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Abstract: NdFeB magnet scraps contain large amounts of iron, which poses challenges in recycling
and greatly hinders the recovery of rare earths through direct hydrometallurgical treatment. To
address this issue, we conducted tests using a flash furnace to explore the low-temperature reduction
behavior of NdFeB magnet scraps under an H2 atmosphere based on thermodynamic calculations
comparing the reduction properties of rare earth oxides (REOs) and iron oxide (FeOx). The results
demonstrated that the reduction rate of FeOx surpassed 95% under optimal conditions including
a reduction temperature of 723 K, a particle size (D90) of 0.45 µm, and an H2 flow rate of 2 L/min.
X-ray diffraction and electron probe microanalysis of the reduction product revealed that the flash
reduction at 723 K facilitated the selective reduction of FeOx, owing to efficient mass and heat transfer.
Consequently, a two-step magnetic separation process was employed to separate metallic Fe and
REOs from the reduction product. Fe-rich phase, obtained with a remarkable Fe distribution ratio
of 90.2%, can serve as an economical raw material for weathering steel. Additionally, the REOs are
enriched in REO-rich phase, achieving a distribution ratio of 93.9% and significantly boosting the
REO concentration from 30.2 to 82.8 wt%.

Keywords: NdFeB magnet scraps; flash reduction; magnetic separation; rare earths; iron

1. Introduction

NdFeB magnetic materials are widely used in various high-technology fields because
of their excellent remanence, magnetic energy product, and intrinsic coercivity [1,2]. NdFeB
magnet scraps are primarily produced during cutting, grinding, and polishing, accounting
for ~30% of raw materials in the production of magnets. According to various reports [3–6],
the NdFeB magnet scraps containing ~25% rare earth and ~65% iron, which are considerably
higher fractions than those found in natural ores, can thus be considered to constitute a
valuable “urban mine”.

Numerous studies have been dedicated to the recycling of NdFeB magnet scraps.
Several pyrometallurgical methods, such as the glass slag method [7], selective chlorina-
tion [8], and liquid metal extraction [9], have been previously explored for NdFeB recovery.
However, these approaches typically involve high energy consumption and result in low
yields of rare earths, leading to secondary pollution through exhaust gas and waste residue
release. In contrast, hydrometallurgical techniques [10–12] offer distinct advantages, such
as high leaching efficiencies and the production of high-purity rare earth oxide (REO)
products. Among these, conventional hydrochloric acid leaching followed by extractive
separation [6], commonly utilized in industries like Ganzhou YouLi Technology in Ganzhou,

Processes 2023, 11, 2895. https://doi.org/10.3390/pr11102895 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11102895
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11102895
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11102895?type=check_update&version=2


Processes 2023, 11, 2895 2 of 13

China, and Ji’an XinTai Technology in Ji’an, China, has been widely adopted as a method.
Nonetheless, a major drawback is the incomplete recovery of the large amounts of iron
present in the scraps, which makes the process cumbersome and leads to the significant
generation of secondary solid waste or wastewater. Implementing a low-energy process to
address these challenges by separating Fe or enriching REOs before acid leaching could
greatly enhance the overall economic and environmental value of the recycling processes.

Consequently, a new process needs to be developed for effective Fe separation, particu-
larly the simultaneous recovery of Fe resources and enrichment of REOs. Directly separating
Fe2O3 and Nd2O3 via magnetic separation is difficult owing to their low-intensity magnetic
difference [13,14]. However, metallic Fe and Nd2O3 are easily and selectively separated via
magnetic separation. Fe2O3 is reduced in a fixed-step process [15]. Specifically, when the
temperature exceeds 843 K, the path for reducing Fe2O3 is Fe2O3→ Fe3O4→ FeO→ Fe.
When the temperature is below 843 K, the path for reducing Fe2O3 is Fe2O3→ Fe3O4→ Fe.
Pineau et al. [16,17] investigated the low-temperature reduction of Fe2O3 using H2 and
observed wüstite and Fe in the reduction product. Therefore, low-temperature reduction
below 843 K is feasible using H2. However, a major drawback of this process is that the re-
duction of iron ores using H2 results in the formation of compact iron layers that can hinder
the reduction rate. To avoid this, we first proposed the flash reduction technique [18,19].
The flash furnace is a new and efficient device that has been developed according to the
characteristics of raw materials for reduction, oxidation, pyrolysis, and smelting. This
technology, owing to its efficient mass and heat transfer and the core technology of rapid
fluidized heating, has been widely applied to copper [20], iron [21], and lead [22]. However,
the low-temperature reduction behavior of FeOx in NdFeB magnet scraps, particularly with
efficient mass and heat transfer using a flash furnace, has not been reported thus far.

In this study, FeOx in NdFeB calcine is directly reduced under the conditions of a H2
atmosphere and then separated via magnetic separation. The flash reaction process must
be comprehensively evaluated to efficiently obtain metallic Fe, especially in a short reac-
tion time. Thermodynamic calculations are initially performed using the data in Lange’s
handbook of chemistry [22,23] to predict the factors controlling the reduction of REOs
or FeOx. The transformations of the Fe-containing phases are characterized using X-ray
diffraction (XRD). The effect of flash reduction, followed by magnetic separation, on the
microstructure and composition is studied using electron probe microanalysis (EPMA).
The method considered in this study can be used to recycle in addition to significantly im-
proving the concentration of REOs. These Fe-rich phases can be utilized as inexpensive raw
materials to produce weathering steel without necessitating additional pretreatments. And
the influence of impurity element Fe on the subsequent recovery of REOs can be reduced.

2. Experimental
2.1. Materials and Analysis

NdFeB magnet scraps were provided by Ganzhou YouLi Technology, Ganzhou, China.
The main components, phase, and morphology of the NdFeB magnet scraps of particle
size (D90) 178 µm were comprehensively characterized via roasting, degreasing, grinding,
and oxidizing roasting. The phase of NdFeB calcine was confirmed using XRD (Bruker
D8 ADVANCE, Karlsruhe, Germany), as shown in Figure 1a. The NdFeB calcine contains
crystalline Fe2O3, Nd2O3, and a small amount of FeNdO3, respectively. The specific
composition was analyzed using inductively coupled plasma-optical emission spectroscopy
(ICP-OES, IRIS Intrepid II XSP, Thermo Electron Co., Waltham, MA, USA). The NdFeB
calcine contains 65.5% FeOx, 30.2% REOs, 1.6% SiO2, 0.5% CoO, 0.1% CuO, 0.3% Al2O3,
0.3% CaO, and 1.5% other. The morphologies and compositions of the underflow samples
were characterized using scanning electron microscopy–energy dispersive spectroscopy
(SEM-EDS, MLA650F, Bruker, Karlsruhe, Germany) and EPMA (EPMA-8050G, Shimadzu,
Kyoto, Japan), as shown in Figure 1b,c. The calcined NdFeB exhibits a dense morphology,
and the REOs and Fe regions are closely linked.
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Figure 1. XRD pattern (a) and EMPA analysis (b,c) of the calcined NdFeB.

2.2. Experimental Apparatus and Procedure

Initially, the specific particle size of the material is obtained via high-energy ball milling
with a 20:1 ball/materials ratio (FRITSCH P6, Hamburg, Germany), and the particle size
analysis is carried out using a laser particle size analyzer (Mastersizer 3000, Malvan, UK).
As shown in Figure 2, a flash furnace (Φ127 mm × h3000 mm), which was fabricated to be
custom-made, is used to selectively reduce FeOx from 100 g of the raw material in several
seconds (~5 s). Because the equipment is a flash furnace and the mass of reaction material
is just 100 g, the reduction process is approximately identified as a constant temperature
process. The reduction temperature is increased according to the desired heating program,
using a mixed gas of H2 (30%) and N2 (70%) as the reducing atmosphere. Using the
feeding system of the flash furnace, the NdFeB calcine with a carrier gas (N2, 0.3 L/min)
is sprayed and dispersed into the reaction tower under the combined force of the hot gas
flow of the reducing atmosphere, gravity of the sample, and impulse of the carrier gas.
The reduction product obtained from the collector is cooled to room temperature and
undergoes a two-step wet magnetic separation process. For this purpose, an XCRS-74
magnetic tube (manufactured by Hengshun, Chongqing, China) with varying magnetic
field intensities is employed to recover metallic Fe. The first step involves high-intensity
(≥100 mT) magnetic separation to achieve a high yield of metallic Fe, while the second step
involves low-intensity (<100 mT) magnetic separation to attain a high degree of metallic Fe.
The resulting magnetic and nonmagnetic products are referred to as metallic Fe (Fe-rich
phase) and the REO-rich phase, respectively.
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The reduction rate of FeOx (η) is calculated using Equation (1):

η = (mr/mc) × 100% (1)

where mr is the mass of metallic Fe after reduction (g), and mc is the total content of Fe in
the NdFeB calcine before reduction (g).

The yield of Fe (x) is defined using Equation (2),

x = (mi/mt) × 100% (2)

where mi is the mass (g) of the Fe-rich phase after magnetic separation, and mt is the total
mass (g) of the NdFeB calcine before magnetic separation.

The distribution ratios of Fe (yf) and REOs (ye) are then defined using Equations (3)
and (4), respectively.

yf = (mf × af/(mf × af + me × bf)) × 100% (3)

ye = (me × ce/(mf × de + me × ce)) × 100% (4)

where mf/me is the mass (g) of the Fe-rich/REO phase after magnetic separation; af/bf is
the mass fraction of Fe in Fe-rich/REO-rich phase; and de/ce is the mass fraction of REOs
in Fe-rich/REO-rich phase.

3. Results and Discussion
3.1. Thermodynamic Analysis

The main phases of the NdFeB calcine determined through the raw material source
and XRD analysis are listed with the corresponding reduction reaction of flash reduction
via H2 in Table 1. However, thermodynamic data on FeNdO3 are inadequate due to their
low content in terms of the NdFeB calcine; thus, these results are primarily used for the
H2-based reduction of FeOx and Nd2O3, the latter representing REOs. Thermodynamic
calculations were performed using the date in Lange’s handbook of chemistry [23] to predict
the factors (such as temperature and reductant concentration) controlling the reduction
of rare earths and iron. Lange’s handbook of chemistry has the world’s favorite and
complete thermochemical data. The relationship between temperature (T) and the standard
Gibbs free energy change for the reduction reaction is shown in Figure 3. As shown
in Figure 3a, H2 is a good reductant and reacts easily with FeOx. Moreover, reduction
reactions (1−5) can be optimized to facilitate the direct interaction of FeOx phases with H2
at lower temperatures (<1000 K). REOs are not to be reduced under the same conditions.
Figure 3b displays the compositions of the FeOx phase under H2 atmospheric conditions.
Based on these results, both the reduction temperature and H2 concentration are regarded
as crucial conditions in this study. Furthermore, Figure 3b reveals that the reduction
temperature should be maintained below 843 K. The H2 concentration should be controlled
to exceed 78% to ensure the complete reduction of Fe2O3 into metallic Fe. Therefore, the
selective reduction of FeOx could be theoretically achieved according to the thermodynamic
calculation. Thereafter, magnetic separation could be used to separate pure Fe and the
REO-rich phase.
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Table 1. Reactions of the reduction process [23].

Reaction No. Reactions ∆G (kJ/mol) vs. T(K)

(1) 1/3Fe2O3(s) + H2(g) = 2/3Fe(s) + H2O(g) ∆G = −0.029T + 15.87
(2) 3Fe2O3(s)+ H2(g) = 2Fe3O4(s) + H2O(g) ∆G = −0.106T − 18.63
(3) Fe3O4 (s) + 4H2(g) = 3Fe(s) + 4H2O(g) ∆G = −0.019T + 20.19
(4) Fe3O4(s) + H2(g) = 3FeO(s) + H2O(g) ∆G = −0.052T + 40.89
(5) Fe2O3(s) + H2(g) = 2FeO(s) + H2O(g) ∆G = −0.070T + 21.05
(6) FeO(s) + H2(g) = Fe(s) + H2O(g) ∆G = −0.008T + 13.29
(7) 1/3Nd2O3(s) + H2(g) = 2/3Nd(s) + H2O(g) ∆G = −0.038T + 343.85

Processes 2023, 11, 2895 5 of 13 
 

 

(3) Fe3O4 (s) + 4H2(g) = 3Fe(s) + 4H2O(g) ∆G = −0.019T + 20.19 
(4) Fe3O4(s) + H2(g) = 3FeO(s) + H2O(g) ∆G = −0.052T + 40.89 
(5) Fe2O3(s) + H2(g) = 2FeO(s) + H2O(g) ∆G = −0.070T + 21.05 
(6) FeO(s) + H2(g) = Fe(s) + H2O(g) ∆G = −0.008T + 13.29 
(7) 1/3Nd2O3(s) + H2(g) = 2/3Nd(s) + H2O(g) ∆G = −0.038T + 343.85 

 
Figure 3. The diagram of Gibbs free energy as a function of temperature for Reactions (1–7) (a), 
equilibrium phase compositions for the H2 reduction of FeOx (b). 

3.2. Effects of Temperature and Particle Size on the Reduction Rate of FeOx 
Based on the thermodynamic analysis and findings reported in the literature [14,24], 

the effects of temperature (423, 523, 623, 723, 823, and 923 K) and various particle sizes 
(D90 = 0.45, 0.87, 3, and 37 μm) on the FeOx reduction rate were evaluated in this study 
(Figure 4a). Other initial conditions were fixed, considering H2 and carrier gas (N2 gas) 
flow rates of 2 and 0.3 L/min, respectively. The reaction temperature and particle size con-
siderably influence the reduction efficiencies of FeOx. When the reduction temperature is 
increased from 423 to 723 K, the reduction rate of FeOx increases significantly, particularly 
in cases of smaller particle sizes (ranging from 5 to 95%). When the temperature exceeds 
723 K, the reduction rate of FeOx with D90 = 0.45 μm does not vary significantly, fluctuating 
around approximately 95%. The smaller particle size, which increases the contact surface 
of the gas–solid reaction, strengthens the reduction kinetics [25,26]. However, the smaller 
particle size requires longer durations of grinding and higher levels of energy consump-
tion (Table 2). Considering that the laboratory high-energy ball mill typically cannot be 
used to grind nanoparticles, D90 = 0.45 μm is selected. When the reaction temperature ex-
ceeds 723 K and D90 is less than 0.45 μm, the reduction rate of FeOx approaches 95.2% and 
tends to stabilize. This result is consistent with the thermodynamic calculations. 

Table 2. The particle size of NdFeB calcine obtained by the different grinding time. 

Grinding time (h) 4 16 32 56 72 
D90 (μm) 37 3 0.87 0.45 0.40 
D50 (μm) 25 2.1 0.58 0.34 0.26 
D10 (μm) 13 1.2 0.31 0.19 0.14 

Figure 3. The diagram of Gibbs free energy as a function of temperature for Reactions (1–7) (a),
equilibrium phase compositions for the H2 reduction of FeOx (b).

3.2. Effects of Temperature and Particle Size on the Reduction Rate of FeOx

Based on the thermodynamic analysis and findings reported in the literature [14,24],
the effects of temperature (423, 523, 623, 723, 823, and 923 K) and various particle sizes
(D90 = 0.45, 0.87, 3, and 37 µm) on the FeOx reduction rate were evaluated in this study
(Figure 4a). Other initial conditions were fixed, considering H2 and carrier gas (N2 gas)
flow rates of 2 and 0.3 L/min, respectively. The reaction temperature and particle size
considerably influence the reduction efficiencies of FeOx. When the reduction temperature
is increased from 423 to 723 K, the reduction rate of FeOx increases significantly, particularly
in cases of smaller particle sizes (ranging from 5 to 95%). When the temperature exceeds
723 K, the reduction rate of FeOx with D90 = 0.45 µm does not vary significantly, fluctuating
around approximately 95%. The smaller particle size, which increases the contact surface
of the gas–solid reaction, strengthens the reduction kinetics [25,26]. However, the smaller
particle size requires longer durations of grinding and higher levels of energy consumption
(Table 2). Considering that the laboratory high-energy ball mill typically cannot be used
to grind nanoparticles, D90 = 0.45 µm is selected. When the reaction temperature exceeds
723 K and D90 is less than 0.45 µm, the reduction rate of FeOx approaches 95.2% and tends
to stabilize. This result is consistent with the thermodynamic calculations.

Table 2. The particle size of NdFeB calcine obtained by the different grinding time.

Grinding time (h) 4 16 32 56 72

D90 (µm) 37 3 0.87 0.45 0.40

D50 (µm) 25 2.1 0.58 0.34 0.26

D10 (µm) 13 1.2 0.31 0.19 0.14
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(fixed reaction temperature of 723 K and N2 gas flow rates of 0.3 L/min).

3.3. Effects of H2 Flow Rate and Particle Size on the Reduction Rate of FeOx

The effect of H2 flow rate and particle size on the reduction rate of FeOx is elucidated
in Figure 4b. It is observed that the reduction rate experiences a slight increment as the H2
flow rate is elevated from 0.5 to 2.0 L/min. However, beyond this point, increasing the H2
flow rate to 3.0 L/min does not notably affect the reduction rate. Consequently, a H2 flow
rate of 2.0 L/min is deemed optimal. Conversely, the reduction rate exhibits substantial
variation at the same H2 flow rate when particle sizes differ. Remarkably, even in a low
reducing atmosphere of 0.5 L/min, a reduction rate of 90% can be achieved. To attain this, a
reduction in powder particle size is imperative, thus leading to the selection of a D90 value
of 0.45 µm.

To assess the separation of REOs/Fe through magnetic separation, the reduction
products undergo characterization using XRD and EPMA (Figures 5 and 6). XRD patterns
reveal distinct characteristic peaks corresponding to metallic Fe and Nd2O3, providing
further confirmation of the selective reduction of Fe through flash reduction. EPMA results
further substantiate this, indicating an enrichment of Fe and REOs, with massive Fe2O3
particles reduced into elliptic metallic Fe particles. This effective separation of Fe and rare
earth within reduction products facilitates the subsequent magnetic separation of Fe and
REOs, a crucial step in the process.
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The comparison and analysis of technological conditions for reducing Fe2O3 from
hematite or NdFeB scrap to metallic Fe, as presented in Table 3 [26–30], yield several
significant findings. Firstly, the conventional reduction method necessitates a lengthy
reaction time that typically exceeds one hour. In contrast, the flash reduction method
stands out by significantly reducing this reaction time, optimizing efficiency. Secondly,
the gas–solid reduction process exhibits a notably faster reaction rate when compared
to the solid–solid reduction process. Moreover, it manages to achieve this accelerated
reaction rate while also lowering the required reaction temperature. This result highlights
the advantages of the gas–solid reduction approach in terms of both speed and energy
efficiency. Thirdly, it is observed that the reduction temperature decreases as the particle
size of a raw material becomes finer. Leveraging this characteristic, the flash reduction
method, conducted under a hydrogen atmosphere, successfully capitalizes on the small
particle size of the raw materials. This strategic choice has led to a substantial reduction
in both reaction temperature and duration, marking a significant advancement in the
reduction process’s efficiency and sustainability.

Table 3. Comparison for reducing Fe2O3 from hematite or NdFeB scrape to metallic Fe.

Ref. Method Reductant Particle Size T/K Time Reduction Rate/%

[26] Gas–solid reduction H2 + CO ~150 mm 1373 60 min 94.7

[27] Flash reduction H2 + CO 21 µm 1623 5 s 90

[28] Solid–solid reduction C 74 µm 1473 240 min 88.08

[29] Solid–solid reduction C 150 µm 1823 60 min 99.12

[30] Solid–solid reduction C ~100 µm 1773 240 min 99.8

This work Flash reduction H2 0.45 µm 723 5 s 95.2
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3.4. Effect of Magnetic Field Intensity on the Separation Rate of Fe/REOs

Based on the magnetic differences between the reduction products, Fe and REOs
were separated using a magnetic tube [31,32]. The effect of magnetic separation field
intensity on the separation rate was initially investigated. The yield of Fe powder increased
with the increasing magnetic field intensity, and the presence of REOs in the Fe-rich
phase simultaneously increased. When the magnetic field intensity increased to 240 mT,
a maximum yield of Fe (~80%) was attained (Figure 7a); however, the content of REOs
retained in the Fe-rich phase approached 16 wt% (Figure 7b), resulting in a decrease in
Fe content in Fe-rich phase (Figure 7c). One-step magnetic separation would result in
a significant waste of REOs. Therefore, a weak field intensity is used for the second-
stage magnetic separation of the Fe-rich phase. Although the weaker magnetic separation
decreases the Fe yield (82.8 to 54.7%), the REOs can be effectively recovered. Particularly,
when the magnetic separation intensity is 40 mT, the yield of Fe reaches 54.7% (Figure 7d),
the content of REOs in the Fe-rich phase decreases from ~16 to 4.1 wt% (Figure 7e), and the
content of Fe in the Fe-rich phase is enriched from ~80 to 90.2% (Figure 7f). Therefore, the
proposed two-stage magnetic separation is suitable for separating Fe- and REO-rich phases.
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To further verify the effectiveness of the two-stage magnetic separation process,
magnetic separation products (Fe- and REO-rich phases) were characterized using XRD
(Figure 8) and EPMA (Figure 9). The primary component of the Fe-rich phase is metallic
Fe (PDF# 03-065-4899), with small amounts of SiO2 (PDF# 01-083-2469) and Nd2O3 (PDF#
01-028-0671). This is the case owing to the small particle size of the sample with weak
magnetic field intensity carried by metallic Fe. The REO-rich phase, with its poor crystal
form, predominantly contains SiO2 and Nd2O3, which can be ascribed to the formation of
glassy slag in the reduction process [33,34].
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The morphological results indicate that the particle size of the Fe-rich phase is larger
than that of the REO-rich phase. Additionally, its morphology is consistent with that of the
reduced product (Figure 9). The mapping results in Figure 9 verify the favorable effect of
the two-stage magnetic separation. Fe and REOs are successfully separated via magnetic
separation. The REO-rich phase is recovered using the conventional hydrochloric acid
method [35,36]. The process used in this study significantly minimizes the interference of
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Fe in NdFeB magnet scraps with the leaching of REOs, and the burden of subsequent Fe
purification is decreased.

Meanwhile, ICP was utilized to further analyze the quantitative components of the Fe-
rich and REOs-rich phases, and the results are presented in Table 4. The findings revealed
that the Fe content in the NdFeB calcine increased from 45.9 wt% to 55.6 wt% after flash
reduction, while the REOs content in the NdFeB calcine increased from 30.2 wt% to 36.8 wt%
following flash reduction. Although a one-step magnetic separation process yielded a high
quantity of strong magnetic material, the Fe-rich phase only contained 65.2 wt% of Fe,
while the REOs content reached as high as 29.1 wt%, resulting in a significant loss of REOs.
However, in the second step of magnetic separation, the yield of the Fe-rich phase was
only 67.2%. Nevertheless, the content of Fe in the strong magnetic material increased
from 65.2 wt% to 90.2 wt%, and the REOs content in the Fe-rich phase decreased from
29.1 wt% to 3.1 wt%. Conversely, the REOs content in the REOs-rich phase of the low
magnetic separation material increased from 30.2 wt% to 82.8 wt%, while the Fe content in
the REOs-rich phase decreased from 45.9 wt% to 13.5 wt%. Consequently, after separating
Fe/REOs in the NdFeB calcine through the flash reduction–magnetic separation process,
the following benefits are observed: (1) The utilization efficiency of a significant amount of
iron in NdFeB scraps is significantly improved and can be directly utilized as raw material
for iron production. (2) The acid consumption required to dissolve calcine is reduced, and
the concentration of rare earth in the leaching solution is increased. (3) The generation of a
substantial quantity of leaching waste residue rich in rare earth phases is avoided.

Furthermore, the mass balance of REOs and Fe during flash reduction–magnetic
separation is calculated and analyzed (Figure 10). The flash reduction experiment used
100 g of the raw material as its basis. According to the reduction rate of Fe (95.2%) under
the optimal reduction conditions, the mass of the reduced product is 80.3 g. Magnetic
separation is used to obtain REOs and Fe. In the first magnetic separation step, although
the Fe-rich phase is recovered with a 82.8% yield, the resulting loss of REOs is 16.1 wt%.
Therefore, the use of weak magnetic separation is proposed. Although the Fe-rich phase
yield is only 54.7%, the Fe and REO distribution rates in the Fe- and REO-rich phases reach
90.2 and 95.9%, respectively. Therefore, metallic Fe can be effectively separated and REOs
can be significantly enriched using this method.
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Table 4. Chemical composition of the calcined NdFeB, reduction product, Fe-rich and REOs-rich
phases.

Composition Fe wt% REOs wt% Yield %

calcined NdFeB 45.9 30.2 /

Reduction product 55.6 36.8 /

First step separation
Fe-rich phase 65.2 29.1 82.8

REOs-rich phase 9.5 74.0 17.2

Second step separation
Fe-rich phase 90.2 3.1 67.4

REOs-rich phase 13.5 82.8 32.6

4. Conclusions

A method involving flash reduction and magnetic separation was developed to effec-
tively separate Fe and enrich REOs from NdFeB magnet scraps. Initially, the feasibility of
selectively reducing FeOx was predicted using thermodynamic analysis. The optimization
of reduction conditions showed that increasing the reaction temperature and reducing the
particle size enhanced the reduction rate of Fe significantly. Ultimately, the reduction rate
of FeOx surpassed 95% under optimal conditions (temperature 723 K, D90 = 0.45 µm, H2
flow rate 2.0 L/min) due to efficient mass and heat transfer, which facilitated the reduction
kinetics. This conclusion was further supported by XRD and EPMA analysis, confirming
the selective reduction of FeOx. Next, the process proceeded to separate metallic Fe and
REOs from the reduction product through magnetic separation. Initially, a one-step magnet
separation process was tested, employing a magnetic field intensity of 240 mT. Although
this achieved a Fe yield of 82.8% with a distribution ratio of 80.1 wt% and a high REO
distribution ratio of 16.1 wt% in the Fe-rich phase, a significant quantity of rare earths was
wasted in this approach. To mitigate the loss of valuable rare earths, a two-step magnet
separation process was implemented, utilizing a magnetic field intensity of 40 mT. Despite
the reduction in Fe yield to 67.4%, this modification led to a remarkable increase in the
distribution ratio of Fe to 90.2 wt%, while the distribution ratio of REOs decreased to
4.1 wt%. Consequently, these Fe-rich phases could be utilized as inexpensive raw materials
in weathering steel production without necessitating additional pretreatments. Flash re-
duction and magnetic separation process not only exhibit the advantages of having a short
process and low energy consumption, but they also realize the stepwise recovery of rare
earth and Fe.
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