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Abstract: Due to operational limitations in the industrial field, the operating variables of fluid catalytic
cracking units (FCCU) are of multiple operating frequencies, which are CO combustion promoter
amount, recycle slurry flow rate, combustion air flow rate, heat escape, and reaction temperature,
from low frequency to high frequency. There are usually two schemes for operation optimization
of FCCU. The former is called single-rate, single-window optimization, whose operating variables
are optimized only once in the whole operation cycle, which is easy to achieve, but the optimization
effect is poor. The latter is called single-rate multi-window optimization, whose operating variables
are optimized repeatedly and whose operation cycle is discretized into multiple optimization pe-
riods with the same frequency, which costs a heavy calculation burden and cannot adapt to the
optimization variables with multiple operating frequencies. So, a multi-rate, variable-window online
dynamic optimization method is proposed. In an operation cycle, the high-frequency operating
variable is optimized in a short optimization period, and the low-frequency operating variable is
optimized in a long optimization period; each optimization period has integer multiples to the
minimum optimization period. Each optimized result for each optimization period is put into use
online immediately. The optimization model involves the time domain differential equations, integral
cost objective function, and measured disturbances. The experimental results show that compared
with the single-rate, single-window optimization method and single-rate multi-window optimiza-
tion method, the optimization effect of multi-rate, variable-window online dynamic optimization
is better than single-rate, single-window optimization but worse than single-rate multi-window
optimization. However, the optimization results are consistent with the operation frequency of each
optimization variable, which can be implemented in complex chemical processes and increase certain
economic benefits.

Keywords: process systems engineering; multi-rate system; online dynamic optimization; fluid
catalytic cracking unit; operating frequency

1. Introduction

A system with two or more operating frequencies is usually called a multi-rate
system [1–3]. In chemical processes, there commonly exist multi-rate systems [4–6]. It
is passively generated due to the process constraints of production, safety, economy, or
environment, and on the other hand, it is artificially constructed due to the need for process
control [7–9]. The multi-rate problem mainly exists for the following reasons: (1) the imple-
mentation of dynamic optimization is limited by operation rate [10–12]; (2) in the actual
process, the number of sensors is less than the number of output variables, so time-sharing
measurement is adopted [13–15]; (3) in the chemical process, the change frequency for
each optimization variable may greatly differ from others; (4) in addition to the multi-
rate phenomenon in the actual process, some operation optimizations require multi-rate
operation [16–18], such as pole assignment, enhanced dynamic performance, and model
following [19–21]. The multi-rate problem exists widely in petrochemical, metallurgical,
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and power industries, and it has an increasingly important impact on the monitoring and
diagnosis of production processes [22–24]. Therefore, deep research on multi-rate dynamic
optimization is inevitable for the development of industrial production.

In the 1950s, scholars began to study the online dynamic optimization problems of the
multi-rate process [25,26]. With the acceleration of the industrial process, the application of
large equipment and complex devices has become more extensive. For the study of complex
systems, the optimization of multiple variables has also become more meaningful [27–29].
Therefore, the multi-rate optimization problem has attracted more and more researchers’
attention. In the current research, more researchers focus on multi-objective optimization,
while the research on multi-objective online dynamic optimization is relatively less [30–32].
Due to computer performance limitations, classical methods were mainly used for optimiza-
tion during the early period of research on the topic. Kranc was the first scholar to study
multi-rate, variable-window online dynamic optimization, and the Kranc operator method
is still an effective method for analyzing multi-rate systems [33–35]. Araki and Yamamoto
provided a complete state space model of multi-rate, variable-window online dynamic
optimization. Subsequently, on the basis of lifting technology, the theory of multi-rate
systems has gradually developed, which has been integrated with multiple disciplines,
such as controllability and observability, system identification, soft measurement, signal
processing, data fusion, etc. [36–38]. At the same time, the online dynamic optimization
research of multi-rate, variable-window systems continuously absorbs excellent ideas
from other research fields, which provides a better optimization theoretical basis for the
cross-integration of multi-rate systems and other fields [39].

This paper mainly focuses on the multi-rate, variable-window online dynamic op-
timization of heavy oil fluid catalytic cracking unit (FCCU). FCCU is an important part
of oil refinery [40,41]. FCCU involves multiple operating variables with multiple operat-
ing frequencies, so it is a typical multi-rate system. The carbon residue value of FCCU
feedstock oil is low, and light oil yield can be improved by adjusting the CO combustion
promoters and combustion air flow rate [42,43]. When the feedstock oil is heavy oil, it
is necessary to combine the adjustment methods of heat escape and recycling the slurry.
Adjusting the amount of recycled slurry can effectively reduce coke yield [44,45]. Heat
escape removes excess heat through the external catalyst cooler to control the regenerator
temperature. This paper mainly discusses how to effectively improve the economic benefits
when FCCU feedstock is heavy oil. When the feedstock is heavy oil, five optimization
variables are selected for online dynamic optimization of the multi-rate process [46,47]. The
five optimization variables are CO combustion promoters, combustion air flow rate, heat
escape, recycle slurry flow rate, and reaction temperature. Simulation experiments show
that the light oil yield can be effectively improved by multi-rate, variable-window online
dynamic optimization.

The rest of this paper is organized as follows: in Section 2, the expansion of the heavy
oil catalytic cracking model and multi-rate, variable-window online dynamic optimization
analysis are mainly described. In Section 3, the problem is described, and a multi-rate,
variable-window online dynamic optimization method is proposed. Then, single-rate,
single-window full-cycle one-time optimization and single-rate multi-window full-cycle
one-time optimization are studied in detail, and the advantages and disadvantages of
the two optimization methods are summarized. The above methods are applied to the
catalytic cracking unit for simulation. Based on the above research, in order to improve
the practicability of the optimization method, the multi-rate, variable-window online
dynamic optimization method can be used. In Section 4, the multi-rate, variable-window
online dynamic optimization process is provided in detail, and the solution is studied. In
Section 5, the operating conditions and operating characteristics of the catalytic cracking
unit under standard conditions are studied, and an example of FCCU is presented. Through
experimental comparison, it is found that the multi-rate, variable-window online dynamic
optimization method is not only suitable for complex chemical processes but can also
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effectively improve economic benefits. Finally, the dynamic performance of multi-rate,
variable-window online dynamic optimization is studied.

2. Expansion of Heavy Oil FCCU Model and Multi-Rate, Variable-Window Online
Dynamic Optimization Analysis

Due to the shortage of petroleum resources, the heavierization of feedstock oil is a
trend. When feedstock oil is heavy oil, the production requirements cannot be met only
by adjusting the CO combustion promoters and the combustion air flow rate. Therefore,
the model is expanded to improve the light oil yield combined with other adjustment
methods. The model in this paper is based on FCCU with a high-efficiency regenerator of
pre-combustor, and the extended part is an external catalyst cooler. A schematic diagram
of the model is shown in Figure 1 [48].
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Figure 1. Schematic diagram of FCCU with external catalyst cooler [48]. 
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In this study, the reaction kinetics model adopts a five-lump model, which is expressed
as follows.

gas oil(A)
rA→ υADdiesel(D) + υANnaphtha(N) + υAGgas(G) + υACcoke(C) (1)

diesel(D)
rD→ υDNnaphtha(N) + υDGgas(G) + υDCcoke(C) (2)

naphtha(N)
rN→ υNGgas(G) (3)

All cracking reactions and catalyst deactivation reactions are treated as first-order
reactions. The FCCU process contains multiple frequency operation modes, which is a
typical multi-rate, variable-window system. Here, we selected five representative variables
as the research object: µ1 (reaction temperature, Triser), µ2 (heat escape, Qs), µ3 (com-
bustion air flow rate, Vrg1), µ4 (recycle slurry flow rate, Fslurry), and µ5 (CO combustion
promoters, Mpro).

In order to verify the feasibility of multi-rate, variable-window online dynamic op-
timization in FCCU, the method of experimental comparative analysis was used. In the
process of experiment, there were three groups of comparative experiments, and the whole
optimization period was 8 h. Experiment 1 shows that the optimization period of variables
µ1, µ2, µ3, µ4, and µ5 are all 8 h; that is, the process is single-rate, single-window full cycle
one-time optimization. Experiment 2: The optimization period of variables µ1, µ2, µ3, µ4,
and µ5 are all 15 min; that is, the process is a single-rate multi-window full cycle one-time
optimization. Experiment 3: The optimization periods of variables µ1, µ2, µ3, µ4, and µ5
are 15 min, 1 h, 2 h, 4 h, and 8 h, respectively. This process is a multi-rate, variable-window
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online dynamic optimization. During multi-rate, variable-window online dynamic opti-
mization, the system starts at time 0, and the five variables run in turn according to the
initial state. Because the operation period of reaction temperature is the shortest, the refresh
frequency is the fastest. Under the action of the starting factor, the dynamic optimization
rate of temperature is relatively fast. When the time reaches 1 h, the external catalyst cooler
starts to be dynamically optimized. As time goes on, the other three variables are optimized
in turn.

3. Necessity Analysis and Mathematical Description of Multi-Rate, Variable-Window
Online Dynamic Optimization
3.1. Single-Rate Optimization and Multi-Rate Optimization

Generally, all operation variables are optimized only once in the whole operation cycle,
or the operation cycle can be discretized at the same frequency, and all operation variables
are optimized in the corresponding discretization optimization period. The former can be
called single-rate, single-window control vector parameterization (CVP) of full-cycle one-
time optimization, and the latter can be called single-rate multi-window CVP of full-cycle
one-time optimization. When the system is steady, the optimization period will be long.
Generally, single-rate, single-window CVP can be used. Single-rate, single-window CVP is
easy to use, and the optimization effect is not ideal. For single-rate multi-window CVP, a
large amount of calculation must be carried out in the optimization process, but compared
with the poor operability, the optimization effect will be better. However, the common
shortcoming of both is poor practicality. The main reason is that the operation variables
must have multiple operation frequencies due to the operation limitation of the industrial
field. Therefore, a new dynamic optimization method is proposed, namely the multi-rate,
variable-window online dynamic optimization method. This method can not only trade off
the advantages of the two single-rate CVPs but also effectively improve practicability.

The multi-rate, variable-window online dynamic optimization discretizes multiple
optimization variables according to the actual operating frequency of each optimization
variable, and it transforms the dynamic optimization problem into a nonlinear program-
ming problem with differential algebraic equation constraints. The most common param-
eterization method is the time segment strategy; that is, every optimization variable is
approximated as a constant in each segment, and each time segment is the same as the
actual operation period of the optimization variable. By discretizing the optimization
variables, the optimization results can be infinitely approached to the optimal trajectory.

In order to illustrate the characteristics of multi-rate, variable-window online dynamic
optimization, we first analyzed the single-rate, single-window optimization and single-rate
multi-window optimization and then compared them with multi-rate, variable-window
online dynamic optimization.

3.2. Mathematical Description of Single-Rate, Single-Window Optimization

In the process industry, it is not easy for production to reach the ideal state, so operation
optimization is commonly used to operate the production process. Here, the single-rate,
single-window CVP method was analyzed. The decision variables of dynamic optimization
were u1, u2, · · · , um, and the optimization period of all variables was Tm. The entire time
domain of optimization was Tm; that is, there were m optimization variables in the system,
and the refresh time of all variables was the entire optimization period. The optimization
variables were optimized only once in the entire time domain, and the expression was
as follows. After the above optimization process, the optimization window continued to
move forward. 

u1 = u11
u2 = u21

...
um = um1

. (4)
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When the optimization time ∈ [0, Tm], the mathematical expression was:

{û1, û2, · · · , ûm} =
arg minJ =

∫ Tm
0 j(xd, xa, u1, u2, · · · , um, ϕ, t)dt

s.t.
.
xd = fd(xd, xa, u1, u2, · · · , um, ϕ, t)
0 = ga(xd, xa, u1, u2, · · · , um, ϕ, t)

. (5)

Let minJ =
∫ Tm

0 j(xd, xa, u1, u2, · · · , um, ϕ, t)dt; then, J is the general expression of the
objective function, and the basic goal is to minimize the additional cost while maximizing
product yield. In all the mathematical expressions, j represents a function, (xd, xa) represents
the vector of (differential, algebraic) state variables, u represents the optimization vector, ϕ
represents other constraints of the system, and ( fd, ga) represents the set of (differential,
algebraic) equations.

The single-rate, single-window CVP method was adopted, and the optimization
variable was a constant value in the whole operation cycle. The single-rate, single-window
CVP method is common in the field of process control, but it has obvious advantages
and disadvantages.

Advantages: (1) The number of optimizations is relatively small. Because all opti-
mization objectives are a single-rate, single-window, only one optimization is required for
optimization variables. For process engineering, it is relatively easy to implement. (2) The
optimization process is simple.

Disadvantages: The method has poor practicality. In the field of process control, the
system is generally a relatively complex system. Although the optimization variables are
not single, the optimization results are not ideal. Therefore, it has certain limitations for the
single-rate, single-window CVP method.

3.3. Mathematical Description of Single-Rate Multi-Window Optimization

Due to the unsatisfactory effect of the single-rate, single-window CVP method, the
single-rate multi-window CVP method was studied. The analysis of the single-rate multi-
window CVP method is shown in Figure 2.
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In Figure 2, the time corresponding to each black grid and gray grid is equal to T.
Among them, the black grid and gray grid represent the same optimization window. When
the system is optimized, all optimization variables are optimized by one-time, single-rate,
multi-window, full-cycle optimization. The update period of the optimization variables
u1, u2, · · · , um of dynamic optimization are all T, and Tm = qT; then, u1, u2, · · · , um are
optimized at the same time every T time. Then, all the optimization variables are optimized
q times in the whole cycle, and the expression of optimization variables is as follows. In the
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process of system optimization, after completing an optimization cycle, the optimization
window will continue to move forward and start a new optimization process.

u1 =
[
u11 u12 · · · u1q

]T
u2 =

[
u21 u22 · · · u2q

]T
...

um =
[
um1 um2 · · · umq

]T
. (6)

When the optimization time ∈ [0, Tm], the mathematical expression is.

{û1, û2, · · · , ûm} =
argminJ =

∫ Tm
0 j(xd, xa, u1, u2, · · · , um, ϕ, t)dt

s.t.
.
xd = fd(xd, xa, u1, u2, · · · , um, ϕ, t)
0 = ga(xd, xa, u1, u2, · · · , um, ϕ, t)

. (7)

For the single-rate, multi-window CVP method, the optimization variables are con-
tinuously optimized in the whole cycle so that the optimization variables are closer to the
optimal value. The single-rate multi-window CVP method in some specific objects is of
ideal optimization effect. However, there are some advantages and disadvantages of the
single-rate, multi-window CVP method.

Advantages: the optimization effect is better because the single-rate, multi-window
CVP method uses multiple optimizations for all optimization variables. The more opti-
mization times in the full cycle, the better the results will be.

Disadvantages: (1) It takes a long time to complete the optimization. The single-rate,
multi-window CVP method is a relatively more refined optimization method. Compared
with the single-rate, single-window CVP method, the faster optimization operation fre-
quency of the single-rate, multi-window CVP method is required, which not only poses
certain challenges to the dynamic performance of the program but also makes the program
more redundant. (2) Poor practicality. In the field of control, if the single-rate, multi-window
CVP method is used for optimization, the applicable scope will be reduced. Therefore, it is
difficult to realize.

3.4. Multi-Rate, Variable-Window Online Dynamic Optimization Research and Process Description

In the production process, the system is generally in a state of dynamic balance, so it
is more in line with the needs of production to study multi-rate, variable-window online
dynamic optimization. In online dynamic optimization of multi-rate, variable-window
systems, reasonable optimization variables should be selected. Here, we conducted a
detailed study of the online dynamic optimization process of a multi-rate, variable-window
system, as shown in Figure 3.
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In Figure 3 above, u0 is the input variable, and d is the measured disturbance. The
conventional optimization method is that under the action of input variable u0 and distur-
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bance d, the system output result is y. When multi-rate, variable-window online dynamic
optimization is carried out, the output result of the system is ŷ under the action of input
variable u0 and disturbance d. Through the online adjustment of dynamic optimization, the
output of the system is better. In multi-rate, variable-window online dynamic optimization,
J1 is solved first. In this process, u1 performs dynamic optimization, while u2, u3, . . ., um
remain unchanged. When solving J2, u1 and u2 are dynamically optimized, while u3, . . .,
um remain unchanged. According to the above optimization process, when solving Jm, u1,
u2, . . ., um are dynamically optimized.

The online dynamic optimization process of a multi-rate, variable-window system is
studied, as shown in Figure 4. m variables are selected as optimization variables. Then, the
optimization periods of optimization variables u1, u2, . . ., um are, respectively, T1, T2, . . .,
Tm. Assuming that the optimization result is obtained by the i-th component ui of i = 1, 2,
. . ., m after the action of the optimization period Ti, the following relationship is satisfied
between the optimization components.

Ti = qiT, i = 1, 2, · · · , m, (8)

where qi is a positive integer, and T is the basic optimization period of the control system.
Let q be the least common multiple of all qi; that is,

q = LCM(qi)(i = 1, 2, · · · , m). (9)
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Here, let
Tm = qT. (10)

Then, Tm is the cycle period of the whole system.
Through the above definition and analysis,

qnTn = qmTm(1 ≤ n ≤ m). (11)

In the above formula, q1, q2, · · · , qm, qij (qij ≡
qi
qj

i ≤ j) are set as positive integers, and
T1 < T2 < . . . < Tm.

In the online dynamic optimization of a multi-rate, variable-window system, the
optimization variable with the shortest period is first selected for dynamic optimization.
As time goes on, the optimization variable with the second optimization period begins
to be optimized. According to the above process, the remaining optimization variables
are optimized in turn until the period Tm of the whole system ends. The online dynamic
optimization process of the multi-rate, variable-window system is described as follows,
and the change in optimization variables is shown in Table 1.
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Table 1. Change in optimization variables.

Time Optimization Variables Variables

[0, T2] u1 u2, u3, . . ., um
[T2, T3] u1, u2 u3, u4, . . ., um
[T3, T4] u1, u2, u3 u4, u5, . . ., um

. . . . . . . . .
[Tm−1, Tm] u1, u2, . . ., um−1 um

(1) When the optimization time ∈ [0, T2], the optimization variable of dynamic opti-
mization is u1. U1 needs to be optimized q12 times, from û11 to û1q12 , while other variables
remain unchanged. The vector expression of optimization variables is as follows.

u′ =
[
u11 u12 · · · u1q12

]T
u2 = [u21]

T

...
um = [um1]

T

. (12)

The mathematical expression is:{
û′1
}
=

arg minJ =
∫ T2

0 j(xd, xa, u′1, û2, · · · , ûm, ϕ, t)dt
s.t.

.
xd = fd(xd, xa, u′1, û2, · · · , ûm, ϕ, t)
0 = ga(xd, xa, u′1, û2, · · · , ûm, ϕ, t)

. (13)

(2) When the optimization time ∈ [T2, T3], u1 and u2 are optimized, and other variables
remain unchanged. In this process, u1 is optimized q12 times, from û1q12 to û1q13 . U2 needs
to be optimized once, from û21 to û22. The vector expression of the optimization variables
is as follows. 

u′1 =
[
u1(q12+1) u1(q12+2) · · · u1q13

]T

u′2 = [u22]
T

u3 = [u31]
T

...
um = [um1]

T

. (14)

The mathematical expression is:{
û′1, û′2

}
=

arg minJ =
∫ T3

T2
j(xd, xa, u′1, u′2, û3, · · · , ûm, ϕ, t)dt

s.t.
.
xd = fd(xd, xa, u′1, u′2, û3, · · · , ûm, ϕ, t)
0 = ga(xd, xa, u′1, u′2, û3, · · · , ûm, ϕ, t)

. (15)

(3) When the optimization time ∈ [T3, Tm−1], u1, u2, and u3 are optimized, and other
variables remain unchanged. In this process, u1 is optimized q13 times, from û1q13 to û1q1(m−1)

.
U2 needs to be optimized q23 times, from û22 to û2q2(m−1)

. U3 needs to be optimized once,
from û31 to û32. The vector expression of the optimization variables is as follows.
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u′1 =
[
u1(q13+1) u1(q13+2) · · · u1q1(m−1)

]T

u′2 =
[
u2(q23+1) u2(q23+2) · · · u2q2(m−1)

]T

u′3 = [u32]
T

u4 = [u41]
T

...
um = [um1]

T

. (16)

The mathematical expression is:{
û′1, û′2, û′3

}
=

arg minJ =
∫ Tm−1

T3
j(xd, xa, u′1, u′2, u′3, · · · , ûm, ϕ, t)dt

s.t.
.
xd = fd(xd, xa, u′1, u′2, u′3, · · · , ûm, ϕ, t)
0 = ga(xd, xa, u′1, u′2, u′3, · · · , ûm, ϕ, t)

. (17)

(4) When the optimization time ∈ [Tm−1, Tm], variables u1, u2, · · · , um−1 are optimized.
In this optimization process, u1 is optimized by q1(m−1) times and û1q1(m−1)

is optimized
to û1q1m . U2 needs to be optimized q2(m−1) times from û2q2(m−1)

to û2q2m . U3 needs to be
optimized q3(m−1) times from û3q3(m−1)

to û3q3m . Other variables are optimized in turn
according to the above process. Additionally, um−1 needs to be optimized once, from
û(m−1)1 to û(m−1)2. The vector expression of the optimization variables is as follows.

u′1 =
[
u1[q1(m−1)+1] u1[q1(m−1)+2] · · · u1q1m

]T

u′2 =
[
u2[q2(m−1)+1] u2[q2(m−1)+2] · · · u2q2m

]T

u′3 =
[
u3[q3(m−1)+1] u3[q3(m−1)+2] · · · u3q3m

]T

...

u′m−1 =
[
u(m−1)2

]T

. (18)

The mathematical expression is:{
û′1, û′2, û′3, · · · , û′m−1

}
=

arg minJ =
∫ Tm

Tm−1
j(xd, xa, u′1, u′2, · · · , u′m−1, ûm, ϕ, t)dt

s.t.
.
xd = fd(xd, xa, u′1, u′2, · · · , u′m−1, ûm, ϕ, t)
0 = ga(xd, xa, u′1, u′2, · · · , u′m−1, ûm, ϕ, t)

. (19)

For constraint equations in the above mathematical expressions, including initial
conditions, end-point constraints, and process constraints, 0 and Tm represent two end-
point moments, and the initial conditions and end-point constraints are expressed as

xd(0) = x0
dxd(Tm) = xTm

d
xa(0) = x0

axa(Tm) = xTm
a

u(0) = u0u(Tm) = uTm

. (20)

The process constraints are expressed as
xlb

d ≤ xd(t) ≤ xub
d

xlb
a ≤ xa(t) ≤ xub

a
ulb ≤ u(t) ≤ uub

ϕlb ≤ ϕ ≤ ϕub

, (21)
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where (xlb
d , xlb

a ) and (xub
d , xub

a ) are the lower and upper bounds of (differential, algebraic)
state variables; ulb and uub are the lower and upper limits of the optimization variables;
ϕlb and ϕub are the lower and upper bound constraints on other conditions.

4. Multi-Rate, Variable-Window Online Dynamic Optimization Solution Process

For the online dynamic optimization solution of a multi-rate, variable-window system,
the direct method is to solve the dynamic optimization problem as a nonlinear program-
ming problem after time discretization. Both the full discretization method and the sequen-
tial method belong to the category of discrete methods. With the full discretization method,
the optimization variables and differential variables will be discretized. The sequential
method can use the operation means of control vector parameterization so that only the
optimization variables are discretized. Compared with the full discretization method, the
sequential method has obvious advantages. It can only act on the optimization variables in
the process of discretization, which can effectively avoid the problem of high dimension
problem caused by discretization.

If the full discretization method is used for online optimization, errors will be increased,
and the accuracy requirement for discretization will be further increased. In addition, the
dimension increase not only increases the optimization calculation cost but may also lead to
the inability to obtain the optimal solution. Considering that the multi-rate, variable-window
system usually has more differential variables than optimization variables, the multi-rate,
variable-window method is used for online dynamic optimization. The values of state
variables, objective functions, and constraint conditions can all be found by standard DAE
solvers. The solution process of multi-rate, variable-window online dynamic optimization
is shown in Figure 5. First, optimization is carried out through path I. Then, through path II,
the solution is carried out according to the same process. Online dynamic optimization is
carried out one by one until the end of the whole operation cycle.
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For the online optimization process described in Figure 5, the optimization variables
can be expressed as

u =
[
u1 u2 · · · um

]T. (22)

In the formula, m represents the number of optimization variables and is also the
dimension of the control vector. Here, we emphasize again that Tm is the dynamic optimiza-
tion period of the whole system. In order to carry out the time grid division of the control
time domain for all control vectors, we define the optimization period of ui as Ti. Due to
different optimization periods, the number of update qi of ui in the whole optimization
period must be different. Then, there is

qiTi = Tm(i = 1, 2, 3, · · · , m). (23)
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Let qi+1 < qi, and qi ∈ N+.
Due to the different optimization periods of different control vectors, the control

vectors u1, u2, · · · , um can divide the time domain into the following forms.

u1 : [0, Tm]→ [0, T1), [T1, 2T1), · · · , [(m− 1)T1, Tm]
u2 : [0, Tm]→ [0, T2), [T2, 2T2), · · · , [(m− 1)T2, Tm]

...
um−1 : [0, Tm]→ [0, Tm−1), [Tm−1, 2Tm−1), · · · , [(m− 1)Tm−1, Tm]
um : [0, Tm]→ [0, Tm]

. (24)

The multi-rate, variable-window online dynamic optimization process can be un-
derstood as nested rolling optimization. In the above definition, it can be seen that the
optimization frequency of u1 is the highest, then the optimization period of u1 is the small-
est; similarly, the optimization period of um is the largest. Dynamic optimization starts
from time 0, and all target vectors will go through a continuous optimization process. The
online dynamic optimization solution process for multi-rate, variable-window systems is
shown as follows.

Because the smallest nested optimization window is achieved when u1 and u2 are
optimized at the same time, as time goes on, when time T2 < T, the optimization equation
of u1 and u2 can be expressed as

{û2, û1} =
arg minJ1,2 =

∫ T
0 j(ûm, ûm−1, · · · , û3, {u2, u1})dt

. (25)

When time T3 < T, the optimization equation of u3 can be expressed as

{û3, û2, û1} =
arg minJ3 =

∫ T
0 j(ûm, ûm−1, · · · , u3, arg minJ1,2)dt

. (26)

When time T4 < T, the optimization equation of u4 can be expressed as

{û4, û3, û2, û1} =
arg minJ4 =

∫ T
0 j(ûm, · · · , u4, arg minJ3)dt

. (27)

According to the above online optimization process, the remaining optimization
variables are optimized one by one. When the time is greater than Tm−1, um−1 performs
dynamic optimization. The optimization equation is expressed as

{ûm−1, · · · , û2, û1} =
arg minJm−1 =

∫ T
0 j(ûm, um−1, arg minJm−2)dt

. (28)

When time Tm = T, the optimization equation of um can be expressed as follows

{ûm, · · · , û2, û1} =
arg minJm =

∫ T
0 j(um, arg minJm−1)dt

. (29)

In the above online optimization process, each variable is in the state of rolling update
over time. The shorter the optimization period is, the faster the update speed is. When
the update time reaches Tm, dynamic optimization is completed. Then, the optimization
window moves forward to start the next optimization cycle.

5. Experimental Study on Catalytic Cracking
5.1. Operating Characteristics of FCCU under Nominal Conditions

The operating characteristics of the reaction-regeneration system under nominal con-
ditions after model expansion are shown in Table 2, while some important operating
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parameters as listed at Appendix A. In addition, our group conducted a detailed study
on the activity characteristics of CO combustion promoters. In a single cycle, the average
activity dynamic trend of mixed CO combustion promoters is the same as that of fresh CO
combustion promoters, but the activity decrease is relatively gentle.

Table 2. FCCU base case operating conditions.

Variables Value Units

fresh feed flow rate, Ffresh 85 t/h
HCO flow rate, Fhco 12.75 t/h

regenerated catalyst circulation rate, Grg2 504.2 t/h
catalyst-to-oil ratio, COR 4.31 wt/wt

combustion air flow rate, Vrg1 49,340 m3/h
fluffing air flow rate, Vrg2 6658 m3/h

amount of added CO combustion promoters, Mpro 5 kg
concentration of CO combustion promoters, xpro 0.005 wt%
inventories, W (combustor/dense bed/stripper) 24/5/5 t

reaction temperature, Triser 495.4 ◦C
recycle slurry flow rate, Fslurry 3.35 t/h
heat getting outside ratio, η0 21 %

combustor top temperature, Trg1 698.6 ◦C
dense bed temperature, Trg2 707.3 ◦C

coke content of spent catalysts, Csc 0.97 wt%
coke content of regenerated catalysts, Crg2 0.045 wt%

O2 content in flue gas, yO2 3.17 mol%
CO content in flue gas, yCO 0.15 mol%

CO2 content in flue gas, yCO2 13.85 mol%

The operating characteristics of the heavy oil catalytic cracking system under nominal
operating conditions are shown in Figure 6, while the detail model of the FCCU is given at
Appendix B.
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(d) O2 molar fraction in the flue gas, (e) COR, and (f) light oil yield. 

It can be seen from Figure 6a that, due to the gradual decreasing activity of CO com-
bustion promoters, the coke-burning intensity gradually weakens, and the temperature of 
the spent catalysts is reduced. It can be found in Figure 6b that the carbon content of the 
spent catalysts gradually increases due to the weakening of coke burning. It can be seen 
from Figure 6c that the carbon content of feedstock oil is high, the coke-burning generates 
more heat, and the temperature of the dilute phase gradually increases with the reaction. 
It can be found from Figure 6d that due to the higher carbon content of spent catalysts, 
the O2 consumption in the coke-burning tank increases, leading to the gradual decrease of 
O2 content in flue gas. Figure 6e,f show that due to more heat generated in the coke-burn-
ing tank, the temperature of regenerated catalysts increases. Because the temperature 
needs to be controlled at the set point, the catalyst cycle flow rate decreases and the light 
oil yield decreases. 

5.2. Case Analysis of Catalytic Cracking 
The premise of the online dynamic optimization of FCCU is to ensure that the system 

is in a stable state and that reasonable optimization operation is carried out in the feasible 
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Figure 6. Dynamic characteristics of the system under nominal operating conditions: (a) temperature
of spent catalyst, (b) coke mass fraction of spent catalyst, (c) temperature rise in the freeboard, (d) O2

molar fraction in the flue gas, (e) COR, and (f) light oil yield.

It can be seen from Figure 6a that, due to the gradual decreasing activity of CO
combustion promoters, the coke-burning intensity gradually weakens, and the temperature
of the spent catalysts is reduced. It can be found in Figure 6b that the carbon content of the
spent catalysts gradually increases due to the weakening of coke burning. It can be seen
from Figure 6c that the carbon content of feedstock oil is high, the coke-burning generates
more heat, and the temperature of the dilute phase gradually increases with the reaction. It
can be found from Figure 6d that due to the higher carbon content of spent catalysts, the
O2 consumption in the coke-burning tank increases, leading to the gradual decrease of O2
content in flue gas. Figure 6e,f show that due to more heat generated in the coke-burning
tank, the temperature of regenerated catalysts increases. Because the temperature needs
to be controlled at the set point, the catalyst cycle flow rate decreases and the light oil
yield decreases.

5.2. Case Analysis of Catalytic Cracking

The premise of the online dynamic optimization of FCCU is to ensure that the system
is in a stable state and that reasonable optimization operation is carried out in the feasible
region. The constraint conditions of decision variables and state variables are shown in
Table 3 [35]. The dynamic optimization results for FCCU are shown in Figure 7.

Table 3. Constraints of operating variables and state variables.

Variables Lower Bound Upper Bound

reaction temperature, Triser (◦C) 490 510
dense bed temperature, Trg2 (◦C) 680 725

coke content of spent catalysts, Csc (wt%) 0.5 1.2
O2 content in flue gas, yO2 (mol%) 3 4

yield of coke, yc (wt%) 8 10.7
yield of diesel, yd (wt%) 32 34

yield of gasoline, yn (wt%) 39 41
yield of wet gas, yg (wt%) 10 20

temperature rise in the freeboard, ∆Tf (◦C) −5 20
combustion air flow rate, Vrg1 (km3/h) 40 55

amount of added CO promoters, Mpro (kg) 2 7
recycle slurry flow rate, Fslurry (t/h) 0 7.25

combustor top temperature, Trg1 (◦C) 660 695
heat escape ratio, η0 (%) 0 30
light oil yield, y (wt%) 71 75
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Single-rate, single-window dynamic optimization is mathematically expressed as
model 1:

minJ(û, ϕ, t) = −SrN − SrD − Sg + Sc1 + Sc2

= −
∫ Tm

0 αNrNdt−
∫ Tm

0 αDrDdt−
∫ Tm

0 αggdt +
∫ Tm

0 αc1c1dt
+
∫ Tm

0 (k1V + k2g′ + k3Q)dt− k4∆Q1

=
∫ Tm

0

(
−αNrN − αDrD − αgg + αc1c1 + k1V + k2g′ + k3Q

)
dt

−k4∆Q1

. (30)

Single-rate, multi-window dynamic optimization is mathematically expressed as
model 2:

minJ(û, ϕ, t) = −SrN − SrD − Sg + Sc1 + Sc2

= −
∫ Tm

0 αNrNidt−
∫ Tm

0 αDrDidt−
∫ Tm

0 αggidt +
∫ Tm

0 αc1cidt
+
∫ Tm

0 (k1Vi + k2gi
′+k3Qi)dt− k4∆Q2

=
∫ Tm

0

(
−αNrNi − αDrDi − αggi + αc1ci + k1Vi + k2gi

′+k3Qi
)
dt

−k4∆Q2

. (31)

Multi-rate, variable-window online dynamic optimization is mathematically expressed
as model 3:
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minJ(û, ϕ, t) = −SrN − SrD − Sg + Sc1 + Sc2

= −
∫ Tm

0 αNrNidt−
∫ Tm

0 αDrDidt−
∫ Tm

0 αggidt +
∫ Tm

0 αc1c1dt
+
∫ Tm

0 (k1Vi + k2gi
′+k3Qi)dt− k4∆Q3

=
∫ Tm

0

(
−αNrNi − αDrDi − αggi + αc1c1 + k1Vi + k2gi

′+k3Qi
)
dt

−k4∆Q3

, (32)

where SrN , SrD , Sg, Sc1, and Sc2 respectively, represent gasoline benefit, diesel benefit, slurry
benefit, CO combustion promoters cost, and other energy consumption. αN , αD, αg, and
αc1 are the prices of gasoline, diesel, slurry, and CO combustion promoters. rN, rD, g, and
g′ represent gasoline production, diesel production, slurry production, and total recycled
slurry. c1 represents the consumption of CO combustion promoters, and k1, k2, k3, and k4 are
coefficients. In the formula Sc2, the first item is the energy consumption of the combustion
air, the second item is the energy consumption of the recycled slurry, the third item is the
heat getting outside energy consumption, and the fourth item is the heat energy of flue gas.

The detailed composition of the objective function values before and after the dynamic
optimization of FCCU is shown in Table 4. It can also be seen from Table 4 that when there
are disturbances, the economic benefits generated by multi-rate, variable-window online
dynamic optimization are the highest. Under the condition of measured disturbance in
the working process, the system continuously optimizes online so that the conversion rate
of feedstock oil is improved, thus maximizing economic benefits. In the actual chemical
process, the operation period of the above five variables will not be 8 h or 15 min at the
same time. Because of poor practicability, it belongs to the case of taking extreme values. It
is also to prove the superiority of multi-rate, variable-window online dynamic optimization.
However, multi-rate, variable-window online dynamic optimization is more in line with
the operation of chemical systems. Through experimental comparison, it is found that
multi-rate, variable-window online dynamic optimization for complex chemical systems
can effectively improve economic benefits.

Table 4. Detailed composition of economic benefits of different operating models.

Variables Gasoline Diesel Slurry
CO

Combustion
Promoters

Combustion
Air

Recycle
Slurry Energy
Consumption

Heat Escape
Energy Con-

sumption

Flue Gas
Energy

benchmark operation 271.014 223.829 0 5 1,449,792 58 0 3.17 × 107

single-rate,
single-window

optimization period
8 h

dynamic
optimization 271.053 223.913 30.59 5.121 1,445,968 25.48 206.78 1.42 × 107

difference 0.039 t 0.084 t 30.59 t 0.121 kg −3824 km3 25.48 km3 206.78 km3 −1.75 × 107 kJ

benefits 43.51$ 79.77$ 6162.35$ 3.75$ 11.19$ 5.65$ −45.88$ −92.84$

total benefits 6167.5$

single-rate,
multi-window

optimization period
15 min

dynamic
optimization 271.956 224.911 26.489 4.245 1,438,065 29.83 216.421 1.64 × 107

difference 0.942 t 1.082 t 26.489 t −0.755 kg −11,727 km3 29.83 km3 216.421 km3 −1.53 × 107 kJ

benefits 1050.62$ 1026.24$ 5336.38$ 23.41$ 34.32$ 6.62$ −48.02$ −81.17$

total benefits 7348.4$

multi-rate,
variable-window
online dynamic

optimization

dynamic
optimization 271.227 224.282 29.826 4.832 1,443,072 26.27 190.95 1.46 × 107

difference 0.213 t 0.453 t 29.826 t −0.168 kg −6720 km3 26.27 km3 190.95 km3 −1.71 × 107 kJ

benefits 273.56$ 429.65$ 6008.65$ 5.21$ 19.67$ 5.83$ −42.37$ −90.72$

total benefits 6609.48$

multi-rate,
variable-window
online dynamic

optimization (with
disturbance)

dynamic
optimization 272.035 224.935 26.354 4.332 1,443,923 30.54 214.32 1.73 × 107

difference 1.021 t 1.106 t 26.354 t −0.668 kg −5869 km3 30.54 km3 214.32 km3 −1.44 × 107 kJ

benefits 1311.29$ 1048.99$ 5309.19$ 20.72$ 17.18$ 6.77$ −47.56$ −76.39$

total benefits 7590.19$
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In Figure 7, the solid line is the benchmark result before optimization. It can be
seen from Figure 7a that the amount of CO combustion promoters is increased through
single-rate, single-window dynamic optimization. This is because the optimization effect
is poor, and the utilization rate of CO combustion promoters decreases, thus promoting
the addition amount to increase. Single-rate, multi-window optimization and multi-rate
variable-window, online dynamic optimization can effectively reduce the amount of CO
combustion promoters. Figure 7b shows that under the action of dynamic optimization, the
amount of recycled slurry increases. In multi-rate, variable-window dynamic optimization
adjustment, recycle slurry is relatively high. As the optimization period is reduced, the
utilization rate of the safety margin is increased, thus promoting the increase of recycled
slurry. Because the effect of single-rate, single-window dynamic optimization is poor, in
order to prevent overrunning temperature, the amount of recycled slurry increases less.
From Figure 7c, it is found that combustion air not only promotes coke-burning but also acts
as a coolant in the whole reaction process. Single-rate, single-window dynamic optimization
adjustment reduces the safe operation interval of the system, and the increase of combustion
air plays the role of the protection device. Single-rate, multi-window dynamic optimization
adjustment increases the amount of recycled slurry. In order to promote coke-burning,
the combustion air increases. Under the action of multi-rate, variable-window online
dynamic optimization, it is beneficial to improve the working performance of the system
and improve the utilization rate of the combustion air. It can be seen from Figure 7d that
single-rate, single-window optimization can maximize heat escape. Because feedstock
oil is heavy oil, more heat is produced in the process of coke-burning, and heat escape is
increased to improve the stability of the system. For single-rate, multi-window optimization
and multi-rate, variable-window dynamic optimization, heat escape is more prominent
in the initial stage of the system, the activity of the CO combustion promoters is reduced,
the degree of coke-burning is weakened, and heat escape is gradually reduced. Under the
action of a temperature regulator, dynamic optimization makes the temperature gradually
stable. As can be seen from Figure 7e, the reaction temperature is obviously increased
by single-rate, single-window dynamic optimization. Due to the poor optimization effect
and heat escape, the recycled slurry cannot adjust the temperature in time, resulting in
an increase in the reaction temperature. Multi-rate, variable-window online dynamic
optimization and single-rate, multi-window optimization have relatively good effects on
temperature regulation. In addition, with the progress of the reaction, the activity of CO
combustion promoters gradually decreases, coke-burning intensity decreases, and the
reaction temperature gradually decreases.

The sensitivity analysis of light oil yield before and after dynamic optimization is
shown in Figure 8 for heavy oil in FCCU by dynamic optimization adjustment. Figure 8a
is the result of light oil yield before optimization. Figure 8b is the result of single-rate,
single-window dynamic optimization. Figure 8c is the result of single-rate, multi-window
dynamic optimization. Figure 8d is the result of multi-rate, variable-window online dy-
namic optimization. Compared with Figure 8a,b, it can be seen that because the dynamic
optimization period is 8 h, µ1, µ2, µ3, µ4, and µ5 are constant values in a single period, and
the optimization process is affected by the decrease of CO combustion promoters activity.
The increase rate of gasoline is small, and the decrease rate of diesel is slow, so the decrease
rate of light oil yield is slow. Comparing Figure 8a,c, it can be seen that the reduction of the
optimization period can make the system working state closer to the optimal point and
promote the improvement of light oil yield. With the increasing optimization time, the
reduction of diesel yield decreases, the growth rate of gasoline increases, and the light oil
yield increases. Finally, by comparing Figure 8a,d, it can be seen that with optimization,
the gasoline yield increases rapidly, and the diesel yield decreases slightly. The increasing
rate of gasoline is greater than the decreasing rate of diesel, so the light oil yield increases
gradually. From the above experimental results, it can be seen that the multi-rate, variable-
window online dynamic optimization adjustment is better than single-rate, single-window
optimization and weaker than single-rate, multi-window optimization. Therefore, for com-
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plex chemical system processes, multi-rate, variable-window online dynamic optimization
can improve economic benefits to a certain extent.
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Figure 8. Sensitivity analysis of different dynamic optimization to light oil yield.

FCCU is in dynamic balance during stable operation. Due to unpredictable uncertain-
ties when the system is running, there must be some external disturbance. Because the
feed flow rate has more uncertainties, the feed flow rate is selected as the main disturbance
factor. In order to study the dynamic performance of the multi-rate, variable-window
online dynamic optimization method, disturbance is added for experimental comparative
analysis. The experimental results are shown in Figure 9, and the composition of the
objective function values is shown in Table 4.
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Figure 9. Comparative analysis of experiments with disturbance: changes in target variables and
some important parameters.

The solid line in Figure 9 is the result of the experiment when there is no disturbance.
The dotted line is the optimal solution obtained by adding disturbance in the standard
case. It is found from Figure 9a that in order to ensure rationality before and after the
comparison, the total amount of feedstock oil is kept unchanged. It can be seen from
Figure 9b that multi-rate, variable-window online dynamic optimization can effectively
improve the utilization rate of CO combustion promoters. When the feedstock amount
decreases, the addition amount of CO combustion promoters decreases. It is found in
Figure 9c that the amount of recycled slurry is higher than that before optimization because
multi-rate, variable-window online dynamic optimization increases the utilization rate of
safety margin space, thus promoting the conversion rate of feedstock oil. It can be seen



Processes 2023, 11, 3088 19 of 25

from Figure 9d–f that due to the increase in the amount of recycled slurry, the coke-burning
intensity in the system increases, and the reaction temperature increases, resulting in an
increase in the heat escaping and the utilization rate of combustion air increases. It can
be seen from Figure 9g that the light oil yield increases with increasing feed amount, and
the light oil yield decreases with decreasing feed amount. In addition, the light oil yield
can be effectively improved by multi-rate, variable-window dynamic optimization. This
is because, in the optimization process, the time is divided to make the operating state
of the system closer to the optimal operating point. Although the disturbance will affect
the light oil yield, the overall trend remains unchanged. Figure 9h shows that with the
decrease in the amount of feedstock oil added, the coke-burning intensity decreases, and
the oxygen consumption decreases, resulting in the increase of oxygen content in the
flue gas. The device adopts multi-rate, variable-window dynamic optimization, which
improves the utilization rate of the incoming combustion air and increases the oxygen
content in the flue gas. Although the disturbance will affect the optimization effect at a
certain moment, the overall trend of the optimization result remains unchanged. It can
be seen from Figure 9i that due to the decrease in feedstock oil, the coke-burning strength
is weakened, which leads to a decrease in temperature in the dilute phase. Dynamic
optimization increases the oxygen utilization rate and promotes temperature reduction
in the dilute phase under the action of excessive combustion air. In Figure 9j, due to the
high carbon residual value of the feedstock oil, the change in the addition amount will
directly affect the coke mass fraction of the spent catalyst. With the increase in the added
amount, the coke-burning strength increases and the coke content decreases. The multi-rate,
variable-window dynamic optimization can effectively improve the working characteristics
of the system, thus promoting the reduction in coke mass fraction on spent catalysts. In
Figure 9k, due to the high carbon residue value of the feedstock oil, the feed amount is
reduced, resulting in the weakening of coke-burning strength, and the temperature of
the spent catalyst is decreased. The dynamic optimization improves the utilization rate
of oxygen, promotes the coke-burning reaction, and causes the reaction temperature to
increase. Through the above comparison experiments, it can be seen that, in the online
dynamic optimization process, the addition of disturbance will have a direct impact on the
optimization effect. However, during the whole optimization period, the changing trend
of the experimental results remains unchanged, and only limited volatility is generated
under the action of disturbance factors. This also just shows that multi-rate, variable-
window online dynamic optimization has good dynamic performance and has a certain
application value.

6. Conclusions

In this paper, a continuous chemical process based on multi-rate, variable-window
online dynamic optimization was studied, taking FCCU with an external catalyst cooler as
an example. First, heavy oil FCCU model expansion and multi-rate, variable-window online
optimization analysis were carried out. Then, the single-rate, single-window CVP method
and single-rate multi-window CVP method were analyzed, and the above methods were
applied to the FCCU for simulation. In order to improve the practicability of optimization,
a multi-rate, variable-window online dynamic optimization method was proposed. Then,
the online dynamic optimization process of a multi-rate, variable-window system was
analyzed by a mathematical method. Next, the online dynamic solution process of multi-
rate, variable-window problem and the dynamic performance of multi-rate, variable-
window dynamic optimization were studied. Multi-rate, variable-window online dynamic
optimization can make the working state of the system closer to the optimal working
point and improve the working efficiency of the system. Through analysis of the complex
chemical system, CO combustion promoters, recycle slurry flow rate, combustion air flow
rate, heat escape, and reaction temperature were taken as optimization variables. Therefore,
for systems with two or more operating frequencies, a multi-rate, variable-window online
dynamic optimization scheme was used to determine the optimal operating variables and
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active constraints. Finally, the experimental results proved the feasibility of the proposed
multi-rate, variable-window online dynamic optimization in complex chemical systems
and obtained ideal economic benefits while ensuring the steady operation of the system.
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Nomenclature

Symbols
A area, m2

C coke content of catalysts, %
Cp heat capacity, kJ/(kg·◦C)
dp average particle size of catalyst, m
D diffusion coefficient, m2/s
DT combustor diameter, m
E activation energy, kJ/mol
F mass flow rate, t/h
G catalyst circulation rate, kg/s
h film heat transfer coefficient, W/(m2·◦C)
H hydrogen content of catalysts, %
k rate coefficient of a reaction or mass transfer rate coefficient
K heat transfer coefficient
m integer constant
M mass flow rate, kg/s
N constant coefficient
Nu Nusselt number
O cross-sectional area, m2

P pressure, Pa
Pe Peclect number
Qs total heat release, kJ/s
R ideal gas constant, kJ/(mol·◦C)
Rg gas molar flux, mol/(m2·s)
Rtotal catalyst mass flux, kg/(m2·s)
S heat transfer area, m2

T temperature, ◦C
uf linear velocity, m/s
V gas flow rate, m3/s
W inventory, t
xpro amount of added CO combustion promoters, %
y product yield or gas content, %
ZT combustor length, m
Greek Letters
β carbon residue is converted to additional carbon, kg/kg
∆H reaction enthalpy, kJ/kg or kJ/mol
∆T1 temperature difference between Trg1 and saturated steam
∆T2 temperature difference between Trg2 and saturated steam
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∆T log mean temperature difference, ◦C
∆Tf temperature rise in the dilute phase, ◦C
∆Tw coke-burning tank heat dissipation temperature difference, ◦C
γ latent heat of vaporization of saturated water, kJ/kg
ε Porosity
η hydrogen−carbon molar ratio, H/C
η0 heat extraction ratio, %
λg axial thermal conductivity of gas, W/(m·K)
ρ density, kg/m3 or mol/m3

Subscripts and Superscripts
C coke
d membrane
fresh feedstock oil
g gas phase
h heat
hco recycle oil
H hydrogen
pro combustion promoters
rg1 combustor
rg2 dense bed
rg3 catalyst cooler
riser reaction temperature
s solid phase
sc spent catalyst
slurry recycle slurry
st stripper
w water or wall
′
0 average after mixing
′
rg2 external catalyst cooler output temperature

1 water vapor or inside
2 fluidizing air or outside

Appendix A. Some Important Operating Parameters of FCCU

Parameters Value Units

dense phase length, Lrg2 16 m
external catalyst cooler height, Hs 7.5 m
reactor cross-sectional area, Ora 0.636 m2

riser length, xt 32 m
wear-resistant heat-resistant layer density, ρi 1845 kg/m3

cross-sectional area of coke-burning tank, Org1 19.63 m2

height of coke-burning tank, zt 9.81 m
coke-burning tank diameter, Dt 5 m
cross-sectional area of dense bed, Org2 9.23 m2

equivalent heat dissipation area of dense bed, Arg2 240.745 m2

total length of heat pipe, LT 14 m
catalyst particle density, ρs 823.5 kg/m3

cross-sectional area of dilute phase, Od 38.46 m2

part of carbon residue converted to
additional carbon in feedstock oil, β

0.6 kg/kg

hydrogen−carbon molar ratio, η 8/92 kg/kg

Appendix B. Research on Accounting Process

The external catalyst cooler leads the hot catalyst out of the regenerator and then
returns the cold catalyst to the regenerator so as to achieve the purpose of extracting excess
heat and controlling the temperature of the regenerator. The advantage of the external
catalyst cooler is that the heat load can be adjusted, and the external catalyst cooler can be
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deactivated or activated at any time. The heat balance calculation of the external catalyst
cooler is carried out, and the total heat release is Qs. The heat release of the external catalyst
cooler is as follows:

QS = CPSGrg3T = CPSGrg3

(
Trg2 − T′rg2

)
. (A1)

The heat absorbed by the external catalyst cooler is

CPSGrg3

(
Trg2 − T′rg2

)
= M1γ + CM2

(
T′rg2 − Tg

)
. (A2)

The heat transfer equation is

KS∆T = M1γ + CM2

(
T′rg2 − Tg

)
, (A3)

KS∆T = QS. (A4)

Logarithmic temperature difference equation is

∆T =
∆T1 − ∆T2

ln ∆T1 − ln ∆T2
. (A5)

Heat transfer coefficient is

K =
1{[

1
h1

+ δ
λ

](
A2
A1

)
+ 1

h2

} . (A6)

Heat transfer coefficient in the tube is

h1 = C1∆T2.33 p0.5, (A7)

C1 =
0.1224W

mN0.5K3.33 . (A8)

Heat transfer coefficient outside the tube is

h2dp

λg
= Nu = 0.075(1− ε)

[
Cpρpdpuf

λg

]0.5

Rn, (A9)

R =
7.8

1− εmf

[
gdp

u2
f

]0.15[
ρg

ρp

]0.2[Rr

Rt

]0.06
. (A10)

The model equations of carbon content and hydrogen content on the catalyst in the
coke-burning tank are as follows. Among them, Rtotal contains three parts of the catalyst
mass flow rate, which are the mass flow rate in the inclined tube to be grown, the mass
flow rate from the dense bed to the coke-burning tank, and the mass flow rate of the
internal circulation.

∂C
∂t

=
Rtotal + Grg3

ρs(1− ε)zT

[
− ∂C

∂Z
+

1
Pes

∂2C
∂Z2 − kC0 exp

(
− EC

RT

)
pyO2 Cps(1− ε)zT

Rtotal + Grg3

]
, (A11)

∂H
∂t

=
Rtotal + Grg3

ρs(1− ε)zT

[
−∂H

∂Z
+

1
Pes

∂2H
∂Z2 − kH0 exp

(
−EH

RT

)
pyO2 Cps(1− ε)zT

Rtotal + Grg3

]
, (A12)

∂ρS(1−ε)C
∂t = − Rtotal+Grg3

ρs(1−ε)
∂ρs(1−ε)C

∂Z + Ds
∂2ρs(1−ε)C

∂Z2

−kC0 exp
(
− EC

RT

)
pyO2 ρs(1− ε)C

. (A13)
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The ordinary differential equation of oxygen content in flue gas is as follows:

∂yO2
∂t =

Rg
ρsεzT

{
− ∂yO2

∂Z + 1
Peh

∂2yO2
∂Z2

−
[

kC0
12 exp

(
− EC

RT

)
C + kH0

4 exp
(
− EH

RT

)
H
]} pyO2 ρs(1−ε)zT

Rg

, (A14)

∂ρgεyO2
∂t = − Rg

ρgε

∂ρgεyO2
∂Z + Dg

∂2ρgεyO2
∂Z2 − 1

12 kC0 exp
(
− EC

RT

)
pyO2 ρs(1− ε)C

− 1
4 kH0 exp

(
− EH

RT

)
pyO2 ρs(1− ε)H

. (A15)

The regenerated catalyst exchanges heat through the external catalyst cooler to achieve
the purpose of cooling the regenerated catalyst. This is not only beneficial to improving
COR and conversion rate but also has a protective effect on the safe operation of the device.
The heat calculation formula is as follows:

dTrg1
dt =

ρs(1−εrg1)
[ρs(1−εrg1)CPS+ρgεrg1CPg]Wrg1

× [GstCPS
(
Tst − Trg1

)
+ Vrg1CPg

(
Tg − Trg1

)
+Gst

(
CSC
η+1 − Crg1

)
(−∆HC) + Gst

(
ηCSC
η+1 − Hrg1

)
(−∆HH)− kw∆Tw Arg1

+Grg3CPS

(
Trg1 − T′rg2

)] , (A16)

∂T
∂t =

RtotalCPS+Grg3CPS+RgCPg

[ρs(1−ε)CPS+ρgCPgε]zT

{
− ∂T

∂Z + 1
Peh

∂2T
∂Z2 +

[
kC0 exp

(
− EC

RT

)
C(−∆HC)

+kH0 exp
(
− EH

RT

)
H(−∆HH)

] pyO2 ρs(1−ε)zT
RtotalCPS+Grg3CPS+RgCPg

− 4kw∆TwzT
DT(RtotalCPS+Grg3CPS+RgCPg)

} . (A17)

Through the operation of an external catalyst cooler, the cold catalyst is returned to
the regenerator. Calculation of the temperature, carbon content, and hydrogen content of
the catalyst after mixing in the coke-burning tank is as shown in the following equations.

T′0 =
CPS

(
GstTst + Grg21Trg2 + Grg3T′rg2

)
+ Vrg1CPgTg

CPS
(
Gst + Grg21 + Grg3

)
+ Vrg1CPg

, (A18)

C′0 =

CSC
1+η Gst + Crg2Grg21 + Crg2Grg3

Gst + Grg21 + Grg3
, (A19)

H′0 =
ηCSCGst

(1 + η)
(
Gst + Grg21 + Grg3

) . (A20)

For the material balance calculation of the second dense bed, the model equations for
carbon content on the catalyst, the oxygen content in flue gas, and the reaction temperature
are as follows.

dCrg2

dt
=

Grg1
(
Crg1 − Crg2

)
Wrg2

−
Prg2yO2Crg2

Crg2

kd

(
Vrg2

ρgOrg2εrg2

)nkd
+ 1

kc0 exp
(−EC

RT

) , (A21)

dyO2

dt
= yO2 −

Prg2yO2Crg2
Crg2

kd

(
Vrg2

ρgOrg2εrg2

)nkd
+ 1

kc0 exp
(−EC

RT

)
Wrg2

12Vrg2
β+0.5
β+1

, (A22)
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dTrg2
dt =

ρs(1−εrg2)
[ρs(1−εrg2)Cps+ρgεrg2Cpg]Wrg2

[
Grg1Cps

(
Trg1 − Trg2

)
+ Vrg2Cpg

(
Tg − Trg2

)
+

Grg1(Crg1−Crg2)
12(β+1)∆HC

− kw∆Tw Arg2 − Grg3CPS

(
Trg1 − T′rg2

)] , (A23)

∂Ti
∂t =

m(RtotalCPS+Grg3CPS+RgCPg)
[ρS(1−εi)CPS+ρgεiCPg]zT

{
−(Ti − Ti−1) +

m
Peh

(Ti+1 − 2Ti + Ti−1)

+
[
kC0 exp

(
− EC

RgTi

)
Ci(−∆HC) + kH0 exp

(
− EH

RgTi

)
Hi(−∆HH)

]
× pyO2 ρs(1−εi)zT

m(RtotalCPS+Grg3CPS+RgCPg)
− 4kW∆TWzT

mDT(RtotalCPS+Grg3CPS+RgCPg)

}
(i = 1, 2, · · · , m− 1)

(A24)
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