )]

+ ζT
0 Q1ζ0 +

∞

∑
s=0

[Evs − Ev∗s ]
TH̃u(P1, Q1)[Evs − Ev∗s ]

≥ J∞
1 (u∗, v∗) = ζT

0 Q1ζ0.

From the above, it can be seen that v∗s is the worst case disturbance related to u∗

that exists and is denoted by v∗s = Vxs + V̄Exs ∈ l2
ω(N, Rnv). When vs = v∗s is applied to

system (1), we obtain

xs+1 = (A + B2V)xs + (Ā + B2V̄ + B̄2Ṽ)Exs + B1us + B̄1Eus

+ [(C + D2V)xs + (C̄ + D2V̄ + D̄2Ṽ)Exs + D1us + D̄1Eus]ωs,

zs =

[
Kxs
Fus

]
, FT F = I,

x(0) = ζ0 ∈ Rn.

(29)
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Due to the fact that [A + B1U + B2V, Ā + B1Ū + B2V̄ + B̄1Ũ + B̄2Ṽ; C + D1U + D2V,
C̄ + D1Ū + D2V̄ + D̄1Ũ + D̄2Ṽ] is l2 stable, [A + B2V, Ā + B̄2Ṽ + B2V̄, B1, B̄1; C + D2V,
C̄ + D̄2Ṽ + D2V̄, D1, D̄1] is l2 stable. By applying Theorem 4.1 of [11], we assert that

min
u∈l2

ω(N,Rnu )
J∞
2 (u, v∗) = J∞

2 (u∗, v∗) = ζT
0 Q2ζ0.

The proof is completed.

Remark 2. According to the sufficient condition stated in Theorem 3, the solvability of the
H2/H∞ control problem is transformed into the existence of solutions to the coupled matrix-
valued Equations (20)–(23). Since system (1) contains mean-field terms, the Riccati equations
in (20)–(23) with respect to P1 and P2 are inscribed as Exs, while the Riccati equations with respect
to Q1 and Q2 are used to characterize xs − Exs. If system (1) does not contain mean-field terms
and the noise does not depend on the control, then Theorem 3 degenerates to Theorem 1 of [7].

5. Iterative Algorithm and Example

The following iterative algorithm is applicable to solve GDREs (20)–(23):

(i) Given S and the initial conditions P1(S + 1) = 0, Q1(S + 1) = 0, P2(S + 1) = 0 and
Q2(S + 1) = 0, we can obtain Ku(P1(S + 1)) = 0, K̃u(P1(S + 1), Q1(S + 1)) = 0,
Kv(P2(S + 1)) = 0, and K̃v(P2(S + 1), Q2(S + 1)) = 0, as well as Hu(P1(S + 1))
= H̃u(P1(S + 1), Q1(S + 1)) = γ2 I, Hv(P2(S + 1)) = H̃v(P2(S + 1), Q2(S + 1)) = I.

(ii) Given P1(s + 1), Q1(s + 1), P2(s + 1), and Q2(s + 1), as well as Ku(P1(s + 1)),
K̃u(P1(s + 1), Q1(s + 1)), Kv(P2(s + 1)), and K̃v(P2(s + 1), Q2(s + 1)), then
Hu(P1(s + 1)), H̃u(P1(s + 1), Q1(s + 1)), Hv(P2(s + 1)), and H̃v(P2(s + 1), Q2(s + 1));
as well, U(s), Ũ(s), V(s), Ṽ(s) can be computed using (23) and (21). Thus, P1(s),
Q1(s), P2(s), and Q2(s) can be obtained.

(iii) Once (P1(s), Q1(s); P2(s), Q2(s); U(s), Ũ(s); V(s), Ṽ(s)) is obtained, we continue to
calculate Ku(P1(s− 1)), K̃u(P1(s− 1), Q1(s− 1)), Kv(P2(s− 1)), and K̃v(P2(s− 1),
Q2(s− 1)), respectively.

(iv) Repeat steps (ii)–(iii) when s = s − 1 until max{‖P1(s + 1) − P1(s)‖∞,
‖P2(s + 1) − P2(s)‖∞, ‖Q1(s + 1) − Q1(s)‖∞, ‖Q2(s + 1) − Q2(s)‖∞} ≤ e, where
e = 10−5; then, we can obtain the solutions of (20)–(23).

Example 1. Take into account the one-dimensional discrete-time mean-field stochastic system below:

xs+1 = axs + āExs + b1us + b̄1Eus + b2vs + b̄2Evs

+ [cxs + c̄Exs + d1us + d̄1Eus + d2vs + d̄2Evs]ws,

zs =

[
kxs
us

]
,

x0 = ζ0, s ∈ NS.

(30)

Given a = 0.4, ā = 0.45, b1 = 0.6, b̄1 = 0.7, b2 = 0.65, b̄2 = 0.7, c = 0.45, c̄ = 0.55, d1 = 0.3,
d̄1 = 0.3, d2 = 0.5, d̄2 = 0.55, and k = 0.65, thus, γ = 3.
Consider systems [a, ā; c, c̄|k] and [a + b2V, ā + d̄1Ṽ + d1V̄; c + d2V, c̄ + d̄2Ṽ + d2V̄|k]. Accord-

ing to the definition of L, we can convert L(X) = λX into
[

a2 + c2 (c + c̄)2

0 (a + ā)2

]
X = λX and[

(a + b2V)2 + (c + d2V)2 (c + d2V + c̄ + d̄2Ṽ + d2V̄)2

0 (a + b2V + ā + d̄1Ṽ + d1V̄)2

]
X = λX using algebraic operations.

Since the eigenvalues of both of the matrices are less than one, by applying Lemma 1, the exact
detectability of the systems can be obtained.
By letting S = 24 and using the iterative algorithm, we can obtain the solutions of the Riccati
equations; see Table 1. The evolutions of the solutions have been shown in Figure 1.
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Table 1. The solutions of Riccati equations.

P1 Q1 P2 Q2

−0.6720 −1.1627 1.8537 2.6530

By applying Theorem 3, we can obtain the coefficients of us = Usxs + ŪsExs and
vs = Vsxs + V̄sExs respectively; see Table 2.

Table 2. The cofficients of us and vs.

Us Ũs Vs Ṽs

−0.3908 −0.7044 0.0215 0.0496

Figure 1. The evolutions of the solutions of Riccati equations.

6. Conclusions

This paper has investigated the infinite horizon H2/H∞ control problem for the
discrete-time mean-field stochastic system with (x, u, v)-dependent noise. Firstly, a
stochastic-bounded real lemma has been derived for the considered system. Under the
condition that the system is exactly detectable, a sufficient condition for the presence of an
H2/H∞ controller has been obtained, which relates to the existence of the solution for the
coupled Riccati equations. An iterative algorithm for solving the coupled Riccati equations
has been proposed, and a numerical example has been presented. Note that Theorem 3
in this paper has only given a sufficient condition for the solvability of H2/H∞ control.
In future studies, we will try our best to explore the necessity of Theorem 3 and draw a
necessary condition.

As stated in the introduction, nonlinear systems and time-delay systems are applied
extensively and thoroughly in engineering practice. Therefore, it is undoubtedly valuable
to extend the design method obtained in this paper to nonlinear mean-field systems and
time-delay mean-field systems. However, nonlinearities and time delays will cause a lot of
difficulty in analysis and design. How to set up the stochastic-bounded real lemma is the
key issue in H∞ control. Moreover, H2/H∞ control problems for discrete-time mean-field
systems with Markov jumps or Poisson jumps could be further investigated based on the
research in this paper.
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