
Citation: Pan, Y.-L.; Tseng, C.-Y.;

Chen, J.-C. Enhancement of

Computational Efficiency for

Deadlock Recovery of Flexible

Manufacturing Systems Using

Improved Generating and

Comparing Aiding Matrix

Algorithms. Processes 2023, 11, 3026.

https://doi.org/10.3390/pr11103026

Academic Editor: Raul D. S.

G. Campilho

Received: 12 September 2023

Revised: 9 October 2023

Accepted: 18 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Enhancement of Computational Efficiency for Deadlock
Recovery of Flexible Manufacturing Systems Using Improved
Generating and Comparing Aiding Matrix Algorithms
Yen-Liang Pan 1,2,* , Ching-Yun Tseng 1,3 and Ju-Chin Chen 4

1 Mathematics and Physics Division, General Education Center, R.O.C. Air Force Academy. No. Sisou 1,
Jieshou W. Rd., Gangshan Dist., Kaohsiung City 820009, Taiwan; xxzz5801@gmail.com

2 Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan
3 Department of Electronic Engineering, National Kaohsiung University of Sciences and Technology,

Kaohsiung City 807618, Taiwan
4 Department of Computer Science and Information Engineering, National Kaohsiung University of Sciences

and Technology, Kaohsiung City 807618, Taiwan; jc.chen@nkust.edu.tw
* Correspondence: peterpan960326@gmail.com; Tel.: +886-7-626-8846

Abstract: After the fourth industrial evolution, precision and automatic manufacturing have become
increasingly widely accepted in production. With highly variable productivity and flexibility, flexible
manufacturing systems (FMS) lower production costs and increase efficiency. Due to its resource
shareability, unexpected system deadlock may occur in some specific situations. Many existing works
use deadlock prevention as the primary control methodology in research on system deadlock control,
while this type of control policy would constrain the transportation resources and reduce the system’s
liveness. This paper adopts a new transition-based deadlock recovery policy as the direct control
strategy, which uses generating and comparing aiding matrix (GCAM) to determine the optimal
control transition. We also improve the existing GCAM-based method by reducing the computational
redundancy. This kind of control strategy and its benefit could be demonstrated through two typical
systems of simple sequential processes with resource (S3PR) nets and their Petri nets model.

Keywords: flexible manufacturing systems; Petri nets; control transition; deadlock recovery

1. Introduction

The flexible manufacturing system (FMS) [1–8] is an important and advantageous
concept in industrial areas that adapts to various productive requirements. However, its
high resource share ability can result in system deadlock occurring due to competition
for resources between different pre-designed processing sequences. Petri net (PN) [9–18]
is a modeling language theory, also a kind of discrete event dynamic system (DEDS),
which is a powerful tool for addressing the deadlock problem of FMS. Additionally, PN
is applied to various systems, such as automated manufacturing systems (AMS) [19–24],
flexible assembly systems (FAS) [25], reconfigurable manufacturing systems (RMS) [26],
and resource allocation systems (RAS) [27]. In contrast to the most adopted deadlock
prevention strategy [28–33], some existing work uses deadlock recovery as the significant
control policy [34–43], because of its higher system liveness.

There are two primary analyzing methodologies for system deadlock of FMS: struc-
tural analysis [44–52] and reachability graph (RG) analysis [28,29,53]. Structural analysis
is based on some structural items (or subnet) for deadlock prevention policy, including
siphons and place invariants (PI). This type of control policy is usually implemented by the
set of control places and relevant arcs. However, this way obtains merely the suboptimal
solution and cannot achieve maximal liveness.

In most of the research, RG analysis is regarded as the most outstanding method for
dealing with the system deadlock of FMS. This kind of analyzing method first explores
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all possible markings, which can be reached by initial marking. The set of all reachable
markings is called RG and can be further classified as legal, quasi-deadlock, deadlock
markings, etc. In RG, all markings are presented as individual nodes and connected
by directed arrows, representing transitions’ firing events. This way, it can clarify the
relationship of each marking in RG and help design solutions for the deadlock problem.
In most works, RG analysis seems to obtain the optimal solution to attain deadlock-free
and maximal system liveness. Even so, this method may suffer from marking explosion
problems when considering the system model with a more complex structure. The system
deadlock problem of the PN model of FMS is known as an NP-hard problem, and it is not
easy to find the optimal solution. Liu [54] further proved that the deadlock problem of
such bounded PN of resource allocation (PNRA) is PSPACE-complete.

When considering the PN model with a larger scale and higher complexity, it is
necessary to use assistant computer tools to explore the whole RG. In this paper, we use
INA [55] and PNTools [56] to help illustrate the PN model’s RG. These tools can also
recognize the property of each kind of system marking.

Chen [29] et al. proposed an optimal deadlock control policy based on the RG ana-
lyzing technique. They define the entry markings from the live zone to the dead zone of
RG, which are called first-met bad markings (FBMs). The control policy is applied to the
original PN model by the place invariant (PI) method, which designs a subnet controller
consisting of control places and related arcs. This method can forbid all markings in dead
zones and keep all legal markings reachable. However, the forbidding of such markings
causes a reduction in the liveness of the system.

In past research on dealing with the deadlock problem of FMS, the deadlock prevention
approach aims to apply well-designed constraints to the system to prevent it from reaching
deadlock states. However, this kind of deadlock control approach decreases the reachable
states and reduces system liveness. In order to remove system deadlock and keep system
liveness simultaneously, deadlock recovery was introduced. The existing literature used
various approaches to obtain highly effective controllers for achieving deadlock recovery
strategy, such as graph techniques [34,43], structural analysis [37], RG analysis [35,38,39,41],
integer linear programming problem (ILPP) [33], generating and comparing aid matrix
(GCAM) [40,42], etc. Here, we give a summary of these works.

Huang et al. [34] first developed the control transition (CT) concept to deal with
the deadlock problem in FMS. CT is a subnet of the PN model, which is constructed by
transition rather than control places. A PN model uses a transition to reallocate tokens
of all places and transform the system into another marking. Via this method, CTs are
appropriately designed to lead the deadlock markings to legal ones. However, each CT is
designed to recover only one deadlock marking in their work. When considering a more
complicated model, there are possibly hundreds of deadlock markings, implying that the
same number of CTs must be generated to solve them.

Based on RG analysis, Zhang and Uzam [35] developed a covering approach to further
reduce the amount of CTs for deadlock recovery. In their study, the minimal set of CTs is
obtained and added to the original PN model. However, this recovery method still does
not achieve maximal liveness.

Chen et al. [36] developed two iterative methods using an integer linear programming
problem (ILPP) to determine the optimal recovery transition. At every iteration, ILPP is
formulated to maximize the number of solved deadlock markings until all deadlocks are
entirely recovered.

Dong et al. [39] developed an iterative method for designing the optimal deadlock
recovery policy. In each iteration, they first design recovery transitions for each dead-
lock marking. Then, a vector intersection approach is introduced to compute a recovery
transition, which can recover multiple deadlocks.

Pan [40] first introduced the concept of GCAM, which is used to enumerate all possible
CTs with recovering ability. Then all CTs in GCAM will be compared with others to find
out the CT that can recover the most deadlock markings. Tseng et al. [42] proposed
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a computational concept to reduce the much higher computational cost of the GCAM-
based method due to the explosion problem of RG analysis when considering the more
complex system.

In our study, we further improve the existing GCAM-based method by reducing the
computational redundancy. Solving the system deadlock problem of the PN model of
bounded PNRA is a PSPACE-complete problem, so the computation consumption on time
and space grows exponentially when considering a more extensive system. Therefore,
decreasing the computational cost as much as possible is crucial.

The main contributions of this paper are summarized as follows:

1. Improve FMS’s existing GCAM-based deadlock recovery strategy by reducing com-
putational time and redundant steps. The system deadlock problem of FMS is an
unexpected situation known as a PSPACE-complete problem; thus, the consumption
of time and space (memory) may grow substantially. This study proposed approaches
to lower computational costs and achieve higher efficiency than existing methods.

2. This paper uses a deadlock recovery control policy to address the system deadlock
problem based on control transition and GCAM. Though we adjust the existing
algorithm for higher computational efficiency, the proposed method still maintains
the same experimental results. As stated above, our method has the identical effect
and lower computational cost.

3. In computational complexity theory, the complexity of an algorithm is usually denoted
by Big-O notation, which is a function of the size of the input problem n. When
considering the deadlock problem of the PN model, the parameter n is the size of the
model or its incidence matrix. However, while using RG analysis and GCAM-based
recovery method, the parameter n of estimating complexity may vary, such as the
scale of RG, legal zone, or the set of deadlock markings. In this paper, we propose an
efficiency evaluation approach for analyzing and estimating the improvement of the
proposed method.

This paper has been organized in the following way. Section 2 gives an overview
of PN theory. Section 3 concerns the central methodology and control strategy used for
this study. Section 4 develops an algorithm for obtaining optimal control transition and
a function for computational efficiency evaluation. Section 5 introduces two classic PN
models of FMS to demonstrate the proposed method and compare it with existing works.
The final section gives a summary and conclusion.

2. Preliminaries
2.1. Petri Net

A Petri net N is a 5-tuple net N = (P, T, F, W, M0) [57,58], where P and T represent
the set of places and transitions, respectively. Both of them are finite sets and P ∪ T 6= ∅,
P ∩ T = ∅. F is the set of arcs (flow relation) between places and transitions, where
F ⊆ (P× T) ∪ (T × P). The set W : F → N0 represents the weighted value of each arc
belonging to net N, which W is a multiset of positive integers. A system marking (or
marking) M means the token allocation in the PN model and M0 denotes the initial marking.
Note that a marking of the PN model is usually denoted as a multiset or an integer vector,
representing the number of tokens stored in every place. For straightforward reading, a
marking M is usually presented as ∑p∈P M(p)× p.

Given a node of PN model x ∈ P ∪ T, the pre-set •x and the post-set x• are defined as
•x := {y ∈ P ∪ T|(y, x) ∈ F} and x• := {y ∈ P ∪ T|(x, y) ∈ F}, respectively. A transition t
is enabled for firing at marking M iff ∃p ∈ •t : M(p) ≥W(p, t), which can also be denoted
as M[ t〉 . On the contrary, t is disabled for firing if ∃p ∈ •t : M(p) < W(p, t), which can
also be denoted as ¬M[ t〉 .

A PN model N can also present as an incidence matrix [N]→ Z [14,57–61], which
is a |T|×|P| integer matrix and indexed by T and P. The incidence matrix can precisely
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describe a PN model in mathematical formation. An incidence matrix of a PN model
must hold:

[N]|T|×|P|(t, p) =


W(t, p), (t, p) ∈ F ∧ (p, t) /∈ F

−W(p, t), (t, p) /∈ F ∧ (p, t) ∈ F

0, otherwise

(1)

An incidence matrix could be divided into two parts: input matrix [N]+|T|×|P|(t, p) ={
[N]|T|×|P|(t, p)|∀p, t ∈ N

}
and output matrix [N]−|T|×|P|(t, p) =

{
[N]|T|×|P|(p, t)

∣∣∣∀p,t ∈
N}, where [N] = [N]+ − [N]−. Each negative element in [N] (or each non-zero element in
[N]−) represents one directed arc leading from place to transition, and so on. For easier
understanding, here is an example of the PN model of FMS shown in Figure 1. The
incidence matrix of the PN model in Figure 1 is shown in Equation (2).

[N]|T|×|P| =

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
t1
t2
t3
t4
t5
t6
t7
t8



−1 1 0 0 0 0 0 0 −1 0 0
0 −1 1 0 0 0 0 0 1 −1 0
0 0 −1 1 0 0 0 0 0 1 −1
1 0 0 −1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 −1 0 0 −1
0 0 0 0 −1 1 0 0 0 −1 1
0 0 0 0 0 −1 1 0 −1 1 0
0 0 0 0 0 0 −1 1 1 0 0


(2)
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Figure 1. A control transition of PN model, which is generated via two markings.

The PN model of Figure 1 has 11 places and 8 transitions in total, which are illustrated
as hollow circles and black bars in Figure 1. Each pair of place and transition has a directed
arc, and its corresponding value in the incidence matrix [N]|T|×|P| would not be zero. For
example, given an arc lead from place p6 to transition t7, then [N](t7, p6) would be −1.
Considering another arc leading from transition t2 to place p9, [N](t2, p9) would be 1, and
so on. An incidence matrix of the PN model can describe its flow relation in detail.

2.2. Reachability Graph Analysis

With many advantages mentioned above, reachability graph (RG) analysis is adopted
as the main analyzing technique for designing an optimal deadlock recovery policy. In RG
analysis, all reachable markings of a PN model, which means the marking can be reached
from the initial one, are enumerated for further analysis. In RG, these markings can be
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presented as nodes and connected by directed arrows labeled with a transition of the PN
model, whose firing causes reaching from one marking to another.

By illustrating the RG of a PN model, all reachable states (markings) in the system
and their relation will be explored. These markings’ properties would be used in advanced
computation to design an optimal CT for solving deadlock problems. The reachable
marking and RG could be defined as follows:

Definition 1. (Reachable marking) Given a PN model R(N, M0), and each reachable marking M
must satisfy that M0[σ〉M , which σ denotes a fireable transition sequence.

Definition 2. (Reachability graph) Given a PN model R(N, M0), and the relevant reachability
graph G(N, M0) satisfying that ∀M ∈ G(N, M0), σ ∈ T ∈ N s.t. M0[σ〉M .

All reachable markings of a PN model could be grouped into three types: legal, quasi-
deadlock, and deadlock markings, which are denoted asML,MQ andMD, respectively.
The characteristics of these various types of markings could be well-described as the
following definitions.

Definition 3. (Deadlock marking) Given a reachability graph G, the set of all reachable deadlock
markings could be defined as follows:

MD = {M|M ∈ R(N, M0) ∧ ∀t ∈ T : ¬M[ t〉} (3)

Definition 4. (Legal marking) Given a reachability graph G, the set of all reachable legal marking
could be defined as follows:

ML = {M|M ∈ R(N, M0) ∧M0 ∈ R(N, M)} (4)

According to Definitions 3 and 4, the deadlock range and legal markings are clearly
separated from RG. However, there are still some other markings in RG that do not belong
toMD orML, which are so-called quasi-deadlock markings. The set of quasi-deadlock
markings is indicated asMQ, where it means the markings belong to illegal zone but the
system still not in a deadlock situation yet, i.e., there is at least one transition enabled in
MQ ∈ MQ. According to Equation (4), it is believed that every quasi-deadlock marking
must reach a deadlock marking in the end. The set of quasi-deadlock markings could be
defined as follows:

Definition 5. (Quasi-deadlock marking) Given a reachability graph G, the set of all reachable
quasi-deadlock markings satisfying thatMQ = G(N, M0)\(MD ∪ML).

For easier understanding, we take the PN model in Figure 1 as an example. After
traversal from the root node M0 via simulation tools, such as INA [55] or PNTools [56], a
total of 20 markings of RG are obtained. The contents of all markings are listed as Table 1.

Table 1. All markings PN model in Figure 1 and their contents.

Mi [Mi]1×|P| ∑p∈P Mi(p)×p

M0
[
3 0 0 0 0 0 0 3 1 1 1

]
3p1 + 3p8 + p9 + p10 + p11

M1
[
2 1 0 0 0 0 0 3 0 1 1

]
2p1 + p2 + 3p8 + p10 + p11

M2
[
3 0 0 0 1 0 0 2 1 1 0

]
3p1 + p5 + 2p8 + p9 + p10

M3
[
2 0 1 0 0 0 0 3 1 0 1

]
2p1 + p3 + 3p8 + p9 + p11

M4
[
2 1 0 0 1 0 0 2 0 1 0

]
2p1 + p2 + p5 + 2p8 + p10

M5
[
3 0 0 0 0 1 0 2 1 0 1

]
3p1 + p6 + 2p8 + p9 + p11
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Table 1. Cont.

Mi [Mi]1×|P| ∑p∈P Mi(p)×p

M6
[
1 1 1 0 0 0 0 3 0 0 1

]
p1 + p2 + p33 + 3p8 + p11

M7
[
2 0 0 1 0 0 0 3 1 1 0

]
2p1 + p4 + 3p8 + p9 + p10

M8
[
2 0 1 0 1 0 0 2 1 0 0

]
2p1 + p3 + p5 + 2p8 + p9

M9
[
2 1 0 0 0 1 0 2 0 0 1

]
2p1 + p2 + p6 + 2p8 + p11

M10
[
3 0 0 0 1 1 0 1 1 0 0

]
3p1 + p7 + 2p8 + p10 + p11

M11
[
3 0 0 0 0 0 1 2 0 1 1

]
3p11 + p5 + p6 + p8 + p9

M12
[
1 1 0 1 0 0 0 3 0 1 0

]
p1 + p2 + p4 + 3p8 + p10

M13
[
1 1 1 0 1 0 0 2 0 0 0

]
p1 + p2 + p3 + p5 + 2p8

M14
[
2 1 0 0 1 1 0 1 0 0 0

]
2p1 + p2 + p5 + p6 + p8

M15
[
3 0 0 0 1 0 1 1 0 1 0

]
3p1 + p5 + p7 + p8 + p10

M16
[
1 0 1 1 0 0 0 3 1 0 0

]
p1 + p3 + p4 + 3p8 + p9

M17
[
3 0 0 0 0 1 1 1 0 0 1

]
3p1 + p6 + p7 + p8 + p11

M18
[
0 1 1 1 0 0 0 3 0 0 0

]
p2 + p3 + p4 + 3p8

M19
[
3 0 0 0 1 1 1 0 0 0 0

]
3p1 + p5 + p6 + p7

And its RG is illustrated in Figure 2, with each marking as a node and transition as a
directed path. According to Definitions 3 to 5,MD = {M13, M14},MQ = {M4, M8, M9}
and the rest belong toML.
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Figure 2. RG of the PN model is shown in Figure 1. 

2.3. Control Transition 
Instead of using control place, this paper uses control transition (CT) as the main 

technique for dealing with the system deadlock problem of FMS. As mentioned above, 
system deadlock of FMS usually occurs because its high resource shareability could lead 
to resource competition between more than one scheduled sequence. According to ele-
mentary PN theory, places used to contain one or more tokens representing different 
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2.3. Control Transition

Instead of using control place, this paper uses control transition (CT) as the main
technique for dealing with the system deadlock problem of FMS. As mentioned above,
system deadlock of FMS usually occurs because its high resource shareability could lead to
resource competition between more than one scheduled sequence. According to elementary
PN theory, places used to contain one or more tokens representing different meanings.
When any transition fires (if enabled), tokens in part of places will be reallocated and
transformed into new markings. Therefore, every transition could be illustrated as a
directed arrow connecting a pair of markings in RG.

As stated above, system deadlock is unexpected in the operational sequence because
no transition is enabled in the deadlock situation. In this study, we adopt the deadlock
recovery technique as the main control strategy based on CT. CT is a set of well-designed
transitions, denoted as Tc and Tc ∩ T = ∅. CT is usually designed for recovering system
liveness under deadlock marking, i.e., CT can form new paths of deadlock marking in RG.
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According to elementary PN theory in Section 2, a transition t fires in a marking M
would be denoted as M[ t〉M′ , where M′ is a newly generated marking after firing. Then,
the value of marking M′ could be calculated by M′ = M + [N](t). A new transition can
also be calculated this way when two endpoint markings are already chosen. Supposing
there are two markings M1, M2 ∈ G(N, M0), and a generated CT tc between them will be
tc(M1, M2) = ∑p∈P M2(p)−M1(p). And tc could be further defined as follows:

tc(x, y) := {y− x|∀x, y ∈ G(N, M0)} (5)

where x and y represent any two nodes (markings) in RG G(N, M0). According to the
example in the last paragraph, (x, y) = (M1, M2) and Tc(M1, M2) = M2 −M1. Note that
a system marking also can be denoted as a multiset or a 1-dimensional array. In this case,
markings are presented as an array for quickly calculating, and tc also can be presented as
an array of the same length. The RG of tc, M1, and M2 is shown in Figure 3.
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3. Control Policy Based on Deadlock Recovery
3.1. Generating and Comparing Aiding Matrix (GCAM)

This paper aims to obtain the optimal transition-based controller to recover all system
deadlocks and provide maximal liveness. Building the generating and comparing aiding
matrix (GCAM) is necessary to develop the proposed deadlock recovery policy. Each PN
model has its corresponding GCAM, which could find out all possible CT for dealing with
deadlock markings. As mentioned in Section 2.3, a CT in RG is used to form new paths
leading from one marking to another. To solve system deadlock, the predecessor of CT
must be a deadlock marking, and the successor must be a legal one.

A GCAM G is a 3-dimensional integer matrix indexed by |MD|, |ML| and |P|.
For easy understanding, all markings and CT could be regarded as independent nodes,
then GCAM could be simplified as a 2-dimensional matrix G|MD |×|ML |

=
[
tc
(

MDi , MLj

)]
i∈N+

MD
, j∈N+

ML

=
[

MLj −MDi

]
i∈N+

MD
, j∈N+

ML

. Each element belongs to

G|MD |×|ML | means that the generated CT tc with ability to lead from MDi to MLj . To
perform the entire property of GCAM and each CT, the complete GCAM is presented as a
3-dimensional integer matrix, while each CT tc is written as a |P|-length array.

To build the whole GCAM, the characteristics of each RG marking must be verified
first, such as legal, quasi-deadlock, and deadlock marking. With such proper definition
above, the composition of RG and its scale could be well-defined. Here, we introduce two
1-dimension vectors, the deadlock zone vector, and the legal zone vector, to help illustrate
the GCAM, which are defined as follows:

Definition 6. (Deadlock zone vector) Given a reachability graph G and a set of all deadlock marking
MD, and its deadlock zone vector [D]1×|MD | holds ∀di ∈ [D]1×|MD |, Mdi ∈ MD.
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Definition 7. (Legal zone vector) Given a reachability graph G and set of all legal markingML,
and its legal zone vector [L]1×|ML | holds ∀lj ∈ [L]1×|ML |, Mlj ∈ ML.

These two vectors are used to list out all elements inMD andML in array formation.
Then the whole GCAM G can be built as follows:

G|MD |×|ML | = [1]|MD |×1 × [L]− [D]T × [1]1×|ML | =


tc
(

Md1 , Ml1

)
tc
(

Md1 , Ml2

)
· · · tc

(
Md1 , Mlj

)
tc
(

Md2 , Ml1

)
tc
(

Md2 , Ml2

)
· · · tc

(
Md2 , Mlj

)
...

...
. . .

...
tc
(

Mdi Ml1

)
tc
(

Mdi , Ml2

)
· · · tc

(
Mdi , Mlj

)

 (6)

where i ∈ N+
MD

, j ∈ N+
ML

.
Considering each CT as a |P|-length array, the GCAM can be re-written as follows:

G|MD |×|ML |×|P| =




tc
(

Md1 , Ml1

)
(p1) tc

(
Md1 , Ml1

)
(p2) · · · tc

(
Md1 , Ml1

)
(pk)

tc
(

Md1 , Ml2

)
(p1) tc

(
Md1 , Ml2

)
(p2) · · · tc

(
Md2 , Ml2

)
(pk)

...
...

. . .
...

tc
(

Md1 , Mlj

)
(p1) tc

(
Md1 , Mlj

)
(p2) · · · tc

(
Md1 , Mlj

)
(pk)




tc
(

Md2 , Ml1

)
(p1) tc

(
Md2 , Ml1

)
(p2) · · · tc

(
Md2 , Ml1

)
(pk)

tc
(

Md2 , Ml2

)
(p1) tc

(
Md2 , Ml2

)
(p2) · · · tc

(
Md2 , Ml2

)
(pk)

...
...

. . .
...

tc
(

Md2 , Mlj

)
(p1) tc

(
Md2 , Mlj

)
(p2) · · · tc

(
Md2 , Mlj

)
(pk)


...

tc
(

Mdi , Ml1

)
(p1) tc

(
Mdi , Ml1

)
(p2) · · · tc

(
Mdi , Ml1

)
(pk)

tc
(

Mdi , Ml2

)
(p1) tc

(
Mdi , Ml2

)
(p2) · · · tc

(
Mdi , Ml2

)
(pk)

...
...

. . .
...

tc
(

Mdi , Mlj

)
(p1) tc

(
Mdi , Mlj

)
(p2) · · · tc

(
Mdi , Mlj

)
(pk)





(7)

where i ∈ N+
MD

, j ∈ N+
ML

and k ∈ N+
P .

3.2. Comparing Computation

As mentioned above, a GCAM of the PN model is used to find the optimal CT
to address the deadlock problem. In GCAM, all possible recovering paths in RG are
enumerated, and each CT can solve at least one deadlock marking. According to definitions
of transition and CT, its ability to reallocate tokens can form the paths from one marking
to another in RG. Please note that not only one marking in RG satisfies the requirement
of firing a certain transition. A transition, especially a CT, is possibly fired in more than
one marking, i.e., a CT may recover more than one deadlock marking concurrently. In
order to find the CT with maximal recovery ability, it is necessary to process comparing
computations. When a CT appears more than one time in GCAM, then it is known that
this CT can solve more than one deadlock marking. For example, supposing there is a CT
tc(Md, Ml) in GCAM, which can solve deadlock marking Md and lead it to legal marking
Ml . Then there is another CT t′c

(
M′d, M′l

)
such that t

′
c = tc. Then, it is clear that tc can

solve two deadlock markings, Md and M′d.
Therefore, it is essential to compare all CTs to find the optimal one that can solve the

most deadlocks. In the proposed method, we first pick up one CT from GCAM, then it will
be compared to all others to find out its coverability in GCAM and recovery ability. After
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comparing the computation between all CTs and the rest of them, we check the recovery
ability of every CT and choose the optimal one as the leading solution in this iteration.

3.3. Redundancy Reduction Approach

Solving the deadlock problem of FMS is known as a PSPACE-complete problem. The
computational cost of solving such a problem may cause an exponential increase when
considering a more complex system. This paper aims to improve the existing method for
higher efficiency and keep the same experimental results. Some techniques are introduced
in the following section to reduce computational consumption and enhance efficiency.

Theorem 1. Given a GCAM G, then each CT in the same row, which has the identical predecessor
MD, has different values.

Proof of Theorem 1. According to Equation (5), a tc can be obtained via tc(x, y) = y− x,
where x, y ∈ G(N, M0). Considering a CT tc in GCAM, the predecessor of tc must be
a deadlock marking, and the successor must be a legal marking. Every CT in the same
row must have an identical predecessor MD, and each of them can lead to different legal
markings ML. According to Equation (5), suppose that every x of tc(x, y) in the same
row equals the the same MD, and y represents each legal marking ML ∈ ML. Each tc
belonging to the same row must be different from each other. �

Theorem 1 is introduced in the following methodology to reduce the computational
redundancy. In the comparing computation, each CT in GCAM must be compared with
others. Once the same CT is found, the rest of this row will be skipped, and the next
comparison will start from the next row (deadlock marking). This way, it can reduce the
computational cost a lot.

We also introduce another technique for redundancy reduction, which can help de-
crease the computational cost by comparing two CTs. It is known that CT is a |P|-length
vector. The comparison between two CTs usually starts from the first element of them until
the comparison of all elements is completed. Then the similarity of both CTs would be
identified. If the characteristic differences of each pair of CTs can be accurately recognized,
then the same results can be obtained even without full-length comparisons. In Theorem 2,
it is assumed that two CTs are different if any element of them is unequal.

Theorem 2. Given two CTs tc, t′c ∈ G for comparing computation. Once any element in tc and
t′c are different, such that tc(p) 6= t′c(p), then it is clear that tc 6= t′c.

Proof of Theorem 2. When it is said that tc = t′c, all elements in tc must be equal to
another one in the corresponding position of t′c, i.e., ∀i ∈ N+

P : tc(pi) = t′c(pi). On the
contrary, if any element in tc is not equal to another one in t′c, i.e., ∃i ∈ N+

P : tc(pi) 6=
t′c(pi), it is clarified that tc 6= tc’. �

3.4. Recovering Coverage Function

In the proposed GCAM-based deadlock recovery policy, each CT is designed to form
a new path in RG to lead the system from deadlock to legal situation. Note that at least one
deadlock marking satisfies any CT’s firing constraints. It implies that a CT can recover one
or more deadlock markings. To evaluate the recovery ability of all CTs, we introduce the
recovery function to evaluate their recovery ability.

Definition 8. (Recovery function) Given a CT tc ∈ G and a deadlock marking MD ∈ MD.
Suppose that rMD (tc) denotes whether tc is able to recover MD and satisfies:

rMD (tc) =

{
1, MD[tc〉
0, otherwise

(8)
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and its recovering function could be defined asR(tc) = ∑MD∈MD
rMD (tc).

4. Algorithm

In this section, we develop a GCAM-based algorithm for designing the optimal re-
covery solution with maximal system liveness. The deadlock problem of FMS is known
as a PSPACE-complete problem, implying that it is also an NP-hard problem. Solving
such a problem means costing plenty of computational space and time. This GCAM-
based method can find the optimal CT and recover all deadlock markings, which Pan
first proposed [40]. In this paper, we further define it more precisely and improve its
computational cost. We also designed an efficiency evaluation function to evaluate the
improved method’s advantages.

Here, we summarize the main steps of the proposed method:

1. Given a PN model of FMS, its RG must first be illustrated.
2. Confirm the property of all markings, e.g., legal, quasi-deadlock, and deadlock markings.
3. Build the corresponding GCAM.
4. Run the comparing computation to find out the optimal CT.
5. Add the CT to the PN model and back to step 1.

In this paper, we use GCAM and CT as the main solution techniques. Therefore, the
GCAM would be built in each iteration after the RG was obtained. Note that a CT may
be able to solve one or more deadlock markings, i.e., a CT may appear one or more times
in GCAM. In order to find out the optimal CT, which can provide maximal liveness, it is
necessary to compare each CT in GCAM to evaluate their frequency.

However, the number of possible CTs depends on the magnitude of RG. The size
of GCAM becomes much larger when considering the PN model with more complexity.
Therefore, in Section 3, we introduce some techniques to improve the original approach [40],
which can provide higher efficiency in obtaining the optimal CT. An overview of the
procedure of comparing computation is presented in Figure 4.

In Figure 4, the GCAM is firstly illustrated as a box to represent a 3-dimensional matrix
G|MD |×|ML |×|P|. After building the GCAM, we implement the comparing computation

to obtain the optimal CT. First, a CT tc
(

Mdi , Mlj

)
was chosen as the former one within

comparison, presented as a blue bar. Then another CT tc
(

Mdα , Mlβ

)
was chosen as the

latter one, which is presented as a bar in red color. According to Theorem 1, please note
that there is at most one CT in row Mdα , which is illustrated as a pink bar, equaling to

tc
(

Mdi , Mlj

)
. Once a CT belongs to row Mdα is recognized as having the same value

with tc
(

Mdi , Mlj

)
, i.e., tc

(
Mdi , Mlj

)
= tc

(
Mdα , Mlβ

)
, the comparing computation

for the row Mdα would be skipped, and the next comparison will start with the first CT in
row Mdα+1 as the latter one.

After comparing computation, the optimal CT, or the CT with maximalR(tc) in other
words, is obtained and able to solve the maximal system deadlocks. Then tc would be
added to the original PN model and forming a new RG. IfMD 6= ∅ in the next iteration,
GCAM would be built via newly generated RG.

Here, we develop the proposed Algorithm 1 as follows.
Note that not all deadlock problems can be solved entirely just by adding one CT.

Therefore, we adopt an iterating method to obtain the set of the optimal CT Tc. In each
iteration, it is always to choose the CT with the maximal recovery ability, which has maximal
R(tc). The chosen CT would be added to the original PN model when the iteration ends.
Then, a new RG is generated to identify the set of legal and deadlock markings in the new
iteration. This recovery policy keeps running untilMD = ∅.
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In Section 3.3, we propose two approaches to reduce computational redundancy,
which are also used to improve the original algorithm. Known as a PSPACE-complete
problem, solving the undesirable deadlock problem of FMS always costs a lot during
the computation procedure. Through experiments in our study, these approaches are
demonstrated to enhance efficiency and reduce operational costs significantly. To further
estimate its improvement, we introduce an efficiency evaluation method to qualify the
computational cost for judging the performance of the proposed control policy.

This paper adopts the GCAM-based deadlock recovery policy as the main analyzing
methodology. The effectiveness of comparing computation greatly depends on the size
of RG and GCAM, i.e., the size ofMD andML. According to computational complexity
theory, the computational complexity of one algorithm can be expressed by using big
O notation with input size n. However, these different variables, including R(N, M0),
G(N, M0), G|MD |×|ML |×|P|,MD andML, could lead to difficulty in the measurement of
computational complexity. In addition, please note that not all CTs in GCAM would be
used during the comparing computation, i.e., the computational complexity of comparing
computation may randomly change according to whether the matched CT could be quickly
found or not. Therefore, we propose a method for precisely measuring the computational
complexity of the GCAM-based deadlock recovery strategy.
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Algorithm 1: Improved GCAM-based Recovery with High Comparing Efficiency

Input: A PN model of an FMS R(N, M0) with system deadlocks.
Output: An optimal controlled FMS with CT.
1. Illustrate the RG G(N, M0) with all reachable markings.
2. Identify the set of legal markingsML and the set of deadlock markingsMD.
3. Build GCAM G|MD |×|ML |×|P|.
4. Run comparing computation.

while (MD 6= ∅) do
for (tc(Mdi , Mlj ) ∈ G|MD |×|ML |×|P|) do
R(tc(Mdi , Mlj ))← ∇Mdi

(tc(Mdi , Mlj )

for (tc(Mdα
, Mlβ

) ∈ G|MD |×|ML |×|P| : α 6= i) do
for (k ∈ N+

|P|) do
if (tc(Mdi , Mlj )(pk) 6= tc(Mdα

, Mlβ
)(pk)) then

β← β + 1
k← 1

else
α← α + 1
β← 1

end if
R(tc(Mdi , Mlj ))← R(tc(Mdi , Mlj )) + rMdα

(tc(Mdi , Mlj ))

end for
end for

end for
Tc = Tc ∪ tc(Mdi , Mlj ) : max(R(tc))
Add Tc to the PN model.
Back to Step 1.

end while
5. Output completely recovered system R′(N′, M0), where N′ = (P, T ∪ Tc, F, W, M0).

Definition 9. (Expected value) Given a finite set of random variables X and each of them has
probability Pr(xi) of occurring. The expected value of xi would be E(X) = ∑i∈N+

|X|
xi × Pr(xi).

Definition 10. (Efficiency evaluation) Given an RG G(N, M0) and its GCAM G|MD |×|ML |×|P|,
with the set of legal markingsML and deadlock onesMD. The efficiency of comparing computations
is defined as follows:

E(CA) = (|MD| − 1)× |ML| × (|MD| − 1)∑τ∈N+
|ML |

τPr(τ)×∑σ∈N+
|P|

σPr(σ) (9)

where E denotes the total number of elementary steps to perform the time requirement
by the proposed algorithm, and CA represents the event of comparing computations. The
variable τ denotes the maximum of β within comparing between tc(Mdi , Mlj) and other
CTs in the row dα of G, and σ denotes the maximum of k : tc(Mdi , Mlj)(pk).

5. Experimental Results

In this section, we introduce two typical PN models of FMS to demonstrate the
proposed recovery policy.

Example 1. Considering the PN model of Figure 1 and its RG shown in Figure 2. There are,
in total, 20 reachable markings, including 15 legal markings, 3 quasi-deadlock markings, and
2 deadlock markings.

Given the PN model of FMS in Figure 1, there are some software tools for generating
the corresponding RG, e.g., INA [55] and PNTools [56] are used in this paper. The detailed
properties of the PN model can be presented via the incidence matrix, which is shown
in Equation (2). First of all, the model’s RG analysis is implemented, and 20 reachable
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markings are obtained, such that the entire RG and relationship between each marking
can be illustrated. In Figure 2, all markings belonging to RG are denoted as single nodes
and connected by directed arrows, representing the transition that transforms the system
from one marking into another. Then, the contents of the set of MD, MQ, and ML
can be further identified where MD = {M13, M14}, MQ = {M4, M8, M9} and ML =
{M0, M1, M2, M3, M5, M6, M7, M10, M11, M12, M15, M16, M17, M18, M19}. Accordingly, the
corresponding GCAM G of the first iteration can be built as a 2× 15× 11 matrix, which is
shown in Equation (9).

G2×15×11 =

M13

M14



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
M0
M1
M2
M3
M5
M6
M7
M10
M11
M12
M15
M16
M17
M18
M19



2 −1 −1 0 −1 0 0 1 1 1 1
1 0 −1 0 −1 0 0 1 0 1 1
2 −1 −1 0 0 0 0 0 1 1 0
1 −1 0 0 −1 0 0 1 1 0 1
2 −1 −1 0 −1 1 0 0 1 0 1
0 0 0 0 −1 0 0 1 0 0 1
1 −1 −1 1 −1 0 0 1 1 1 0
2 −1 −1 0 0 1 0 −1 1 0 0
2 −1 −1 0 0 1 0 −1 1 0 0
0 0 −1 1 −1 0 0 1 0 1 0
2 −1 −1 0 0 0 1 −1 0 1 0
0 −1 0 1 −1 0 0 1 1 0 0
2 −1 −1 0 −1 1 1 −1 0 0 1
−1 0 0 1 −1 0 0 1 0 0 0
2 −1 −1 0 0 1 1 −2 0 0 0



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
M0
M1
M2
M3
M5
M6
M7
M10
M11
M12
M15
M16
M17
M18
M19



1 −1 0 0 −1 −1 0 2 1 1 1
0 0 0 0 −1 −1 0 2 0 1 1
1 −1 0 0 0 −1 0 1 1 1 0
0 −1 1 0 −1 −1 0 2 1 0 1
1 −1 0 0 −1 0 0 1 1 0 1
−1 0 1 0 −1 −1 0 2 0 0 1
0 −1 0 1 −1 −1 0 2 1 1 0
1 −1 0 0 0 0 0 0 1 0 0
1 −1 0 0 −1 −1 1 1 0 1 1
−1 0 0 1 −1 −1 0 2 0 1 0
1 −1 0 0 0 −1 1 0 0 1 0
−1 −1 1 1 −1 −1 0 2 1 0 0
1 −1 0 0 −1 0 1 0 0 0 1
−2 0 1 1 −1 −1 0 2 0 0 0
1 −1 0 0 0 0 1 −1 0 0 0





(10)

After the whole comparison computation, the optimal CT tc(M13, M3) = tc(M14, M5) =[
1 −1 0 0 −1 0 0 1 1 0 1

]
can be verified, implying that this CT can solve two

deadlock markings M13 and M14 in the first iteration. For easy understanding, tc(M13, M3) =
tc(M14, M5) can be simplified as tc(M13, M3) = tc(M14, M5) = p1 − p2 − p5 + p8 +
p9 + p11. The input nodes of tc are •tc = {p2, p5}, and the output nodes are tc• =
{p1, p8, p9, p11}. The property of CT for the PN model shown in Figure 1 is presented in
Table 2.
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Table 2. The property of each CT for PN model in Figure 5.

T ccc
•tttccc tttccc• R(tttccc) Mddd:Mddd[tttccc〉

tc p2, p5 p1, p8, p9, p11 2 M13, M14

Then we add the subnet of tc to the original PN model, which is shown in Figure 5. The
newly generated RG of Figure 5 is shown in Figure 6. The incidence matrix [N′]|T∪Tc|×|P|
consists of the original model, and the subnet of CT is presented as Equation (10) in
the following.

[
N′
]
|T∪Tc|×|P| =

[
N

NTc

]
=

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
t1
t2
t3
t4
t5
t6
t7
t8
tc



−1 1 0 0 0 0 0 0 −1 0 0
0 −1 1 0 0 0 0 0 1 −1 0
0 0 −1 1 0 0 0 0 0 1 −1
1 0 0 −1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 −1 0 0 −1
0 0 0 0 −1 1 0 0 0 −1 1
0 0 0 0 0 −1 1 0 −1 1 0
0 0 0 0 0 0 −1 1 1 0 0
1 −1 0 0 −1 0 0 1 1 0 1


(11)
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In the RG of Figure 6, there is not any deadlock marking or illegal zone, and the solved
model is regarded as deadlock-free. Unlike other existing works, this transition-based
recovery policy can solve the deadlock problem and provide maximal liveness.

In this paper, we introduce some techniques to reduce the computational cost and
redundancy defined in Section 3.3. These techniques are also used to improve the existing
GCAM-based method [40]. In Section 4, we developed an efficiency evaluation approach for
comparing GCAM-based deadlock recovery policy computation. The evaluation approach
shows that the proposed control policy has the equivalent recovering ability and lower
computational cost. A comparison between GCAM-based deadlock recovery policies is
presented in Table 3.
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Table 3. Efficiency evaluation of comparing computation of GCAM-based deadlock recovery policy.

Methods T ccc
•T ccc∪T ccc

• R(tttccc) E(CA)

Pan [40] 1 6 2 1320
Proposed 1 6 2 720

Example 2. Consider the PN model of Figure 7 with P = {p1 ∼ p19} and T = {t1 ∼ t14}.
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Next, we consider another typical PN model of more complex FMS, shown in Figure 7.
Here is a summarized description of its structure: there are a total of 19 places and
14 transitions. Its incidence matrix can be presented as a 14× 19 matrix, as Equation (12) in
the following. The initial marking is M0 = 6p1 + 6p8 + p14 + p15 + p16 + p17 + p18 + p19.
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[N] =

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14



−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 1 0 0 −1
1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0



(12)

After generating the corresponding RG of Figure 7, a total of 282 markings are obtained,
including 205 legal markings, 61 quasi-deadlock markings, and 16 deadlock markings. Then its
GCAM, a 16× 205× 19 matrix, can be further generated. Due to space limitations, the detailed
contents of all reachable markings and CT could not be listed here.

Via the first iteration of comparing computations, there are a total of five CTs with maxi-
mal R(tc) obtained in this iteration. Each of them can recover eight deadlock markings, in-
cluding tc(M107, M4) = tc(M162, M16) = tc(M174, M25) = tc(M211, M45) = tc(M227, M58) =
tc(M249, M90) = tc(M261, M106) = 3p8 − p9 − p10 − p11 + p17 + p18 + p19, tc(M107, M10) =
tc(M162, M29) = tc(M174, M41) = tc(M211, M67) = tc(M227, M81) = tc(M249, M120) = tc
(M261, M134) = 2p8 − p10 − p11 + p17 + p18, tc(M107, M20) = tc(M162, M49) = tc(M174, M60) =
tc(M211, M95) = tc(M227, M109) = tc(M249, M149) = tc(M261, M167) = 2p8 − p9 − p11 + p18 +
p19, tc(M107, M66) = tc(M162, M119) = tc(M174, M132) = tc(M211, M176) = tc(M227, M185) =
tc(M249, M228) = tc(M261, M232) = −p1 + p7 + 3p8 − p9 − p10 − p11 + p17 + p18, and tc(M107,
M124) = tc(M162, M180) = tc(M174, M191) = tc(M211, M229) = tc(M227, M233) = tc(M249, M262)
=tc(M261, M264) = −p1 + p7 + 2p8 − p9 − p11 + p18. In the experiment of [40], there are a total of
40 CTs obtained in the first iteration, where those are just the repetition of these 5 CTs, i.e., the same
results are obtained by the proposed method. Then the next iteration will be run because some
deadlock markings are still not solved.

After adopting tc1 = 3p8 − p9 − p10 − p11 + p17 + p18 + p19 as the main CTs in the first
iteration, the second iteration begins with eight deadlock markings removed from MD. In the
newly generated RG, there are eight deadlock markings left. Through comparing computations,
there are a total of five optimal CTs obtained. Each of them can solve five deadlock markings,
including tc(M89, M8) = tc(M170, M42) = tc(M198, M64) = tc(M205, M65) = tc(M256, M135) =
p1 − p4 + 2p8 − p9 − p10 + p14 + p17 + p19, tc(M89, M17) = tc(M170, M61) = tc(M198, M92) =
tc(M205, M94) = tc(M256, M168) = p1 − p4 + p8 − p10 + p14 + p17, tc(M89, M30) = tc(M170, M86)
=tc(M198, M121) = tc(M205, M123) = tc(M256, M193) = p1 − p4 + p8 − p9 + p14 + p19, tc(M89,
M91) = tc(M170, M163) = tc(M198, M199) = tc(M205, M200) = tc(M256, M250) = −p4 + p7 +
2p8 − p9 − p10 + p14 + p17, and tc(M89, M150) = tc(M170, M221) = tc(M198, M243) = tc(M205,
M244) = tc(M256, M273) = −p4 + p7 + p8 − p9 + p14. In the second iteration of [40], there are a total
of 25 CTs obtained. For the same reason mentioned above, it is actually the same experimental result
as the proposed one in this paper.

By generating a new RG in the third iteration, there are still three deadlock markings inMD.
There are 81 CTs identified after comparing computation, where they all can solve these three deadlock
markings. The CT tc(M154, M1) = tc(M202, M4) = tc(M257, M25) = 2p1 − p5 − p6 + 2p8 − p9 −
p10 + p16 + p17 + p18 + p19 is chosen as the third CT in Tc. The property of all CTs is shown in Table 4.
Then, the set of CTs Tc = {tc1 − tc3} is added to the original PN model, where the new incidence
matrix [N′]|T∪Tc|×|P| is shown as Equation (13).
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[
N′
]
=

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
tc1
tc2
tc3



−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 1 0 0 −1
1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 3 −1 −1 −1 0 0 0 0 0 1 1 1
1 0 0 −1 0 0 0 2 −1 −1 0 0 0 1 0 0 1 0 1
2 0 0 0 −1 −1 0 2 −1 −1 0 0 0 0 0 1 1 1 1



(13)

Table 4. The property of each CT for PN model in Figure 7.

T ccc
•tttccc tttccc• R(tttccc) Mddd:Mddd[tttccc〉

tc1 p9, p10, p11 3p8, p17, p18, p19 8 M107, M162, M174, M211, M227, M249,
M261, M277

tc2 p4, p9, p10 p1, 2p8, p14, p17, p19 5 M89, M170, M198, M205, M256
tc3 p5, p6, p9, p10 2p1, 2p8, p16, p17, p18, p19 3 M154, M202, M257

According to the experimental results above, the proposed deadlock recovery method can
actually obtain the same results and achieve equivalent controlling ability. Table 5 compares the
proposed method and other existing deadlock recovery methods. There is no doubt that the proposed
one is an optimal deadlock recovery policy, which can solve all deadlock markings and keep all legal
markings reachable.

Table 5. Comparison with other research on deadlock recovery.

Methods T ccc
•T ccc∪T ccc

• R(tttccc) G’(N,M0)

Huang [34] 7 69 16 282
Row and Pan [38] 6 53 16 282

Row et al. [41] 5 36 16 282
Bashir et al. [37] 4 14 16 282

MNRDMP by Chen et al. [36] 3 25 16 282
MNRTP by Chen et al. [36] 3 27 16 282

Dong et al. [39] 3 25 16 282
Pan [40] 3 25 16 282

Proposed 3 25 16 282

As mentioned above, this paper aims to improve the existing GCAM-based deadlock recovery
policy [40]. To measure the improvement precisely, Section 4 gives an efficiency evaluation approach
for evaluating the computational performance of the GCAM-based methods. The comparison is
shown in Table 6, where it is evident that the computational efficiency of the proposed method
E(CA) is much lower than the existing one [40]. Here also gives the execution time of comparing
computation of experiments in Table 7, which are run on a computer with an Intel Core i5-3210M
CPU running at 2.50 GHz using 8 GB of RAM, running Windows 7 operating system. According to
Table 7, it is known that the proposed method can reduce the total execution time of the comparing
computation of Example 2 from 3.618 s to 0.234 s.
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Table 6. Comparing results of GCAM-based deadlock recovery policies.

Methods T ccc
•T ccc∪T ccc

• R(tttccc) E(CA)

Pan [40] 3 25 16 9.03× 107

Proposed 3 25 16 4.75× 107

Table 7. Efficiency evaluation of comparing computation of GCAM-based deadlock recovery policy.

Methods 1st Iteration 2nd Iteration 3rd Iteration Total

Pan [40] 2.917 0.655 0.046 3.618
Proposed 0.202 0.031 <0.001 0.234

6. Conclusions
In the deadlock domain, we all know that seeking optimal controllers for solving flexible

manufacturing systems (FMS) is a challenging issue. In particular, how to enhance the computational
efficiency seems even more difficult work. In this paper, we develop an optimal deadlock recovery
policy based on Pan [40] and further improve its computational efficiency by reducing redundancy.
We also introduce an approach to evaluate the operating efficiency. Through two typical examples
of the PN model of FMS, the evaluation results show that the proposed method provides higher
computational efficiency and the same recovering ability. The system deadlock problem is a PSPACE-
complete problem and always takes much higher computational consumption. In our future works,
we will consider another typical PN model of FMS [4], which has a more complex structure, or
other models.
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