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Abstract: In recent years, the quest for effective lubrication in micro deep drawing (MDD) has seen
promising advancements. In this study, the influence of TiO2 nanolubricants and graphene lubricants
on the performance of 301 stainless steel foil in MDD is examined. The MDD undergoes an extensive
evaluation of various lubrication conditions, including dry, TiO2 nanolubricant, graphene lubricant
at concentrations of 2.5 mg/mL, 5.0 mg/mL, and 10.0 mg/mL, as well as combined applications
of TiO2 and graphene lubricants. Utilising a 5.0 mg/mL graphene lubricant together with TiO2

nanolubricants led to a significant reduction in drawing force, highlighting the synergistic efficacy of
this combined lubricant. A pronounced enhancement in the consistency of the produced microcups
was also attained. These results emphasise the promise of TiO2 nanolubricant and graphene lubricants
in optimising the MDD process.

Keywords: micro deep drawing; graphene lubricant; TiO2 nanolubricant; wrinkling reduction;
uniformity improvement

1. Introduction

Micro deep drawing (MDD) has emerged as a crucial process in the manufacturing
landscape, courtesy of the growing demands of industries such as medical, aerospace,
and electronics. This technique, which transforms flat metal foils into intricately formed
cup-like structures at a microscopic level, is noted for its precision and repeatability [1,2].
Despite its remarkable potential, MDD has challenges, there remain significant challenges
to overcome, including understanding the effects of size on material properties, accounting
for higher drawing velocities, and optimising lubrication conditions. A key challenge
arising from MDD is the high friction at the tool-workpiece interface. This can accelerate
tool wear, compromise forming, and reduce surface quality of the product [3]. Table 1
contrasts findings from previous studies, highlighting various lubricant to enhance product
quality and counter friction. One common mitigation strategy involves the use of lubricants,
which reduce friction and enhance the efficiency of the MDD [4,5].
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Table 1. Methods to reduce friction and enhance product quality.

References Research Method Lubricants Findings

Cortes et al. [6] Block-on-ring sliding tests Sunflower oil based TiO2 and
SiO2 nanolubricant

Coefficient of friction decreased by
93.7% (TiO2) and 77.7% (SiO2)

compared to base sunflower oil.

Birleanu et al. [7] Four balls tribological test Oil based TiO2 nanolubricant
The 0.075 %TiO2 nanolubricant

reduced the COF by around 60%
compared to pure base oil.

Asrul et al. [8] Four balls tribological test Paraffin based
CuO nanolubricant

The friction coefficient for 3% CuO
nanolubricant was 0.123.

Luo et al. [9] MDD Hydraulic oil Utilising hydraulic oil is a promising
approach to reduce friction in MDD

Kamali et al. [10] MDD Oil, and TiO2 nanolubricant
TiO2 nanolubricant exhibited superior

tribological performance
compared to the oil

Conventional lubricants fall short in MDD as they readily displace at micro scales [11,12].
This motivates exploring innovative friction-reducing technologies. Nanolubricants, en-
riched with nanometric additives, are one such recent advancement [13,14]. Chang et al. [15]
investigated TiO2 NP-infused nanolubricants for piston-cylinder interfaces. Their findings
revealed these nanoparticles (NPs) led to reduced friction and wear rates, enhancing the
overall lubricant performance. Glycerol, widely recognised for its high solubility and
compatibility with various materials, including metal surfaces, is often employed as a dis-
persant in nanolubricants [16,17]. A glycerol-based nanolubricant with TiO2 NPs may offer
optimal stability and lubrication for MDD applications. However, Wu et al. [18,19] exam-
ined TiO2 nano-additives in lubricants. They highlighted an agglomeration challenge that
could impede lubricant performance. Azman et al. [20] explored the benefits of graphene
nanosheets (GNS) coatings in addressing the agglomeration in TiO2 nanolubricants. They
found that the inclusion of GNS reduced friction and wear by 5 and 15% respectively,
underlining potential of graphene as an effective anti-agglomeration strategy. These GNS
layers, owing to their unique structural and physical properties, can prevent the agglom-
eration of TiO2 NPs, thereby enhancing their effectiveness in the nanolubricant [21–23].
Besides, The honeycomb structure of single-layer carbon atoms in graphene imparts su-
perb lubricating properties [24,25]. Kim et al. [26] used Chemical Vapor Deposition (CVD)
to produce graphene films on Cu and Ni catalysts, which were then transferred onto
SiO2/Si substrates. These films displayed excellent adhesion and friction reduction, even
in multilayers a few nanometers thick. Through Scanning Tunneling Microscopy (STM),
Feng et al. [27] revealed the sliding mechanism on graphene involving a commensurate-
incommensurate transition. Cho et al. [28] investigated how surface morphology affects
friction on different substrates. They discovered that flat graphene results in greater friction
reduction compared to bulk-like graphene. Thicker graphene films increase friction on
rough surfaces owing to “puckering effect”, emphasising graphene thickness as a critical
factor influencing lubrication.

In this study, the impact of various lubrication conditions on MDD is examined,
including unlubricated, 2.0 wt% TiO2 nanolubricant, graphene lubricants at 2.5 mg/mL,
5 mg/mL, and 10 mg/mL concentrations, as well as combinations of TiO2 nanolubricant
with each graphene lubricant, respectively. The primary aim is to unravel the performance
attributes of these lubricants when applied in MDD, while also evaluating the profile
of drawn microcups under specific lubrication circumstances. Findings reveal that the
combined use of TiO2 and 5 mg/mL graphene lubricants surpasses the performance of
their standalone applications.
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2. Materials and Methods

301 stainless steel foil was selected as the material for investigation, with the material
undergoing annealing at 980 ◦C for 2.0 min to optimise its formability. Following heat
treatment, the specimen was cut into 5.0 × 5.0 mm rectangular sections, which were then
subjected to MDD tests. The chemical composition of the SUS301 stainless steel is detailed
in Table 2. Following annealing, the foils displayed a measured average yield strength
of 387 ± 10 MPa. The MDD tests, conducted with a DT30W press machine featuring a
comprehensive die set, including upper and lower dies. As depicted in Figure 1, the die
set featured a punch diameter of 0.8 mm and a die cavity diameter of 0.975 mm. The
MDD technique involves two separate forming stages: blanking and drawing. During
the blanking stage, the lower blank holder operates as a punch, accurately carving out a
circular blank from the sample under process. Following this, the circular blank is pressed
into the die cavity by the punch located in the upper die, drawing a microcup.

Table 2. Chemical compositions of SUS301 (wt%).

Si Cr Mn C Ni S P N Fe

0.75 16.00–18.00 2.00 0.15 6.00–8.00 0.030 0.045 0.10 Balance
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Figure 1. DT30W press machine and die set utilised in MDD.

The glycerol-based lubricants containing 2.0 wt% of TiO2 NPs was prepared for
use in the MDD test. In the lubricant preparation process, a precise quantity of pure
TiO2 NPs (P25, obtained from Sigma-Aldrich™, St. Louis, MO, USA, with an estimated
diameter of 20.0 nm) was meticulously measured and incorporated into 17.6 wt% distilled
water. The mixture was subsequently subjected to mechanical stirring for a duration of
10.0 min. Following this, 0.4 wt% of polyethyleneimine (PEI) was introduced as a dispersion
agent, succeeded by centrifugation conducted at a speed of 2000 rpm for another 10.0 min.
Thereafter, 80.0 wt% glycerol was gradually dropped into the solution. The mixture was
mechanically stirred at a velocity of 2000 rpm for a duration of 10.0 min, subsequently
subjected to ultrasonication for an extra 10.0 min to guarantee thorough breakdown of any
persisting aggregates. This resulted in the final configuration of the lubricant, which had a
weight of 50.0 g. Before commencing the MDD experiments, the die cavity was filled with
approximately 0.1 mL of TiO2 nanolubricant, as depicted in Figure 2.

For the utilisation of graphene lubricant, the samples were coated with a graphene
film by dipping an ethanol-based graphene lubricant. Figure 3 shows the experimental
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configuration for GNS coating. Initially, the graphene powder was weighed and added
to the pure ethanol. This mixture was then stirred mechanically for 5.0 min to make
2.5, 5.0, and 10.0 mg/mL graphene lubricants, separately. Before their application, these
lubricants were subjected to ultrasonication at a temperature of 24.0 ◦C for a period of
25.0 min. To coat the steel foil, a syringe was used to drop an approximately 0.5 mL
graphene lubricant. The treated surface was dried in the air for a duration of 30.0 min
at 24.0 ◦C. Following solvent evaporation, a thin GNS film was mechanically adhered
to the substrate. The structural characteristics of the GNS were examined using a field
emission scanning electron microscope (SEM). Moreover, the sample coated with GNS was
meticulously aligned on the lower die, facilitating direct contact of the coated surface with
the die cavity.
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Figure 3. Preparation and coating process of GNS on steel foil using ethanol-based graphene lubricant.

The stability of both the TiO2 nanolubricant and graphene lubricants were assessed
through a sedimentation test that facilitated the direct visualisation of NP sedimentation.
Photographic records of the sedimentation process were captured over a 24 h period to
ensure accurate analysis of the stability of each lubricant. The MDD tests were investigated
under dry, 2.0 wt% TiO2, 2.5 mg/mL graphene lubricant, 5.0 mg/mL graphene lubricant,
10.0 mg/mL graphene lubricant, 2.0 wt% TiO2 + 2.5 mg/mL graphene lubricant, 2.0 wt%
TiO2 + 5.0 mg/mL graphene lubricant, and 2.0 wt% TiO2 + 10.0 mg/mL graphene lubricant
lubrication conditions, individually. During the MDD, drawing forces were recorded with
a load sensor in the upper die. The drawn microcups were analysed using a 3D laser
microscope. Energy-Dispersive X-ray Spectroscopy (EDS) was applied to examine the
elemental distribution in the material both before and after MDD, providing insights into
the functional mechanisms of the lubricants.
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3. Results and Discussion
3.1. Characterisation of TiO2 Nanolubricant and Graphene Lubricants

Figure 4 illustrates the sedimentation behaviour of TiO2 nanolubricant and graphene
lubricants at varying concentrations and over different time intervals. The results demon-
strate that the TiO2 nanolubricant exhibits remarkable stability. Significantly, even post
a duration of 40.0 h, the TiO2 NPs largely retained their original position, signifying the
exceptional dispersion stability. The precipitation of graphene becomes more prominent
with increasing concentration. After 18.0 h, discernible precipitation of graphene was
detected in the lubricant with a concentration of 10.0 mg/mL. By the 24.0 h mark, the
5.0 mg/mL graphene lubricant exhibited pronounced precipitation. Following a duration
of 40.0 h, both the 5.0 mg/mL and 10.0 mg/mL graphene lubricants had undergone com-
plete sedimentation. The 2.5 mg/mL graphene lubricant demonstrated only a scant degree
of precipitation after the same period. Consequently, the settling ability of the graphene
lubricant is enhanced at higher concentrations.
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Figure 5 displays the surface view coated with various graphene lubricants. It reveals
that the surface roughness, as represented by the average surface roughness value (Ra),
is dependent on the graphene lubrication conditions employed. Surface roughness value
is increased by graphene lubricants, an outcome attributed to the incorporation of GNS,
which results in a coarser surface texture. The Ra of uncoated area is 0.22 µm, and this value
increases to 2.77 µm upon application of a 2.5 mg/mL graphene lubricant coating. With
a 5 mg/mL graphene lubricant coating, the Ra decreases to 1.01 µm. Further increasing
the concentration to a 10 mg/mL graphene lubricant coating leads to a reduced Ra of
0.53 µm. Interestingly, as the concentration of graphene in the lubricant increases, the
Ra decreases. This enhancement in surface topography could be predominantly driven
by two interconnected phenomena: the elevated uniformity of the graphene coating and
the aggregation of graphene powder on the surface. Increasing graphene concentration
in the lubricant markedly reduces surface voids, effectively covering the material and
induced irregularities to boost overall smoothness. Simultaneously, the accumulation of
the graphene layers could form a uniform coating on the surface. Each layer of GNS is
exceptionally thin and flat. So even though there is an accumulation, they stack neatly on
top of each other, maintaining an overall smooth surface.

Figure 6 presents EDS maps and SEM images of samples treated with varying concen-
trations (2.5, 5.0, and 10.0 mg/mL) of graphene lubricant. The distribution of C element
attests to the successful integration of graphene, providing evidence of its effective applica-
tion. At the lower concentration of 2.5 mg/mL, the graphene coating appears less uniform
compared to higher graphene concentrations. This inference is supported by the visibility of
Fe element on the surface, indicative of incomplete coverage. High-magnification imaging
provides further confirmation, showing multilayer GNS with minimal voids across coated
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regions. Void areas show a decrease in presence with higher graphene concentrations.
Additionally, the use of a 10.0 mg/mL graphene lubricant results in a considerable accumu-
lation of graphene. This excess graphene can lead to a pronounced agglomeration, because
of Van der Waals forces. As the concentration of graphene increases, the interaction between
graphene and TiO2 nanolubricant may be disrupted. An excessive amount of graphene
could overload the system, leading to a dominance of graphene-graphene interactions over
the beneficial interactions between graphene and TiO2.
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3.2. Drawing Force

Figure 7 shows the correlation between the drawing force and displacement across
various lubrication conditions. The MDD generally initiates with a bending stage: the
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edges of the blank are drawn into the die and subsequently begin to bend. Initially driven
by bending resistance, the blank incrementally conforms to the die, evolving from bent to
final drawn form after bending. As this transition occurs, there is a consequent increase
in the flow stress of the material. In MDD, the point of the maximum drawing force is
achieved once the material has undergone large plastic deformation, necessitating the
maximum force to continue the deformation process. Drawing involves pushing a metal
blank into a die, generating friction that resists deformation. In scenarios of increased
friction, a corresponding increase of the drawing force becomes essential to maintain the
process. Lubricants serve the crucial function of reducing this friction, facilitating the draw-
ing process. Thus, the lubricant performance could be evaluated by monitoring the peak
drawing force. The maximum drawing force was recorded under a variety of lubrication
conditions, as shown in Figure 7. Under dry condition, the highest drawing force was
77.56 N, while the use of a 2.0% TiO2 nanolubricant resulted in a decreased force of 72.88 N.
With different concentrations of graphene lubricant (2.5, 5.0, and 10.0 mg/mL), recorded
the largest drawing forces of 73.45 N, 65.38 N, and 67.71 N were observed, respectively.
Figure 8 presents EDS maps and an SEM image of microcups drawn under these lubricants.
EDS mapping confirmed non-uniform TiO2 NP distribution on the microcup surface, with
a higher concentration in the upper region compared to the bottom area. Additionally, the
SEM image reveals significant agglomeration of TiO2 NPs. In the diffusion environment
created by the nanolubricant, the NPs move towards areas with a lower shear rate. This
movement is motivated by the attempt of NPs to minimise friction. During movement,
the NPs cluster together. However, these clusters are dispersed by repulsive forces such as
van der Waals interactions, surface charge interactions, double layer formation, and steric
hindrance. This dynamic mechanism ensures an even distribution of the TiO2 NPs [29]. In
circumstances where graphene lubricant is applied, the microcup surfaces consistently dis-
play remnants of C. The presence of the C signifies GNS inclusion on the microcup surface.
SEM indicates that the GNS display a sheet-like structure. The graphene accumulation is
significant reduced, resulting in a marked reduction of void areas in the coating. These
residual GNS facilitate friction reduction, attributable to the ease of inter-layer sliding
within multi-layered graphene structures. Notably, a correlation is established between the
rise in lubricant concentration and the increase in residual graphene detected on microcup
surfaces. With the graphene lubricant concentration increased to 10 mg/mL, a substantial
rise in the quantity of residual GNS on the microcups is evident, especially in comparison
to those drawn using lower concentrations of 2.5 and 5 mg/mL. The 10 mg/mL graphene
lubricant, delivering an ample amount of GNS, emerges as the most effective solution when
compared to other graphene lubricant concentrations explored in this study. A combination
of these graphene lubricants with the TiO2 nanolubricant led to further reductions in the
largest drawing forces to 69.29 N, 63.54 N, and 65.26 N, respectively. When compared
to the maximum drawing force under dry conditions, a significant reduction of 18.08%
was observed when using a combination of 5.0 mg/mL graphene lubricant and 2.0 wt%
TiO2 nanolubricant, underscoring the superior performance of this specific combination
among the lubricants tested. Figure 9 presents the surface EDS of microcups drawn under
the combined application of different concentrations of graphene and TiO2 nanolubricant.
From the figure, it is evident that when TiO2 nano-lubricant and graphene lubricant are
employed together, the aggregation of TiO2 visibly decreases compared to when used alone.
Graphene steric hindrance and electrostatic repulsion could disrupt TiO2 NP aggregation,
enhancing dispersion [29]. This synergy promotes more uniform nanoparticle distribution
compared to using TiO2 nanolubrican alone. Consequently, the combined use of these two
lubricants results in a more effective outcome than the independent use of each lubricant.
The distribution of the Ti provides further insight. Notably, when TiO2 nanolubricant is
paired with a 5 mg/mL graphene lubricant, more residual Ti is evident on the microcup
surface compared to other concentrations. Furthermore, the aggregation of TiO2 is signifi-
cantly minimised in this combination. As a result, among all lubricant combinations, the
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most noticeable friction reduction is achieved when the 5 mg/mL graphene lubricant and
TiO2 nanolubricant are used together.
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3.3. Effect of Lubricants on Profile of Microcups

The impact of diverse lubricants on the profile of microcups within the MDD was
investigated. Figure 10 presents mouth view of the cups formed under various lubrication
conditions. Wrinkling, a noteworthy feature in these observations, arises on the mouths
of the microcups manufactured under these lubricant conditions. Upon subjection to
overstretching, the material may cross its yield threshold, resulting in the wrinkles. These
wrinkles affect multiple performance characteristics and properties of the microcups, in-
cluding their strength, rigidity, resilience to deformation and failure. The application of
lubricants could diminish the wrinkle frequency on the microcups. Figure 11 illustrates
the force equilibrium condition in a segment of the blank, precisely at its boundary where
there exists a propensity for wrinkling to arise. The application of the TiO2 nanolubricant
has been found to be particularly effective in reducing wrinkling, outperforming other
lubricants used in the MDD. The underlying mechanism of wrinkling is fundamentally
determined by the fluctuating stress states at the edge of the blank. To elaborate, the annular
part of the blank experiences radial tensile stress (σt), vertical compress stress (σt), and
circumferential compressive stress (σc) is generated during the drawing process. Wrinkling
is instigated when σc surpasses a critical instability threshold, leading to elastoplastic wave-
shaped deformation. Utilising the TiO2 nanolubricant effectively reduce the wrinkling by
mitigating the frictional resistance between the blank and die interface, thus decreasing the
circumferential compressive stress and lowering the critical instability point. In contrast,
the synergistic use of TiO2 nanolubricant and a 5.0 mg/mL graphene lubricant significantly
decreases the drawing force, although it does not suppress wrinkling as effectively as the
sole application of TiO2 nanolubricant. This phenomenon can be attributed to the introduc-
tion of the graphene lubricant. Under the intense pressure exerted by the rim, this lubricant
might lead to surface irregularities, which could result in inconsistent material properties.
Such non-uniformity may result in uneven deformation, subsequently causing wrinkling.
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graphene lubricant + TiO2 nanolubricant, (e) 5.0 mg/mL graphene lubricant, (f) 5.0 mg/mL graphene
lubricant + TiO2 nanolubricant, (g) 10.0 mg/mL graphene lubricant, and (h) 10.0 mg/mL graphene
lubricant + TiO2 nanolubricant.
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Figure 12 presents a side view of microcups produced under various lubrication
conditions. it is evident that a distinct inconsistency occurs in the uniformity of the vertical
dimensions. The potential repercussions of such unevenness are substantial, posing risks to
the structural integrity, functionality, and precision of these microcups. The results reveal
that the applications of 5.0 and 10.0 mg/mL graphene lubricants significantly ameliorate
this height discrepancy in the microcups. A further enhancement in uniformity was
observed when graphene lubricants, at concentrations of 5.0 and 10.0 mg/mL, were paired
with TiO2 nanolubricant. A combination of 2.5 mg/mL graphene lubricant and TiO2
nanolubricant resulted in a microcup exhibiting nonuniform characteristics. This outcome
implies the significance of the lubricant concentration in determining the comprehensive
performance of the lubricant. When a synthesis of 5.0 mg/mL graphene lubricant and
TiO2 nanolubricant was applied, the most even microcup was observed. The contact area
between the material and die cavity exceeds that of the edge of the blank. Thus, the
synthesised applications of graphene lubricant and TiO2 nanolubricant can alleviate the
irregularity of friction. This leads to a more consistent deformation since the material
can spread over areas with even lubrication. As a result, it directly influences the height
uniformity of the microcup.
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Figure 12. Comparative analysis of microcup vertical uniformity under varying lubrication condi-
tions: (a) dry, (b) TiO2 nanolubricant, (c) 2.5 mg/mL graphene lubricant, (d) 2.5 mg/mL graphene
lubricant + TiO2 nanolubricant, (e) 5.0 mg/mL graphene lubricant, (f) 5.0 mg/mL graphene
lubricant + TiO2 nanolubricant, (g) 10.0 mg/mL graphene lubricant, and (h) 10.0 mg/mL graphene
lubricant + TiO2 nanolubricant.
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4. Conclusions

To conclude, this study offers insights into the use of SUS 301 foil in MDD trials, by
capitalising on the TiO2 nanolubricant and ethanol-based graphene lubricants. Below, the
conclusions are shown:

1. The TiO2 nanolubricant shows extraordinary stability and dispersion within a glycerol-
based environment, conserving its constitution even over extended durations. In
contrast, the graphene lubricants showed sedimentation tendencies as concentration
increased, which necessitates meticulous regulation of lubricant formulation and ad-
ministration. After 40.0 h, both the 5.0 mg/mL and 10.0 mg/mL graphene lubricants
fully sedimented, while the 2.5 mg/mL lubricant showed minimal precipitation.

2. When coating the GNS with escalated graphene concentrations, surface topography
becomes superior. The Ra decreases from 2.77 µm to 0.53 µm with an increase in
graphene lubricant concentration from 2.5 mg/mL to 10 mg/mL. This behavior is
primarily driven by the advanced uniformity of the graphene coating and the buildup
of graphene powder on the surface, thereby decreasing surface irregularities and
promoting smoothness.

3. Employing peak drawing force as a surrogate indicator for lubricant efficiency re-
vealed that a diminished force signifies reduced friction and enhanced lubricant
performance. Remarkably, a substantial decrement in drawing force was recorded
when utilising a 5.0 mg/mL graphene lubricant and TiO2 nanolubricants concurrently,
signifying the synergistic efficacy of this combination over standalone lubricants.
Under dry condition, the peak drawing force measured 77.56 N. However, with the
combined application of TiO2 nanolubricant and 5 mg/mL graphene lubricant, this
force reduced to 63.54 N.

4. The application of 2.0 wt% TiO2 nanolubricant was notably successful in reducing
wrinkling. Analysis of the vertical dimensions of the generated microcups indicated
marked improvement in height uniformity when using graphene lubricant at concen-
trations of 5.0 mg/mL, especially when paired with TiO2 nanolubricant.
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