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Abstract: This article explores the feasibility of producing biohydrogen from microalgae following
their use in wastewater purification from food industry facilities and the removal of high levels of
carbon dioxide (CO2) from the air. The authors investigated various methods for disrupting the
cell membranes of microalgae and their impact on biohydrogen yield. The microalgae biomass
obtained after wastewater and air purification underwent pre-treatment using physicochemical and
chemical methods, including microwave radiation, acid treatment, and thermal treatment. The
highest hydrogen production occurred during thermal and acid treatments of biomass with the
addition of starch (44.24 mL/L of suspension). The use of microwave radiation for processing did
not yield significant results. A comparison of the biohydrogen values obtained from untreated and
treated biomass revealed that treatment enhances biohydrogen yield.
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1. Introduction

The long-term depletion of fossil fuels and greenhouse gas emissions resulting from
their combustion are global problems faced by humanity. In 2018, the primary energy
sources were oil (33.6%), coal (27.2%), natural gas (23.9%), and nuclear (4.4%). Renewable
energy constituted 10.8% of the total, with hydropower contributing 6.8% [1,2]. The
development and use of alternative and renewable energy sources have been proposed as
one of the key ways to solve these problems. Scientists are becoming more interested in
biofuels because they are environmentally friendly and made from affordable, non-edible,
and inexpensive feedstocks [3–5]. Hydrogen is expected to play an increasingly vital role
in future developments over the next decade. It is assumed that it will be able to replace
fossil fuels as an energy resource for regional funds or supplement it [6].

Hydrogen is one of the most common carbon-free fuels. Hydrogen is considered a
cleaner and more promising fuel option due to its remarkable energy output
(143 GJ tonne−1) [7]. Hydrogen has a high energy density, which makes it attractive for
use in a variety of energy-intensive applications such as automobiles, power generation,
and some industries [8]. One of the main advantages of using hydrogen as a fuel is that
when it is burned, carbon dioxide is not produced, which is the main gas that causes an
increase in the greenhouse effect [7]. As a result of hydrogen combustion, only water is
formed [9], which makes its use for energy generation environmentally friendly [10]. The
use of hydrogen greatly contributes to the reduction in environmental problems such as
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greenhouse gas emissions and acid rain. In addition, hydrogen can be produced from
a variety of sources and technologies, making it promising for sustainable energy and
helping to reduce dependence on fossil resources [11].

An important issue in terms of environmental impact is the method of hydrogen
production. This is often conducted using natural gas steam reforming (SRM), in which
natural gas is reacted with steam at a high temperature and pressure in the presence of
a catalyst. The reaction leads to the formation of hydrogen and carbon dioxide. Another
energy-intensive method of hydrogen production is water electrolysis, where an electric cur-
rent is used to decompose water into hydrogen and oxygen. Gasification, thermochemical
processes, and other photochemical processes are also applied. The main disadvantages of
these methods of hydrogen production in terms of environmental impact are the formation
of large volumes of carbon dioxide during steam reforming and the need for large amounts
of electricity and water during electrolysis. The low concentration of hydrogen produced by
thermochemical methods and the need for high-temperature complex operating conditions
increase production costs and energy consumption, making them unsustainable [12–14].

In recent times, there has been a significant focus on biohydrogen production. Bio-
hydrogen is generated by biological organisms, typically microorganisms, as part of their
metabolic or biochemical processes [15,16]. The bulk of biologically produced hydrogen
in the biosphere is released as a result of microbial fermentation processes, in which mi-
croorganisms decompose organic matter, releasing carbon dioxide and hydrogen [17]. The
advantage of biological hydrogen production by microbes, when compared to chemical
hydrogen production, is that it can occur at lower temperatures and pressures, which
makes it a more energy-efficient process [18,19]. In the production of biohydrogen, the
feedstock, its availability, and cost also play an important role.

Approximately half of the total biomass on the planet is represented by algae [20].
Such a rapid spread of algae can be explained not only by their natural life cycle but also
by anthropogenic negative impacts on the environment, such as eutrophication. However,
despite the negative effects of eutrophication, algae are a valuable natural resource for
the production of biohydrogen. Microalgae are of particular interest among biomass
resources [21]. Microalgae, containing a significant amount of carbohydrates, have great
potential as a feedstock for the production of various types of biofuels, such as biodiesel,
bioethanol, biohydrogen, and biogas [22,23].

Microalgae are a promising raw material for obtaining biohydrogen due to their prop-
erties. These microorganisms accumulate significant amounts of carbohydrates, such as
starch, glycogen, and cellulose, which are considered efficient biohydrogen substrates [24].
They have a high capacity for photosynthesis and reproduction. Microalgae use available
light, carbon dioxide, and some nutrients in the environment to grow. This reduces the
need for external nutrient sources. Also, the use of carbon dioxide from the atmosphere as
a source of inorganic carbon helps to reduce the carbon footprint. Another advantage of
cultivating microalgae is their environmentally friendly production, which eliminates the
need for various fertilizers, avoids competition with fertile agricultural soils, and requires
less water than terrestrial crops, contributing to the efficient use of freshwater resources [25].
Microalgae can be cultivated in various types of water, including wastewater from food
industry enterprises, which can be used by enterprises as an additional block for the bi-
ological treatment of polluted waters. Some species of microalgae can be used to extract
nutrients from the water, which can help reduce eutrophication in polluted aquatic ecosys-
tems [26]. There are technologies and methods for cultivating microalgae on an industrial
scale, which makes their production and application for the production of biohydrogen
more accessible, economically feasible, and environmentally safe [27].

Biohydrogen can be obtained from microalgae using several methods, namely photofer-
mentation [28], biophotolysis [29], dark fermentation [22,30–32], and electrofermentation.
The last method listed is less common due to its low biohydrogen output efficiency and
the need for electrical energy. Biophotolysis and photofermentation are the most common
methods for the biological generation of hydrogen. However, the implementation of these
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methods of biohydrogen production requires light energy, which causes limitations in the
application of these methods and reduces their economic efficiency [33].

Microalgae have the ability to produce biohydrogen as a result of their photosynthetic
metabolism. Hydrogen gas is released by H2-producing microorganisms (H2 producers)
as a metabolic byproduct of their fermentation [34–36]. They use light and water to form
hydrogen gas, making it a renewable and environmentally friendly source of energy [37].
However, an important condition for successful photofermentation is the adaptation of
microalgae to anaerobic conditions.

A more promising direction for obtaining biohydrogen from microalgae is the dark
fermentation of microalgae biomass [22,38]. This method of biohydrogen production makes
it possible to obtain hydrogen without the use of light, which expands the possibilities for
its production under various conditions and at night [39]. This method differs in that the
production of biogas is carried out in an anaerobic mode. Anaerobic microorganisms such
as specific bacteria or archaea can be introduced to facilitate the fermentation process. The
process of dark fermentation begins with the adaptation of microorganisms to anaerobic
conditions. In the absence of light and oxygen, anaerobic microorganisms metabolize
organic compounds in the biomass of microalgae [40]. During this metabolic process,
complex organic molecules are broken down into simpler components. This process is
facilitated by the activation of enzymes like hydrogenase. Hydrogenase, predominantly
found in microalgae, plays a critical role in the initial step of hydrogen synthesis. It activates
the process that initiates the formation of hydrogen molecules. This is followed by the
action of nitrogenase, which performs the function of reducing chemical elements, turning
them into hydrogen molecules [41]. The main product of interest is hydrogen gas, which is
released as a by-product of these microbial reactions. In addition to hydrogen gas, dark
fermentation can also produce other by-products, including volatile fatty acids such as
acetic and butyric acids, carbon dioxide, and small amounts of methane.

Biomass pre-treatment improves carbohydrate conversion by preventing the formation
of inhibitory chemicals and the breakdown of carbohydrates. This process remains the
most critical and costly step in the process of biohydrogen production [42,43].

However, microalgae biomass contains minimal amounts of lignin and hemicellulose,
which prevent biohydrogen formation. Therefore, the pretreatment of microalgae biomass
becomes much more economically accessible and technically simpler [44]. For the pre-
treatment of algae biomass, various methods are used, including heat treatment, the use of
acids, and the use of microwave radiation [45].

Nguyen et al. [46] used the starch-rich Chlamydomonas reinhardtii biomass as a substrate
for the production of biohydrogen by the amylolytic Thermotoga neopolitana. When intact
cells were used as a substrate, no hydrogen was produced, and when the cell wall was
destroyed by sonication or methanol treatment, hydrogen was produced in significant yield.
In their studies, Liu et al. showed that biomass without pretreatment produces little hydro-
gen (474 mL/L) compared to biomass pretreated by various methods (1424 mL/L) [47].

Thermal pre-treatment involves the use of thermal energy to liquefy the biomass,
which promotes hydrolysis of the system components. Xia et al. studied the effect of
treatment temperature on biohydrogen yield. Combined heat treatment of Nannochloropsis
oceanica biomass was used for the enzymatic production of hydrogen [48]. The biomass
was microwave-heated, and it was observed that at temperatures exceeding 100 ◦C, the
yield of reducing sugar reached 0.289 ± 0.002 g/g total volatile solids (TVSs), while at
100 ◦C and below only 0.047 ± 0.002 g/g, TVS is achieved. Further, it was also shown that
thermal pre-treatment alone is not sufficient to disrupt cell walls, decrease the degree of
the polymerization of polysaccharides, and release fermentable sugars. The combination
of thermal and chemical treatment has improved the hydrogen production potential of
microalgae biomass [49,50].

Chemical treatments for biomass include the use of acids, alkalis, and other solvents
to hydrolyze microalgae biomass. Although alkaline pretreatment is widely used for
lignocellulosic biomass, it was shown in Xia et al.’s study [51] that alkaline pretreatment is
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ineffective when it comes to the hydrolysis of microalgae biomass, and acid hydrolysis is
the most preferred method. After acid pretreatment, the mixture is usually neutralized with
alkali and used for fermentation. However, it was reported by Efremenko et al. [52] that
when Clostridium was used in fermentation, the presence of acid during heat treatment at
121 ◦C reduced the hydrogen yield by a factor of three. According to Kumar et al. [53], heat
treatment by simple autoclaving in combination with mild acid is the most commonly used
pretreatment of microalgae biomass since the operation is simple and the yield of reducing
sugars is quite high. Therefore, the yield of biohydrogen from algae is strongly affected by
the initial treatment of microalgae biomass.

In this study, Chlorella kessleri VKPM AI–11 ARW microalgae were utilized for the first
time after cultivation under high carbon dioxide conditions. Additionally, the biomass
was cultivated for the first-time using wastewater from the food enterprise LLC «Baltika»
Brewing Company in St. Petersburg, Russia. These aspects contribute to the novelty of
this research.

The purpose of this work was to reduce the cost of obtaining biohydrogen from
microalgae by using the residual biomass of microalgae Chlorella kessleri VKPM AI–11
ARW, the cultivation of which took place in conditions of high carbon dioxide content,
after wastewater treatment. The aim was also to study the effect of various methods of
processing the biomass of microalgae Chlorella kessleri VKPM AI–11 ARW, obtained during
the purification of wastewater and air from CO2, on the biohydrogen yield.

2. Materials and Methods

The main object of the study was a strain of unicellular green alga Chlorella kessleri
VKPM AI–11 ARW. The strain is highly adaptable to various categories of water bodies
and can develop in water bodies in different geographical zones, thereby preventing water
blooms. It persists in water bodies at temperatures ranging from 4 to 16 ◦C and grows
at temperatures ranging from 17 to 30 ◦C. Additionally, it exhibits higher productivity
when cultivated in production facilities compared to other strains (Chlorella vulgaris KIEG,
Chlorella vulgaris BIN) [54].

To reduce the cost of the obtained biomass and, subsequently, biohydrogen, the
biomass was cultivated on the wastewater of the food enterprise LLC «Baltika» Brewing
Company» (St. Petersburg, Russia). These wastewaters contain the macroelements neces-
sary for the growth and development of microalgae (phosphate ions (PO4

3–), ammonium
ions (NH4

+), nitrite ions (NO2
–), and sulfates (SO4

2–). Trace elements were added with a
nutrient medium [55]. The composition of wastewater of LLC «Baltika» Brewing Company»
(St. Petersburg, Russia) (mg/L) is presented in Table 1 [56].

Table 1. Wastewater composition of LLC «Baltika» Brewing Company».

Name of the Component Concentration, mg/L

Chemical Oxygen Demand 5650
Total Nitrogen 43.77

NH4−N 20.85
NO2−N 0.022
NO3−N 1.6

Total Phosphor 11.85
PO4−P 25.86

SO4 207.2
Ca 22.3

Microalgae were preliminarily grown in a nutrient medium and then mixed in a ratio
of 7:3 with wastewater. This ratio was chosen on the basis of previous studies [57,58]. It is
optimal because, under these conditions, there is no loss of biomass; it grows well, using
pollutants for its nourishment.
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The removal efficiency is calculated by the Formula (1):

E = ((C1 − C2)/C1) · 100%, (1)

where C1 is the initial concentration of the nutrient in wastewater, mg/L; C2 is the final
concentration of the nutrient, after purification by microalgae, mg/L.

CO2 was used as a source of inorganic carbon. The content of CO2 in the gas–air
environment was 30%, which corresponds to the high content of CO2 from thermal power
plants emissions. Photobioreactor biofilter (PhBR-B) was supplied with 50 L of microalgae
suspension, and the remaining 50 L was filled with a gas–air mixture with a high CO2
content and aerated for 648 h (27 days). CO2 was added daily through aerators in a volume
of 7.5–17.5 L (15–39%) of the unoccupied volume of PhBR-B. Intensive bubbling with gases
with a high content of CO2 (15–39%) of the suspension of Chlorella microalgae makes it
possible to intensify the processes of the absorption of CO2 by the biomass of microalgae.
CO2 from gaseous emissions is not only a source of inorganic carbon for microalgae but
also promotes the more rapid reproduction of microalgae cells and maintains the required
pH of the solution in the range of 6.0 to 9.0 [59]. Thus, the microalgae cultivation process
can be considered not only as a water purification process but also as an air purification
process, which helps to reduce the carbon footprint. To supply carbon dioxide to the
PhBR-B, a CO2 cylinder was used, simulating emissions from gas power plants. The
gas was supplied through an aeration pipe located at the bottom of the photobioreactor
biofilter with holes. To measure the composition of the gas mixture in photobioreactors, a
GEOTECH ga200plus gas analyzer (Geotechnical Instruments (UK) Ltd., Sovereign House,
Queensway, Leamington Spa, Warwickshire, CV31 3JR, UK) was used (Figure 1).
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Figure 1. PhBR-B system with CO2 source: 1—PhBR-B, 2—CO2 supply system, 3—gas analyzer,
4—aerator, 5—microalgae biomass, 6—PhBR-B space for CO2 supply.

The process of the cultivation and simultaneous purification of air and water was car-
ried out in photobioreactors with a volume of 100 L (50 L of microalgae suspension and 50 L
of free volume) with fluorescent lamps (2600 lux) turned on and a temperature of 26 ± 1 ◦C.
Suspension aeration was carried out with a Xilong AP-003 aerator, (Xilong Scientific Co.
Ltd., Shantou, China) with sequential aeration—2 × 2.5 L/min. The optical density of the
microalgae suspension was measured using a KFK-3 photoelectric colorimeter.

To increase the yield of biohydrogen, the obtained biomass of microalgae after the
purification of wastewater and air was preliminarily treated with physicochemical and
chemical methods. The following processing methods were used: microwave radiation
and acid and heat treatment [48,60,61].

For acid treatment, 2% hydrochloric acid was used. To do this, 50 mL of 2% hydrochlo-
ric acid solution was added to 2 L of microalgae suspensions. After acid treatment, the pH
dropped from 6.8 to 5.9. After acid treatment, the microalgae suspension was subjected to
heat treatment at a temperature of T = 100 ◦C for 20 min. Microwave radiation was used
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as a physical impact. Biomass after acid and heat treatment was subjected to microwave
radiation with a wavelength of α = 0.12 m, power = 800 W for 10 min. For the additional
nutrition of hydrogen-producing bacteria, potato starch was used in the amount of 30 g
(10% of the volume of microalgae suspension in the bioreactor).

The biomass of microalgae treated in various ways was loaded into hermetic biore-
actors (8 pieces, bioreactor volume is 1 L); the suspension volume in the bioreactor was
300 mL.

For the process of obtaining biohydrogen, an inoculum was introduced in the amount
of 30 mL (10% of the volume of microalgae suspension in the bioreactor). As an inoculum,
a mixture of hydrogen-producing bacteria was used, which were cultivated for 6 months in
a flow cultivator to obtain biohydrogen from various organic wastes [62,63]. This inoculum
was provided to the research laboratory of bioenergy and supercritical technologies of the
Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center
VIM» (FSAC VIM). The inoculum was subjected to sequencing analysis, which revealed
the presence of hydrogen-producing bacteria such as Aquifex pyrophilus, Calderobacterium
hydrogenophilum, and Acidithiobacillus ferrooxidans.

The composition of composite mixtures in bioreactors is presented in Table 2.

Table 2. Composition of composite mixtures for biohydrogen production from microalgae biomass.

Bioreactor No. Volume of
Suspension, mL HCl (2%) 100 ◦C Microwave

Radiation
Additive

(Potato Starch), g Inoculum, mL

1, 2 300 – – – – 30

3, 4 300 + + – – 30

5, 6 300 + + – 30 30

7, 8 300 + + + – 30

For the convergence of the experiment, 2 bioreactors of each composition were created.
After loading the composite mixtures to create anaerobic conditions, each bioreactor

was purged with nitrogen. Next, the bioreactors were placed in a dark thermobox at a
temperature of 38 ◦C to create mesophilic conditions. The fermentation process took place
within 6 days.

The analysis of biogas obtained in bioreactors was determined on a Khromatek-Crystal
5000.2 gas chromatograph (ZAO SKB Khromatek, Yoshkar-Ola, Russia). Analysis mode:
Analysis time, min: 10; Pressure, kPa: 220,000; Temperature, ◦C: 200; Number of detectors:
2; Type of detectors: thermal conductivity detector; Carrier gases: helium, argon.

Cell microscopy was performed using a Mikmed 5 microscope operating in transmitted
light at a useful magnification of 400. Micrographs were obtained using a ToupCam video
eyepiece. To detect dead cells, the biomass was treated with methylene blue.

All measurements were carried out in triplicate. The measurement error was 3–7%.

3. Results

Compounds of nitrogen, phosphorus, and sulfur, necessary for the cultivation of
biomass, were present in the studied wastewater and replaced nutrients in the nutrient
medium. In the process of cultivation, water was purified due to the absorption of nitrogen,
phosphorus, and sulfur by microalgae as macroelements. After wastewater treatment and
cultivation, according to the initial and final concentrations, the efficiency of wastewater
treatment was calculated (according to Formula (1)), which for ammonium nitrogen was
75%, phosphates 52%, nitrites 94%, and sulfates 56% (Figure 2).

In order to assess the quality of water purified from pollutants, final concentrations
were compared with the permissible concentrations of pollutants in wastewater, established
in order to prevent a negative impact on the operation of centralized sewage systems [64].
The result of post-treatment with microalgae shows high efficiency in the removal of
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biogenic elements and reaches the values of permissible concentrations for all substances
except NH4

+.
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Parallel to the process of water purification, the process of air purification from CO2
by microalgae Chlorella kessleri was carried out. The uptake of CO2 by microalgae is intense.
The content of CO2 in the photobioreactor biofilter decreased from 30% to almost 0 in 3 days.
After the complete absorption of CO2 in the gas–air environment, CO2 was re-supplied
with a content of 30%. The biomass optical density increased throughout the experiment
according to the classical exponential biomass growth curve.

The main results of the study of carbon dioxide absorption are presented by the
authors in [59]. In total, 50 L of Chlorella kessleri microalgae suspension absorbs 15.5 L of
CO2 in an average of 3 days. Thus, for 1 h, 1 L of Chlorella kessleri microalgae suspension
(initial optical density—0.798) is able to absorb an average of 0.0046 L of CO2, and for 1 day,
1 L of Chlorella kessleri microalgae suspension is able to absorb on average of 0.11 l CO2.

To determine the mass of utilized CO2, the density of CO2 (at a temperature of 27 ◦C)
was used, which is equal to 1.773 kg/m3. A total of 1 L of suspension of microalgae Chlorella
kessleri absorbs 0.195 ± 0.001 g of CO2 per day, increasing its absorbing capacity as the
number of biomass cells (optical density of the suspension) increases.

In the process of cultivation–purification of water and air, a biomass of microalgae
was obtained with an optical density of 2.5 and pH = 6.8. After acid treatment, the color
of the biomass changed from dark green to green-gray, which indicates the destruction of
microalgae cells.

Microstructural studies before and after the application of physicochemical methods
of microalgae suspension pretreatment recorded the destruction and disintegration of the
cell wall of the microalgae biomass. Most of the cells after treatment with methylene blue
are stained, which indicates the detection of dead cells with destroyed cell walls (Figure 3).

The treated cells coagulate into agglomerates (Figure 3b,c). Destroyed microalgae cells
will enhance the process of biological conversion.

In order to obtain biohydrogen, microalgae biomass with various pretreatments was
introduced into bioreactors, and the process of dark fermentation was carried out. On the
6th day, biogas was generated in all bioreactors, and its composition was analyzed using a
chromatograph (Table 3).
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Table 3. Results of measurements of the composition of biogas obtained during dark fermentation of
microalgae biomass without and with treatment.

Bioreactor No. * H2, mol.% CO2, mol.% O2, mol.% N2, mol.%

1, 2 0.00494 ± 0.00002 2.170 5.817 91.027

3, 4 0.03323 ± 0.00002 7.513 0.842 86.881

5, 6 2.17912 ± 0.00002 23.763 0.049 70.505

7, 8 0.02383 ± 0.00002 5.388 0.988 85.053
* The composition of bioreactors corresponds to the number in Table 1.

After loading all the components into the 1 L bioreactor, which resulted in biogas
formation, the remaining free volume was 670 mL. Using this information and the data from
Table 2, the volume of biohydrogen generated in milliliters was calculated. Subsequently,
the volume of biohydrogen was determined per liter of suspension, with an initial volume
of microalgae suspension of 300 mL. The calculated values for the volume of generated
biohydrogen are presented in Table 4.

Table 4. The amount of generated biohydrogen.

Bioreactor No. H2, mL/L of Microalgae Suspension

1, 2 0.03
3, 4 0.67
5, 6 44.24
7, 8 0.52

The maximum volume of hydrogen was formed in bioreactors 5 and 6 (with the
addition of starch) and amounted to 44.24 mL from 1 L of microalgae suspension.

The composition of biogas obtained in bioreactors 5 and 6 with the addition of starch
was studied using a gas chromatograph (Table 5).

Table 5. The composition of biogas obtained in bioreactors 5 and 6 with the addition of starch.

Component Time, min Area, mV·s Height, mV Concentration Unit of Measure Detector

H2 0.930 1491.181 453.904 2.179 mol.% 2

CO2 0.983 40,157.867 9011.215 23.763 mol.% 1

O2 1.559 3.872 0.814 0.048729 mol.% 2

N2 2.333 4541.205 492.372 70.505 mol.% 2
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Table 5. Cont.

Component Time, min Area, mV·s Height, mV Concentration Unit of Measure Detector

H2S 0.000 0.000 0.000 0 mol.% 1

CH4 0.000 0.000 0.000 0 mol.% 2

COS 0.000 0.000 0.000 0 mol.% 1

CO 0.000 0.000 0.000 0 mol.% 2

Chromatograms of the composition of biogas obtained in bioreactor No. 6 are shown
in Figure 4.
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4. Discussion

Table 2 shows that the highest amount of hydrogen production occurs when using
biomass with modified acid and temperature with the addition of starch, as observed in
bioreactors 5 and 6. The use of microwave treatment did not give significant results, and
the value of biohydrogen does not differ much from the values of biohydrogen obtained
from biomass only with acid and temperature treatment (bioreactors 3 and 4 and 7 and 8).
The results of biohydrogen production from untreated biomass (bioreactors 1 and 2) and
processed biomass indicate that pre-treatment increases biohydrogen yield.

It is known that starch is a polymeric carbohydrate consisting of glucose molecules and
can serve as an additional source of carbon for microorganisms during dark fermentation.
Starch is a major and common component of agricultural by-products or crop wastes (corn,
rice, potato, sweet potato, etc.) [65–70]. Carbohydrates such as glucose and starch are
especially good substrates for most of the hydrogen-producing fermentative microorgan-
isms [70]. In microalgae, starch degradation serves as a nutrient source for cell metabolism
and growth in the absence of light. Additionally, starch provides a carbon backbone for
lipid biosynthesis in adverse conditions [71]. To enhance biohydrogen production, it is
essential to manipulate metabolism through genetic or metabolic engineering, aiming to
reduce starch degradation [72]. During dark fermentation, the process of biohydrogen
formation can be limited by a lack of carbon, which reduces its efficiency. The addition
of starch to the culture medium provides the microalgae with an additional source of
carbon, which allows them to continue active dark fermentation and therefore increase
hydrogen production. Medium with starch as the only carbon source served as a simple
model of cheap substrate for algal hydrogen generation [73]. Starch is an additional food
for microalgae and facilitates their growth and reproduction, which in turn can increase
their total biomass and increase the potential for biohydrogen production.
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Due to the fact that bioreactors were purged with nitrogen to create an anaerobic
environment, this gas occupies about 70% of the total composition of biogas. In addition
to hydrogen, biogas produces CO2 in the amount of 23%. To obtain pure hydrogen, it
is possible to remove nitrogen and carbon dioxide due to sorption or cryogenic purifica-
tion [74,75]. In the case of cryogenic purification, it is possible to obtain substances with
added value: from CO2 to dry ice at a temperature of −78 ◦C; from nitrogen to liquid nitro-
gen at a temperature of −195.8 ◦C. It should be noted that the freezing point of hydrogen is
−259.2 ◦C.

To solve the environmental problems of air purification from CO2 and waste water,
with the further use of the obtained biomass to produce biohydrogen, we propose a block
diagram (Figure 5).
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Figure 5. Block diagram of hydrogen production from microalgae biomass: 1—photobioreactor
for microalgae cultivation with wastewater and air emissions treatment; 2—biomass pretreat-
ment block; 3—thermobox for creating mesophilic conditions; 4—sealed bioreactor; 5—block of
cryogenic cleaning; I—wastewater of the enterprise; II—uterine culture; III—nutrient medium;
IV—biomass of microalgae; V—the biomass of microalgae after treatment; VI—inoculum; VII—dry
ice; VIII—liquid nitrogen.

This approach has the potential to address multiple environmental and energy chal-
lenges while providing valuable resources for the national economy. The purification of
water and air from CO2 and the production of biohydrogen, dry ice, and liquid nitrogen.

Beyond the evident environmental benefits resulting from the implementation of this
proposed scheme in various production processes, the primary product of interest is the
biohydrogen it generates. The use of this eco-friendly type of fuel is diverse, and every year
there are more and more directions for its application. One of the most obvious is the use of
biohydrogen as a high-quality efficient energy carrier for refueling fuel cells [76]. It is also
proposed to use the resulting biohydrogen as an additive to fossil fuels for combustion [77].
This mixing will reduce the amount of carbon dioxide emissions into the atmosphere [78]. In
addition, adding hydrogen to standard diesel fuel will help reduce the amount of vibration
in the engine [77]. The use of biohydrogen obtained according to the developed scheme
will reduce the cost of obtaining it, thereby bringing additional economic benefits. Also, the
application of hydrogen mixing with natural gas in gas network transportation not only
improves the utilization rate of hydrogen energy but also reduces the cost of the large-scale
updating of household or commercial appliances [79]. Adding hydrogen to the natural gas
network for the utilization of factories, gas stations, and urban communities does not only
help to relieve greenhouse gas emissions but also facilitates the market’s ability to consume
hydrogen [80].

The use of biohydrogen has multifaceted and invaluable implications for both ecology
and humanity as a whole. The transition to renewable energy sources is now an integral
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part of modern technological development. As previously described, biohydrogen opens
up new opportunities not only for a smooth transition to green energy but also for achieving
the goals of a circular economy. Leveraging years of scientific experience and data from
experiments, we can not only avoid common mistakes in renewable energy utilization but
also develop tailored strategies for their optimal and sustainable use. That is why it is vital
to continue experiments in the field of obtaining biohydrogen and to study the possibilities
of its further application.

5. Conclusions

The study showed that microalgae Chlorella kessleri, when cultivated, are able to purify
wastewater during cultivation with a purification efficiency: from ammonium nitrogen
up to 75%, phosphates 52%, nitrites 94%, and sulfates 56%. When cultivated, microalgae
use carbon dioxide as a source of inorganic carbon, thereby being able to purify the air.
Cleaning from CO2 with a content of 30% CO2 in the gas–air flow occurs in 3 days by
100%. It was calculated that 1 L of Chlorella kessleri microalgae suspension (initial optical
density—0.798) absorbs 0.195 ± 0.001 g of CO2 on average in 1 day.

The study of the influence of microalgae biomass treatment methods on the biogas
yield showed that acid and thermal treatment is sufficient. Processing with microwave
radiation at the selected parameters did not give a positive result. An increase in the yield of
biohydrogen occurred with the addition of starch. The maximum amount of biohydrogen
(44.24 mL/L suspension) was obtained under anaerobic dark fermentation conditions.

Understanding the processes of biohydrogen production from microalgae is an im-
portant step in the development of renewable energy sources. These organisms represent
a promising source of biomass that can be used to produce hydrogen, a clean and safe
fuel. Despite some technical limitations, active research in this area promises to expand
the use of biohydrogen in the future and make it more competitive with conventional
energy sources.
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