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Abstract: A reliable design of stopes is critical to ensure both safety and efficiency in mining oper-
ations. The evolving mining methods and technologies as well as increasing mining depth dictate
the need to continually improve stope designs. This paper presents a comprehensive review in
order to compare and consolidate various stope design methods. This review covers various aspects
of stope design, including design principles, factors to consider, and the diverse range of design
methods available. The results led to the classification of various methods encompassing engineering
analogies, fundamentals, numerical simulations, and industrial tests. Of particular significance,
the review furnishes detailed insights into the research conducted on each method, as well as each
method’s practical performance in engineering applications. Furthermore, the review highlights the
inherent limitations in current design methods and suggests potential avenues for future research.
Finally, by comprehensively considering the functional roles and advantages of each design method,
it overcomes the limitations of relying solely on a single method for stope structural parameter design,
and a general process is proposed.

Keywords: underground mining; green and deep mining; mining method; stope parameters; design
principles; design methods; design process

1. Introduction

Underground stope design involves determining the geometric shape and size of
underground stopes, which play a crucial role in safe production and have economic bene-
fits [1–3]. Designing the stope structural parameters entails tackling a complex optimization
problem involving numerous decision variables [4,5], which include the occurrence of the
ore body, geological structures [1,6,7], rock mass quality [8,9], mining-induced ground
pressure [10–12], the ore loss rate, the dilution rate [13,14], and the required production
capacity of the mine, among others [15,16]. The interdependencies among these variables
are challenging to express using precise mathematical or mechanical formulations, and the
correlation between each decision variable is often weak. Consequently, achieving a sound
design of stope structural parameters remains an enormous challenge.

Furthermore, the rational design of stope structural parameters is facing increasing
demands due to the evolving mining methods and processes. As the requirements for
ecological environment protection increase amid the gradual depletion of shallow resources,
green and deep mining are inevitable in mining development [17–19]. Worldwide, there
are more than 116 metal mines with a mining depth exceeding 1000 m, with the majority in
South Africa, Canada, the United States, Australia, Russia, China, and other countries [20–22].
At the same time, the backfill mining method is increasingly used [23,24]. The technical
conditions of deep mining are more complex, and the probability of mining disasters caused
by high stress increases [20,22]. The filling mining method needs to ensure the stability
of the surrounding rock in the goaf before the filling of the stope is completed. Therefore,
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designing appropriate stope structural parameters is crucial to ensure the safety of mining
personnel and equipment during mining activities.

Extensive research has been conducted by scholars on various methods for stope pa-
rameter design. These investigations have progressed from empirical approaches to more
sophisticated methods, including engineering analogies [25,26], theoretical analyses [27–29],
numerical simulations [30–33], and industrial tests [34,35]. Substantial innovative outcomes
have been achieved through these endeavors. However, given the diversity and complexity
of considerations in stope structural parameter design, each method has its own limitations.
Thus, it is imperative to collate and summarize the existing methods for designing stope
structural parameters. Under this context, the primary objective of this paper is to pro-
vide a comprehensive review of the current research status pertaining to stope structural
parameter design methods worldwide. This review aims to elucidate the progress made
thus far in this field, evaluate the strengths and weaknesses of existing design methods,
and identify future research directions in stope parameter design. On this basis, a general
process for designing stope structural parameters is proposed.

2. Design Contents, Principles, and Considerations
2.1. Stope Design Contents

The design of stope structural parameters is contingent upon the specific mining
method adopted by the mining operation, and the content and considerations involved in
designing these parameters differ among various mining methods.

At present, underground metal mining methods can be categorized into three distinct
groups based on their approach to managing and controlling ground pressure: the caving
method, open stope method, and filling method [36–38]. In the context of deep and green
mining, a discernible shift is taking place in the selection of mining methods for under-
ground metal mines, gradually transitioning from the conventional caving method towards
the adoption of the open stope method and filling method [39,40]. The evolution process
and design content of mining methods towards green and deep mining are illustrated in
Figure 1.
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In the process of ore extraction, the caving mining method manages ground pressure
by controlling and inducing the free collapse or subsidence of surrounding rock. It does not
create a goaf during ore recovery. Therefore, stope parameter design in the caving mining
method mainly includes three key parameters: stage height, access spacing, and drawing
step [41,42]. The open stope and filling methods require reserving pillars and sometimes
adopting support measures to control ground pressure in order to maintain the stability of
the goaf. Therefore, the content of stope parameter design for the open stope and filling
methods is the same, including the dimensions of pillars and stope sizes [43,44].

2.2. Stope Design Principles and Considerations

Stope structural parameters have a great impact on the safe and efficient production
of mines, as shown in Figure 2. A geometrically large stope can lead to the failure and/or
collapse of surrounding rocks, impeding normal and safe operations. In the meantime, the
collapse mixes waste rocks with ores, increasing the cost of ore upgrading and increasing
unplanned dilution, thereby increasing the cost of beneficiation [45,46]. On the contrary,
geometrically conservative stope parameters can lead to large mining and cutting quantities
and a low ratio of ore recovery, increasing production costs and reducing economic benefits.
In addition, a small stope will possibly restrict the utilization of large mining equipment,
reducing production efficiency [47,48].
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In the context of deep and green mining design, mining safety, mining efficiency,
and minimized environmental impact are three fundamental goals. Given that these
three goals may contradict each other to a certain extent, a robust and coherent design
methodology should be established and employed to achieve an optimal set of stope
structural parameters. The design should balance the relationship between safe production
and economic benefits. In some circumstances, a design that maximizes the stope structural
parameters while ensuring compliance with safety and ore recovery rate standards may
be desired.

The design of stope structural parameters is an optimization problem involving multi-
ple factors, which can be divided into subjective and objective factors, as shown in Figure 3.
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The multiple factors involved introduce significant challenges to the stope design.
One of the primary complexities is their relative significance in differing environments. For
instance, with mining extending deeper, the in situ stress has gradually evolved into the
predominant factor of mining stability and thus necessitates substantial attention during
the design phase [49,50]. Furthermore, to align with the modern goals of sustainable and
eco-friendly development, these factors of environmental preservation, energy efficiency,
emission reduction, long-term sustainability, and economic indicators must be thoroughly
integrated into the design process [15,51–53].

3. Engineering Analogy Method

The engineering analogy method draws on both successful and failed experiences of
mines in various conditions. It involves a classification of mining geo-conditions to select
the appropriate parameters for a specific mine site condition. Furthermore, its design scope
extends beyond stope structural parameters and encompasses mining method selection
and mine support parameter design. A comprehensive analysis of factors such as ore body
deposition, ore-rock properties, the production capacity scale, and equipment performance
is essential in using the engineering analogy method. It is worth noting that consideration
should be given to not only the pre-existing mining conditions but also the available
construction technology levels and organizational management capabilities.

In order to reduce the subjectivity of engineering analogies, empirical charts have been
developed [54,55]. Empirical charts are developed by domestic and foreign scholars based
on mining production practices, aiming to capture the response characteristics of rock
masses under various mining conditions and establish a specialized database. Through
data collection, analysis, and summarization, empirical charts are constructed.

With the widespread adoption of rock mass quality classification systems, mining
engineers can quantitatively assess mining conditions and establish a connection between
the stability of underground structures and factors such as the geometric shape of the
mining site and rock mass characteristics. To a certain extent, due to the widespread use
of rock mass quality classification systems and the formation of a standard system, the
database has been expanded, which further increases the reliability of the empirical chart
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method in guiding engineering design. Moreover, owing to the intricate nature of rock mass
instability and failure mechanisms, the empirical chart method serves as a valuable tool for
engineers in expeditiously analyzing and predicting phenomena, thereby offering guidance
and support for mining design. Consequently, this method finds extensive utilization
among both domestic and foreign engineers. Several common experience charts are listed
in Table 1.

Table 1. Different types of experience charts used for stope structural parameters design.

RMR Critical
Span Chart
(rock mass

quality)
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Building upon the Rock Mass Rating (RMR) system [66–68], in 1993 Bieniawski created
a graphical representation of the relationship between unsupported span and time for
different rock mass qualities. His chart correlates unsupported span, self-stabilization
time, and the RMR score with a focus on evaluating the stability and the duration of
stability of engineering projects [56,69,70]. Subsequently, Hutchinson and Diederichs made
improvements to this chart by emphasizing span design [57]. However, it is important to
note that most of the data underlying these two charts are derived from tunnel projects. As
tunnelling and mining conditions can differ largely, the applicability of this chart should be
carefully considered when using it to design structural parameters for mining operations.

In 1994, Lang from the University of British Columbia developed the RMR Critical
Span Chart based on 172 sets of observations at the Detour Lake mine [58]. This chart
consists of three zones: stable, potentially unstable, and unstable. In 2002, Wang et al.
expanded the database to include 292 sets of observation data, resulting in an updated
chart [59]. The RMR Critical Span Chart presents as a convenient and efficient tool for
specifically estimating the maximum span that can maintain the stability of underground
engineering based on the RMR rock mass classification score. It has been widely applied in
several mines in North America and has been widely accepted and adopted by the mining
industry [69].
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The Q Critical Span Chart was developed by Barton and his team during the period
from 1974 to 1994 [71]. It is based on the statistical analysis of multiple engineering cases
and illustrates the relationship between the rock mass classification Q system and the
unsupported span limits for various excavation types. To calibrate the system, the initial
200+ cases were classified, and the system has been successfully applied in the construction
of over 2000 tunnels and underground projects.

The Maximum Allowable Exposure Area Chart was developed by Zhao et al. based
on data from the mining design manual [72]. To use the chart, the first step is to determine
the form of the stope layout based on the characteristics of ground stress. The structural
parameters of the stope should be proportional to the magnitude of ground stress, and the
longitudinal direction of the stope should align with the maximum horizontal principal
stress. Subsequently, the maximum allowable exposure area of the stope can be determined
by determining the rock mass quality class using either the RMR, Q, or BQ methods [73–75].
It is important to note that this chart includes only four rock mass levels and does not
encompass extremely unstable rock mass areas, such as Class V rock mass. Class V rock
mass is not permitted to have an exposed area without support. Thus, when excavating
tunnels or developing mining areas within this class of rock, advance support must be
provided for maintenance to avoid potential roof caving and slope fragmentation.

The Stability Chart, originally formulated by Mathews et al. in 1980 using data
from 26 mining cases, has undergone progressive refinement and enhancement over the
years [60]. The advantage of stable charts lies in their creative proposal of the stability
coefficient N’.

The stability number N’ is calculated as follows:

N
′
= Q

′ × A× B× C

where Q’ is the index of rock mass quality, which is the modified Q system classification
method; A incorporates the effects of mining stress; B is the joint occurrence adjustment
coefficient; and C is the gravity adjustment coefficient.

The stability coefficient N calculation considers factors such as rock mass quality,
mining stress, joint occurrence, and gravity, making the Stability Chart more suitable for
complex and variable working conditions. Especially in deep mining, the rock mass is
mainly subjected to stress-controlled failure, and incorporating mining stress into the
design of the mining site highlights its superiority. Consequently, many scholars have
further studied and improved the Stability Chart. Several variant charts like Potvin (1988),
Nickson et al. (2001), etc., have been developed [61–65,76,77]. The Stability Chart is widely
employed and valued in the mining industry for guiding the design of underground
excavations in deep hard-rock metal mines.

The process of designing stope structural parameters using the empirical chart method
is simple and efficient, as shown in Figure 4, providing a visual representation of this method.
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Processes 2023, 11, 3125 8 of 25

4. Theoretical Analysis Method
4.1. Theory of Stope Structural Parameters for Caving Mining Method

Due to its unique ground pressure control method, the design of the parameters of
the caving mining method aims to maximize ore recovery while minimizing waste rock
mixing. Therefore, the theoretical analysis method focuses on analyzing the morphology of
the drawn-out ore body by assuming the fragmented ore body as a continuous medium or
a random medium [78–80].

4.1.1. Continuous Medium Ore-Drawing Theory

The continuous medium theory assumes that the ore and rock mass are continuously
and uniformly distributed, with the same physical and mechanical properties, and external
forces are only affected by gravity. Various theories have been developed, including the
ellipsoidal ore-drawing theory, quasi-ellipsoidal ore-drawing theory, and Bergmark–Roos-
equation-based ore-drawing theory, as shown in Table 2 [25,81–86].

Table 2. Design of stope structural parameters based on continuous medium ore-drawing theory.

Basic Theory Calculating Sketch Formula

Typical ellipsoid
drawing theory

[79,82,87]

traditional structure (a)
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The traditional ellipsoidal ore-drawing theory, initially proposed by the Soviet scholar
PM Malakhov in 1958, provides an approximation of the ore body shape as an ellipsoid to
study the movement patterns of collapsed ore and rock.

Early observations from industrial experiments indicate that the long axis size of
the ore-drawing body is typically 2.5 to 3.0 times the short axis size. Therefore, it is
recommended that the height of a single mining unit in the non-pillar sublevel caving
method should be 2.5 to 3.0 times the width. Furthermore, due to the characteristics of
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ore recovery in sublevel caving, the traditional ellipsoid theory suggests that the drawing
ellipsoids must intersect to ensure sufficient ore recovery.

The traditional ellipsoidal ore-drawing theory is based on the morphology of indi-
vidual ore bodies without considering the arrangement relationship between multiple
ore bodies in actual mining scenarios. When multiple ore bodies are spatially arranged,
the overlapping of these ore bodies becomes significant, deviating from the fundamental
principle that ore bodies should be tangent to each other. To address this issue and maintain
tangency between adjacent drawn-out ore bodies, two optimal structural modes were
developed. One mode is characterized by a high-sublevel structure, while the other exhibits
a large access spacing structure. This theory posits that the optimization of the parameters
of the stope revolves around the optimization of the spatial arrangement of release bodies,
with the highest density being deemed optimal.

The atypical ellipsoid drawing theory was proposed by the American mining scholar
KVAPIL [25,88]. The theory argued that the drawn-out ore body in sublevel caving does
not conform to a standard ellipsoid shape but rather a “shell” ellipsoid. Based on this
assumption, the design of the structural parameters focuses on maximizing the inclusion
of residual ore within the upper sublevel ridge, thereby ensuring the highest possible
recovery. When applying this theory to designing the structural parameters of the stope,
the dimensions and shape of the proposed access and the sublevel height should be
determined initially. Subsequently, the height of the drawn-out ore body can be estimated
based on the sublevel height, typically being around 2/3 of the drawn-out ore body height.
With this information, the access spacing and the drawing step can be calculated using the
appropriate theoretical equations. The theoretical width of the drawn-out ore body W’ and
the effective mining width We can be determined from Figure 5.
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and the effective mining width: (a) relationship between hT and W’; (b) relationship between We and
route size and shape.

The Bergmark–Roos theory assumes that the trajectory of ore movement transpires as
a linear motion with a null initial velocity and a consistent acceleration. Throughout the
motion process, each particle exclusively encounters the gravitational influence of its own
mass and the frictional impact of proximate particles. By leveraging Newton’s triad of laws
as fundamental benchmarks, this theory systematically derives the trajectory equation of
the liberated body through comprehensive calculations. The stope structural parameters
are designed according to the area, volume, and maximum width of the drawn-out ore
body combined with the layout form.

4.1.2. Random Medium Ore-Drawing Theory

The random medium ore-drawing theory considers collapsed ore and rock as ideal
loose materials characterized by uniform specifications, independent existence, and no
deformation [29,79]. It assumes negligible cohesion or friction between spherical particles.
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Under the influence of gravity, the particles are released, and their movement follows a
probability distribution function. As the loose body moves, the particles tend to shift from
less probable positions to more probable directions.

The theory of random medium ore drawing was initially introduced by the Polish
expert JLITWNISIZYN in the 1950s [79,89–92]. Subsequently, the theory was expanded and
developed, as shown in Table 3.

Table 3. Key nodes in the development of random medium ore-drawing theory.

Years and Experts Main Contributions Equation

1950s
JLITWNISIZYN [91]

Proposed using probability methods to investigate the movement patterns of
loose bodies, formulated a random medium model.

∂W(z,x)
∂z = ∂a

∂z ×W(z, x)−
B(z)

[
∂2W(z,x)

∂x1
2 + ∂2W(z,x)

∂x2
2

]
1962

Yongjia Wang [89]

Introduced a medium constant representing the loose nature of ore (β), and the
general probability density equation for medium motion was derived. The

theoretical system of the random medium for ore drawing was established for
the first time.

ϕz(x) = 1
2
√

βπz
exp(− x2

4βz )

1972
B-B Kurikov [92]

Extended the analysis from the two-dimensional plane problem to the
three-dimensional space problem and provided the corresponding differential

equations.

p(x, z) =
√

2b
πbz exp(− 2bx2

a2kz )

∂p(u,w)
∂w = B ∂2 p(u,w)

∂u2

∂p(u,v,w)
∂w = B

[
∂2 p(u,v,w)

∂u2 + ∂2 p(u,v,w)
∂v2

]

1992
Fengyu Ren [29,79]

Integrated the random medium method with the actual physical process of
gravity flow and introduced two parameters, α and β, which effectively
reflected the flow characteristics of grain flow based on the movement of

particles under experimental boundary conditions.

p(x, z) = 1√
πβzα

exp(− x2

βzα )

p(x, y, z) = 1√
πβzα

exp(− x2+y2

βzα )

p(r, z) = 1√
πβzα

exp(− r2

βzα )

Before applying this theory to calculate the reasonable access spacing, it is essential
to determine the appropriate height of the stage. Additionally, to accurately measure the
flow parameters of ore particles in the vertical direction of the pass, experimental studies
of ore discharge at the end of the leak can be conducted. Ren Fengyu proposed a formula
to determine the reasonable access spacing [79]:

B = 6

√
1
2

βHα + µwd

where α and β represent the flow parameters of the loose body in the direction of the
vertical route, and µ is related to the exposed width of the waste rock funnel on the top
plate of the access road. For the non-dilution ore-drawing method, µ is approximately
equal to 0. For the low-dilution ore-drawing method, µ is approximately in the range of
0.1 to 0.6. And for the cut-off grade ore-drawing method, µ is approximately equal to 0.75.

4.2. Theory of Stope Structural Parameters for Open Stope Mining Method and Fill Mining Method

The open stope and backfill mining methods need to ensure the stability of the stope
during the ore extraction process. Therefore, the design methods involve establishing a
mechanical analysis model to study the relationship between pillar, stope size, and stope
stability [93–97]. The basic mechanical theories used in this type of analysis includegranular
mechanics and structural mechanics, as shown in Table 4.

The theories established based on granular mechanics include the loose coefficient
theory and the Proctor arch theory. The former posits that in the event of a collapse in the
excavation area, safety can be ensured as long as the thickness of the upper pillar exceeds
the height necessary to fill the void with the collapsed rock. PU’s arch theory, also known
as the fracture arch theory, holds that upon the creation of the goaf, the roof develops into
a parabolic arch belt, responsible for bearing the weight of the overlying rock mass. In
principle, the parameters of the stope and pillar designed by the loose coefficient theory
are more conservative than those of the Poisson arch theory.
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Table 4. Theoretical analysis method for calculating structural parameters of stopes.

Theory Calculating Sketch Functions

Granular
mechanics [93]

Theory of the loose coefficient
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1 kp is the rock loosening factor. 2 f is the rock firmness coefficient f = RC/100; ϕ is the internal friction angle of the
surrounding rock, (◦). 3 k is the safety factor. 4 σtmax is ultimate tensile strength of rock mass; α is the dip angle
of ore body, (◦); γ is the unit weight of rock mass, (104 N/m3). 5 q is additional equipment load, (KPa); l is the
calculated width of the roof unit. 6 ρ is roof rock mass density, (t/m3). σn= (7%~10%) σc/(k1 k2) is the strength
limit of the roof; σc is uniaxial compressive strength (MPa); k1 is the strength safety factor, k1 = 7~10; k2 is the
structural weakening factor under bending conditions, k2 =2~3; g is the pressure of the filling body on the roof,
(MPa). 7 Pn is the dynamic load formed by the blasting rock mass; Hy is the trapezoidal height, r blasting index;
Kc, Knep, Kn, Kp are the reduction coefficient of ladder height, over-drilling coefficient, dynamic load coefficient,
and rock-loosening coefficient during blasting, respectively.

Extensive research indicates that the roof layer of underground excavations primarily experi-
ences tensile stresses. Accordingly, structural mechanics analyses mainly consider the possibility
of rock mass failure due to maximum tensile stress exceeding the strength of the rock mass.

The theory concerning the ratio of thickness to span in simply supported beams posits
that the roof of the stope can be regarded as a fully intact structure, and it does not consider
rock mass strength compared to other theories. It relies on the ratio between the thickness
of the top plate and the span of the stope as a fundamental parameter in assessing the
stability of the stope roof. When the ratio is greater than or equal to 0.5, the roof of the
stope is considered stable. The theory of simply supported beams regards the roof of a
mining area as a simply supported beam with supports at both ends. Subsequently, the
maximum allowable span of the stope structural parameters is determined based on the
tensile strength characteristics of the rock mass and the thickness of the top pillar. Of course,
the thickness of the top pillar can also be calculated based on the span of the stope.

The beam theory postulates that the stope roof can be modeled as a flat beam with
fixed supports at both ends. The self-weight of the overlying rock mass, along with any
additional loads, is considered as the applied load on the roof strata, and the tensile strength
of the roof rock mass is the key stability criterion. K.B. Lu Pennie’s analysis provided an
additional method for estimating roof strength. B И. Bogo Liubov’s analysis incorporated
blasting dynamic loads into the design.
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5. Numerical Simulation Method

The advancement of computing technology has facilitated the development and
widespread application of various geotechnical numerical simulation codes or software
packages in engineering design. When utilizing numerical methods to design and optimize
the structural parameters of mining sites, careful consideration must be given to selecting
appropriate software based on the specific mining methods employed and the indica-
tors under analysis during the design process. The commonly used types of numerical
simulation software for mining engineering are shown in Table 5 [98–104].

Table 5. Numerical simulation software for mining engineering and its main applications.

Modeling
Approach

Numerical
Method Numerical Code Rock Mass Representation Rock Mass Failure

Realization Main Applications

Continuum

FDM FLAC2D/3D

Continuum
medium

Deformation (displacement),
stress, plastic yield, and safety

factor

Analyze and evaluate
the stope stabilityFEM

RS2/3
ANASY

ABAQUS

BEM Map3D

Discontinuum DEM

UDEC
3DEC

Assembly of
deformable or rigid blocks

Blocks movements and/or
blocks deformations

Stability analysis of
rock mass controlled
by structural planes

PFC2D
PFC3D

Assembly of rigid bonded
particles

Bond
breakage and particle

movements

Simulating ore flow
in caving mining

method

The general process of utilizing numerical simulation methods for designing structural
parameters in mining sites involves several key steps. Initially, the approximate parameter
range is determined through theoretical analysis or experimental investigations. Subsequently,
various parameter combinations are designed, and numerical software is employed to calculate
whether the indicators of each combination meet the specific requirements of the mine. This
iterative process facilitates the determination of appropriate mining site structural parameters.

For the design of structural parameters in caving methods, the primary focus lies in
simulating the ore recovery efficiency [31,105–107]. In such cases, discrete element software
like PFC2D or PFC3D proves essential. On the other hand, when designing mining methods
with bottom structures, such as natural caving, the primary concern shifts to the stability
of the bottom structure during simulations, as the bottom structure plays a vital role in ore
collection [108,109]. For these scenarios, continuum modeling software such as FLAC3D is
often employed to perform simulations. Figure 6 showcases some simulation results in this
context [31,110].

Processes 2023, 11, x FOR PEER REVIEW  14  of  27 
 

 

FLAC3D is often employed to perform simulations. Figure 6 showcases some simulation 

results in this context [31,110]. 

   
(a)  (b) 

Figure 6. Numerical simulation results of optimization of mining parameters in caving method: (a) 

simulating the ore‐drawing process using PFC3D software; (b) stability analysis of bottom structure 

using Flac3D3.10 Software [31,110]. 

For the design of stope structural parameters in the open stope and backfilling min‐

ing methods, the simulation of ore flow is often omitted, and the focus shifts towards the 

assessment of the stability of the surrounding rock mass [111,112]. The procedure involves 

the initial creation of a geometric model of the mining site, followed by the simulation of 

its excavation process. The impact of geological structures on the stability generally needs 

to be considered. A comprehensive comparative analysis of  factors such as stress, dis‐

placement, and the distribution of plastic zones within the excavations is then conducted 

to analyze optimal parameters for the mining operation [113,114]. Some examples of such 

simulation results are shown in Figure 7 [115,116]. 

   
(a)  (b) 

 

 
(c)  (d) 

Figure 7. Numerical simulation results of optimization of stope structural parameters in open stope 

and filling methods: (a) variation  in maximum principal stress  in different span stopes (RS3); (b) 

distribution of displacement in different heights of stopes (RS2); (c) safety factor of different span 
stopes (FLAC3D); (d) distribution of plastic zone in different heights of stopes (RS2) [115,116]. 

6. Physical Modeling Test and On‐Site Industrial Testing 

6.1. Physical Modeling Test 

The physical simulation test method involves creating a scaled‐down physical model 

to mimic the ore‐drawing process in the caving method [117–121]. Through this approach, 

Figure 6. Numerical simulation results of optimization of mining parameters in caving method:
(a) simulating the ore-drawing process using PFC3D software; (b) stability analysis of bottom
structure using Flac3D3.10 Software [31,110].



Processes 2023, 11, 3125 13 of 25

For the design of stope structural parameters in the open stope and backfilling mining
methods, the simulation of ore flow is often omitted, and the focus shifts towards the
assessment of the stability of the surrounding rock mass [111,112]. The procedure involves
the initial creation of a geometric model of the mining site, followed by the simulation
of its excavation process. The impact of geological structures on the stability generally
needs to be considered. A comprehensive comparative analysis of factors such as stress,
displacement, and the distribution of plastic zones within the excavations is then conducted
to analyze optimal parameters for the mining operation [113,114]. Some examples of such
simulation results are shown in Figure 7 [115,116].
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Figure 7. Numerical simulation results of optimization of stope structural parameters in open
stope and filling methods: (a) variation in maximum principal stress in different span stopes (RS3);
(b) distribution of displacement in different heights of stopes (RS2); (c) safety factor of different span
stopes (FLAC3D); (d) distribution of plastic zone in different heights of stopes (RS2) [115,116].

6. Physical Modeling Test and On-Site Industrial Testing
6.1. Physical Modeling Test

The physical simulation test method involves creating a scaled-down physical model
to mimic the ore-drawing process in the caving method [117–121]. Through this approach,
the movement behavior of ore and rock during the ore-drawing process is observed, and the
shapes of the released and residual bodies are depicted. Additionally, this method explores
the mixing process of ore and rock, as well as principles governing ore and rock loss and
dilution. By leveraging these insights, a drawing plan is formulated, and the structural
parameters of the mining site are optimized, in conjunction with fundamental analyses.

The accuracy of physical model experiments largely depends on the similarity be-
tween the model experiments and the actual industrial sites [122]. When constructing
a physical model, two essential principles must be satisfied: geometric similarity and
mechanical similarity. At the same time, different proportions of physical experimental
models also have different uses. Typically, for validation experiments a 1:100 scale model
can be selected, as it strikes a balance between accuracy and feasibility. However, when
conducting relatively large-scale experiments, a 1:50 or 1:25 scale model may be selected.
Figure 8 showcases some examples of physical ore-drawing models commonly used in
experimentation [123–126].
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1 

 

 
 

(a)  (b) 

 

 

(c)  (d) 

 

   
Figure 8. Scaled physical model of the draw experiments: (a) single-route model of the ore draw
(1:25); (b) multi-compartment three-dimensional ore-drawing model (1:50); (c) single-compartment
three-dimensional ore-drawing model (1:50); (d) multi-segmented three-dimensional ore-drawing
model (1:100) [123–126].

Under a specific sublevel height, the static angle of ore drawing for fragmented ore
can be determined through experimental measurements to facilitate the calculation of the
corresponding access spacing [127,128]. The calculation diagram is shown in Figure 9.
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In situations where both the sublevel height and the access spacing are already de-
termined, the drawing step derived from the ore-drawing experiment requires further
transformation, and the calculation formula is presented as follows:

L = L′(1− K)

where L is the drawing step of the on-site testing; L’ is the ore-drawing step obtained by
the model; K is the density coefficient; and in the sublevel caving method, K = 20%.

6.2. On-Site Industrial Testing

The on-site industrial experimental design of stope structural parameters involves sev-
eral key steps [129]. Firstly, representative experimental mining sites are carefully selected
to ensure the validity and relevance of the experimental results. Subsequently, construction
operations are carried out based on the predetermined stope parameters. During the
mining process, various observation methods are employed to track the distribution of
collapsed ore and to measure the shape of the released body. By comparing the shape of the
released body with that of the collapsed ore body, valuable insights into the relationship
between stope structural parameters and ore recovery effectiveness can be obtained.

Currently, the marker recovery method stands as the primary approach for determin-
ing the morphology of released bodies. This method entails drilling blast holes in the ore
blocks of the targeted mining area and strategically placing landmark particles within them,
following a predetermined plan. As the ore-drawing process commences, these markers are
progressively recovered. Based on the sequential recovery order of landmark particles in
the collapsed ore rock, the original position of the ore rock before mining, and the quantity
of ore rock released, the shape of the ore body can be meticulously delineated. A schematic
representation of this process is depicted in Figure 10 [130].

1 

 

   

(a)  (b) 
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(c) markers monitored in the test and their corresponding quality of drawing ore; (d) comparison of
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Furthermore, on-site industrial tests for the open stope and backfill mining methods
utilize techniques such as stress and displacement monitoring [49,131], microseismic analy-
sis [132,133], and 3D laser scanning to assess the stability of the roof or the wall of the stope
that is prone to damage [134]. These methods serve to validate the feasibility of the stope
parameter designs, and several monitoring devices are illustrated in Figure 11 [135].
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7. Discussion
7.1. Advantages of Various Methods

By reviewing different stope design methods, they can be divided into four categories:
the engineering analysis method (experience chart), theoretical analysis method, numerical
simulation method, and test method (physical modeling test and on-site industrial testing).
The application of stope parameter design methods in different mining methods is shown
in Table 6.

Table 6. Application of stope parameter design methods in different mining methods.

Engineering Analogy
Method

Theoretical Analysis
Method

Numerical Simulation
Method

Physical Modeling/On-Site
Industrial Testing

Caving mining
method Engineering analogy Ore-drawing theory Ore flow/stability analysis Physical modeling/on-site

industrial testing

Open stope/filling
mining method Experience chart

Fracture arch theory
Simply supported
beams/plate beam

Stability analysis On-site industrial testing

The evaluation of design methods for different mining parameters is shown in Table 7.
Among these methods, engineering analogy methods are widely used in different

design scenarios due to their simplicity, efficiency, and low cost. Especially in the design
of the open stope and backfilling mining methods, continual improvements were made
to the engineering analogy method, and various empirical charts were developed. The
utilization of these empirical charts helps mitigate design subjectivity to a certain extent.
Furthermore, the empirical chart methodology comprehensively accounts for various
factors, including rock mass quality, original rock stress, mining-induced stress, and joint
occurrences, significantly enhancing the rationality of the design.
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Table 7. Evaluation of different stope parameter design methods.

Method Advantage Limitations Functional Positioning

Engineering analogy
method

Simplicity, efficiency, and low cost.
Experience charts reduce subjectivity in

the design of stope parameters.

The specific conditions of different mines
cannot be exactly identical, leading to

subjectivity and uncertainty in the design
parameters. The quality of the reference
database directly affects the accuracy of

the design.

Given a rough range of
stope parameters, it is

primarily utilized in the
preliminary design phase.

Theoretical analysis
method

In-depth insight into the interplay
between stope structural parameters and
rock mechanics behavior, offering robust

theoretical underpinnings for engineering
design.

Under complex geological and
engineering conditions, this method might

necessitate a series of assumptions and
simplifications, affecting accuracy.

Preliminary design of
stope structural

parameters under specific
working conditions.

Numerical simulation
method

Visual, dynamic, and quantitative
calculation. Using numerical models to
simulate excavation and ore-drawing

processes comprehensively and accurately
evaluates the stability and performance of

the mining site.

Its implementation demands significant
computational resources and time,

necessitating model calibration and
validation for accuracy assurance.

Stope structural
parameter optimization.

Physical modeling test

Visually observe the movement behavior
of ore and rock during the ore-drawing

process and depict the shapes of released
and residual bodies.

Only applicable to caving mining
methods. It is difficult to simulate under

complex boundary conditions.

Optimize stope
parameters in conjunction

with the ore-drawing
theory.

On-site industrial testing The most direct and intuitive method for
evaluating stope parameters.

The on-site testing method requires a large
amount of human resources and material
configuration and often requires a lot of

time, thereby interfering with the normal
mining progress of the mine.

Verify the rationality of
the design of mining

parameters. Calibration
of numerical models.

In the realm of theoretical analysis methods, the ore-drawing theory serves as the
foundational and indispensable theoretical basis for parameter design in caving method
mining sites. Within this domain, the continuous medium ore-drawing theory stands as
the earliest, most extensively researched, and broadly applied one. It delves deep into
the kinematics of loose bodies under both infinite and simplified boundary conditions.
In contrast, the random medium ore-drawing theory employs mathematical statistics to
elucidate the motion characteristics of loose bodies, tightly aligning them with real-world
scenarios. When addressing the challenges of ore extraction under varying boundary
conditions, the random medium ore-drawing theory exhibits superior accuracy and fidelity
compared to the continuous medium ore-drawing theory.

The research agenda within the theoretical analysis method for open stope mining
and fill mining predominantly centers on the interplay between roof thickness, stope span,
and stope stability. A theoretical analysis grounded in the principles of soil mechanics is
leveraged to design a secure roof thickness predicated on factors like the loose coefficient,
cohesion coefficient, and internal friction angle of the ore. This theoretical approach is
typically applied to surface-level shallow tunnel projects and is exclusively suitable for rock
fragmentation scenarios in hard-rock mines. Meanwhile, the structural-mechanics-based
theoretical analysis method employs the maximum tensile strength index of the roof rock
mass to compute the dimensions of pillars and stopes essential for maintaining mining
area stability. These theoretical methodologies holistically consider factors such as the
stability of upper pillars due to influences like backfill and mechanical equipment, as well
as the impact of blasting vibrations. These theoretical analysis methods, rooted in solid
mechanical principles, yield favorable results under specific operational conditions.

With the advancement of relevant algorithms and software, numerical simulation
methods have gained increasing prominence and emerged as the predominant approach
in mining design. A notable feature of these methods in caving mining is the use of
discrete element software to simulate ore flow and investigate the influence of mining
parameters on ore extraction outcomes. Additionally, the most widely employed numerical
simulation approach involves analyzing mining area stability based on indicators like stress,
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displacement, and safety coefficients of the plastic zone. This analysis aims to optimize
mining area and pillar parameters.

Experimental methods represent the most intuitive means of assessing the rationality
of stope parameters. Physical model experiments play a pivotal role in shaping mining
parameters for caving methods, frequently in conjunction with ore-drawing theories to
optimize these parameters. On-site industrial testing represents the ultimate step in evalu-
ating mining site parameters. Moreover, numerical models can be fine-tuned through the
integration of stress and displacement monitoring data.

7.2. Future Trends of Mining and New Requirements of Stope Design

The advantages and applications of various mining parameter design methods have
been discussed. Looking ahead, considering the current trajectory of the mining industry
and the constraints associated with each mining parameter design approach, several future
development trends are proposed.

The caving mining method offers high production efficiency and cost effectiveness.
However, it leads to severe surface subsidence and significant environmental damage,
especially as mining depth increases. In contrast, the open stope mining method and the
fill mining method are capable of controlling surface subsidence, contributing to ecological
and environmental protection. Nevertheless, these methods entail higher production costs
compared to the caving method. In particular, the fill mining method involves additional
costs associated with filling operations. Despite these cost implications, its exceptional
ground pressure control capabilities have led to an increased utilization of this method in
deep mining operations. In the context of deep, green mining, underground metal mine
mining methods are gradually changing from the traditional caving method to the open
stope mining method and filling method.

Empirical methods, such as engineering analogy and empirical chart techniques,
should be seen as data-driven models from a mathematical perspective. Developing rich
and standardized databases is a prerequisite for advancing these empirical methods. In the
context of deep mining, where geological complexity and in situ stress conditions are more
intricate, the design of stope structural parameters should be adaptable to surrounding
rock conditions and stress levels. Thus, the expansion of databases should prioritize incor-
porating deep mining data, particularly focusing on the response characteristics of different
rock qualities under varying stress conditions. Moreover, standardizing assessment criteria
and quantitative methodologies is essential to facilitate data consistency in mining.

The future trend will emphasize extracting valuable insights from vast mining datasets
through mathematical induction methods like artificial intelligence and machine learning,
establishing connections between data for enhanced engineering design. In recent years,
propelled by significant advances in computer technology, artificial intelligence methods such
as neural networks, genetic algorithms, analytic hierarchy processes, and fuzzy evaluations
have been rapidly integrated into stope parameter design. These methods, characterized
by their adaptability and cognitive abilities, prove to be potent tools for capturing intricate
interdependencies among factors affecting stope structural parameters. Through application,
intelligent algorithms are deployed to systematically develop convincing evaluation system
models or precise mathematical expressions. Theoretical analysis methods often involve
simplified and abstracted computational models, tailored to specific working conditions.
Challenges arise due to the inherent heterogeneity and anisotropy of rock masses. Future
developments in this field will likely emphasize mechanistic research, exploring rock failure
mechanisms and particle flow principles and enabling the assignment of appropriate weights
to various factors considered in the design of stope structural parameters.

Numerical simulation methods are increasingly used in designing and optimizing
stope structural parameters. Future trends include refining geological and mechanical mod-
els, enhancing the accuracy of mechanical parameter settings, and improving boundary
conditions. Achieving multi-field coupled discrete material release numerical calculations
and underground engineering rock stability analysis is also a research focal point. Further-
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more, the integration of large-scale parallel computing and artificial intelligence techniques
in numerical simulations will enhance efficiency and accuracy.

Industrial experiments will benefit from advanced sensing technologies and real-time
monitoring capabilities, leading to more accurate and timely results. Experimental data will
serve to validate and calibrate numerical simulation models and evaluate the performance
of stope structural parameters under complex conditions.

In conclusion, the future of stope structural parameter design lies in an integrated
approach, combining various methods and technologies. Empirical methods will evolve
into data-driven intelligent design, theoretical analyses will delve deeper into fundamental
research, numerical simulations will offer more accurate predictions, and industrial experi-
ments will provide practical validation for numerical models. This amalgamation will drive
innovation and advancement in stope structural parameter design by finely optimizing
stope structural parameters.

Finally, based on the functional positioning of each design method, a general process for
designing stope structural parameters is proposed, as shown in Figure 12. By leveraging the
advantages of each design method and categorizing the applicable scenarios of each method,
this design process aims at providing optimal design methodology towards achieving green
and sustainable mining operations in increasing deep and complex mining conditions.
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8. Conclusions

The design of stope structural parameters directly impacts the safe production and
economic efficiency of mining enterprises. This paper summarizes the existing methods for
designing stope structural parameters under different mining methods. Considering the
evolving trends in the mining industry, this paper further proposed new research needs
to continually improve the design of mining stopes. The main conclusions drawn are
as follows.

Amidst the backdrop of deep mining and green mining initiatives, there has been
a gradual transition in mining methods from caving methods to backfill mining. While
ensuring safe production, there is also a steadfast commitment to the overarching principles
of sustainable development and environmental protection.

Within the realm of stope parameter design, adjusting the sublevel height is the least
flexible aspect. In the caving method, the primary focus of design revolves around draw-
point spacing and ore-draw layout, while for the open stope and fill mining methods, the
central emphasis lies in the design of stope span. Pillar size primarily revolves around roof
thickness and span research.

Stope parameter design is a comprehensive process that, built upon the selected
mining method in a mine, encompasses not only factors related to rock mechanics but
also considers economic and technical indicators, as well as the overall life-cycle planning
of the mine. During the stope parameter design process, it is essential to thoroughly
assess the significance of various factors and select the design considerations based on the
working conditions.

The future of stope parameter design lies in an integrated approach, combining various
methods and technologies. The design process presented in this paper comprehensively as-
sesses the functional roles and merits of each design method, thus transcending the constraints
of exclusively relying on a singular method for the design of stope structural parameters.

Optimizing stope structural parameters is a traditional method for mining companies
to reduce costs and increase efficiency. In addition, this goal can also be achieved by
optimizing mining processes, developing mechanized and intelligent mining equipment,
and developing innovative mining methods.
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