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Abstract: To reduce coal consumption, nitrogen oxide (NOx), and carbon emissions for coal-fired
units, combustion optimization has become not only a hot issue for scientists but also a practical
engineering for engineers. A data-driven multiple linear regression (MLR) model is proposed to
solve the time-consuming problems of boiler online combustion optimization systems. Firstly, A
whole year’s worth of the historical operating data preprocessing procedure of a coal-fired boiler
in a power station including data resampling, data cleaning, steady-state selection, and cluster
analysis is performed. In order to meet the applicable conditions of the linear model, the historical
operating data are divided into different sub-datasets (combination mode of coal mills, main steam
flow, ambient temperature, lower heating value of coal). Secondly, the multi-objective optimization
strategy of economical, carbon, and NOx emissions indexes is employed to select operating optimum
data packets, and a new dataset is established that is better than the average value of the optimization
target in each sub-dataset. On this basis, a stepwise regression algorithm (SRA) is used to select the
specific manipulated variables (MVs) that are significant to the multiple optimization targets from
47 candidate MVs in each sub-dataset (different partitions have different types of MVs), and an MLR
prediction model is developed. In order to further realize combustion optimization control, the MVs
are optimized by employing the MLR model. According to the deviation between the optimal value
and the real-time value of the MVs, a boiler combustion closed-loop control system is developed,
which is connected with the DCS using the sum of the deviation signal and the corresponding original
one. Then, a boiler combustion application test was carried out under some working conditions to
verify the feasibility and effectiveness of the approach. The update time of the system signals running
on industrial computers is less than 1 s and suitable for online applications. Finally, a full-scale test
of the combustion optimization online control system (OCS) is executed. The results show that the
boiler thermal efficiency increased by 0.39% based on standard coal, the NOx emissions reduced by
2.85% and the decarbonization effect is significant.

Keywords: combustion optimization; closed-loop control; working condition internals; multiple
linear regression; stepwise regression algorithm; data mining; carbon emissions

1. Introduction

A large amount of coal consumption in the process of electricity production has led
to global warming and air pollution worldwide [1]. The “Paris Agreement”, signed by
178 contracting parties around the world, is a unified arrangement for the global response
to climate change after 2020. Its long-term goal is to control the global average temperature
rise within 2 ◦C compared with the pre-industrial period and strive to limit the temperature
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rise within 1.5 ◦C. The agreement is legally binding on the parties. In this context, China,
as one of the signatories, announced a new carbon peak target and carbon neutral vision at
the 2020 UN General Assembly. Carbon dioxide emissions strive to reach a peak before
2030 and strive to achieve carbon neutrality by 2060 [2]. In the field of energy consumption,
coal-powered electricity is the industry that emits the most carbon dioxide [3]. Among the
top ten coal-powered electricity countries in the world, as shown in Table 1, five countries
have committed to carbon neutrality. As of October 2022, countries that commit to carbon
neutrality have reached 127 around the world. Throughout the 20th century, developed
countries in Europe and America took nearly 80 years of structural adjustment from carbon
peak to carbon neutrality. China has nearly half of the world’s coal-fired power generation
and promises that the time from carbon peak to carbon neutrality will be much shorter
than developed countries [4]. The main carbon reduction measures currently include
shutting down coal-fired power generation, adopting renewable energy [5–8], improving
the efficiency of coal-fired power generation [9–12], CCS [13,14], etc.

Table 1. The top ten countries with global coal-powered electricity share committed to a carbon-
neutral target time.

Commitment or Not Year Coal Consumption Ranking Countries Global Coal-Powered Electricity
Share in 2022

√
2060 1 China 52.3%

× - 2 India 13.6%
× - 3 United States 8.9%√

2050 4 Japan 3.0%√
2050 5 South Korea 2.0%

× - 6 Indonesia 2.0%√
2050 7 South Africa 1.9%

× - 8 Russia 1.9%√
2050 9 Germany 1.8%

× - 10 Australia 1.3%

About 66% of China’s electricity production comes from coal, and this dependence
on coal is more serious than the European Union (20%) or the United States (30%) [15].
In order to fulfill the above commitments, China has issued a carbon reduction action
plan, the “14th Five-Year Plan” [16], which incorporates carbon peak and carbon neutrality
into the overall layout of ecological civilization construction. In 2020, Shandong Province
shut down 52 coal-fired units below 300 MW that did not meet environmental protection
standards [17]. Huadian Group, one of the five largest power generation groups, plans
to shut down 3GW of thermal power installed capacity by 2025. State Power Investment
Corporation promised to take the lead in achieving the carbon peak target in 2023.

Yue et al. [18] took China as an example to develop a modeling framework that integrates
industrial efficiency and power plant unit information. By improving industrial efficiency, we
eliminated and shut down the most polluting units to achieve the goal of reducing emissions.
The shutdown of thermal power units will have an immediate effect on reducing carbon emis-
sions, but by 2040, global electricity will still be provided by 31% coal power [19]. Carrying
out combustion optimization research on existing coal-fired boilers is an effective measure to
continuously reduce carbon emissions. At present, the methods for coal-fired boiler combustion
optimization include boiler equipment modification [20–22], temperature field monitoring and
optimization control [23,24], computational fluid dynamics (CFDs) [25,26], and the combustion
optimization control parameter model [27–30]. Among them, the boiler equipment modifica-
tion requires a large number of on-site tests to make adjustments, occupying valuable power
generation resources; the CFD modeling process also takes several weeks or even longer due
to time and calculation requirements, and this is impractical for most power plants [9]. Com-
pared with the other three methods, the establishment of the combustion optimization control
parameter model has the advantages of less capital investment and shorter calculation time.
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This method generally adopts a data-driven method for modeling and establishes a data map-
ping or mathematical expression of operating parameters and performance parameters. Since
boiler combustion is a complex and non-stationary dynamic process, with the development
of computer technology and data science, people’s ability to deal with non-linear problems
has gradually improved, and data-driven methods, including machine learning, provide new
means for model construction. Zhou et al. [27] used unburned carbon content to characterize
boiler efficiency, used an artificial neural network (ANN) model to establish the predictive
relationship between input parameters and boiler efficiency and NOx emissions, and used
the genetic algorithm (GA) to find the optimal solution, but the training data are too small,
resulting in low simulation accuracy. Wu et al. [28] used the support vector regression (SVR)
algorithm to establish a multi-objective optimization model for coal-fired power plant boilers
for the multi-objective optimization problem in the literature [27] combined with the cytogenetic
algorithm to calculate the Pareto optimum of boiler efficiency and NOx emissions. Support
vector machines (SVMs) have better non-linear mapping capabilities than ANNs, but it is
difficult for SVMs to obtain the optimal solution when there are more input variables [29], and
the training process using large datasets will become difficult to calculate [30].

Due to the high complexity of the above-mentioned neural network and machine
learning optimization intelligent control algorithms based on biological evolution theory,
the optimization process often takes a few seconds or even tens of seconds, which is difficult
to apply to real-time online optimization and the adjustment of coal-fired power plants [31].
In response to the above problems, this paper is guided by the online application of
combustion optimization, and a data-driven multiple linear regression (MLR) model is
proposed. The MLR model is a method developed in the field of multiple statistical analysis.
Due to its simple and clear mathematical background, it is widely used in power plant
database modeling to improve linear regression models [32]. The technical roadmap of this
paper is shown in Figure 1. We extract the historical operating data (nearly 600,000 records)
of the unit for the past year from the DCS historical database of the target unit. The historical
data contain rich and valuable unit status information [33], including unit equipment
characteristics, operator operating habits, and experience. The steady-state operation data
of the unit are screened through the sliding window method, and the steady-state data
are used to establish an approximate linear partition of the main steam flow (MSFlow),
ambient temperature (AT), the lower heating value of coal (LHVC), and the combination
mode of coal mills (COM-Mill). The MLR model is used in each partition to establish
the mapping relationship between the controlled parameters and the boiler efficiency. In
order to reduce the multicollinearity existing between the control parameters, the stepwise
regression method (SRM) is used in the modeling process to select the regression variables
from the candidate variables. It should be noted that there are differences in the combustion
control laws of different partitions, so the regression parameters included in the regression
models of different partitions will also be different. The optimization process is used to
calculate the optimized value of the corresponding manipulated variable. According to the
partial regression coefficient in the model, the optimization response time is less than 1 s,
which is suitable for online optimization control. Finally, connect the optimized signal to
the unit’s DCS logic, participate in online real-time optimization control, and compare the
boiler efficiency changes before and after optimization.

The key contributions of this paper are as follows:

• We quantitatively analyzed the impact of AT changes on boiler combustion control
and used the fuzzy C-means (FCM) clustering algorithm to use the AT as the basis for
working conditions to improve the accuracy of the linear model;

• Subdivide the complex non-linear operating conditions of the boiler into simple operat-
ing conditions that can be linearly processed. Aiming at the industrial production data
of coal-fired boilers in the Weifang Power Plant, an MLR model is used to establish
the mapping relationship between manipulated variables and boiler efficiency, and
the model is suitable for online application;
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• Using partial differential derivation to calculate the optimal control deviation of
model variables and participating in the boiler online real-time closed-loop control by
embedding the DCS configuration logic is a practical attempt under carbon neutrality.
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Figure 1. Flowchart of the optimization method used in the present work.

The rest of the paper is organized as follows. In Section 2, we describe typical boilers
and variable selection. We preprocessed the historical data of the Weifang Power Plant in
Section 3. In Section 4, we introduced the optimization methods for the MLR model and
manipulated variables. In Section 5, we conducted model training and test experiments
using historical boiler operating data, introduced the structure and composition of the
combustion optimization OCS, deployed a full-scale combustion optimization online closed-
loop control test, and analyzed the test results. Finally, in Section 6, we draw conclusions.

2. Analysis of the Boiler Combustion System
2.1. Description of the Boiler Combustion System

The Weifang Power Plant has a total installed capacity of 2000 MW and four coal-fired
units. The studied boiler is number 3: a 670 MW tangentially fired, which is designed based
on the supercritical boiler technology from ALSTOM combined with the lean coal-fired
experience of Shanghai Boiler Works in China. The boiler is a supercritical parameter
variable pressure operation once-through furnace, equipped with four low NOx coaxial
combustion system (LNCFS) burners, which are arranged in an equal air distribution
method. The burner adopts a double inlet and double outlet coal mill, cold primary air,
positive pressure direct blowing pulverizing system design, and six coal mills transport
pulverized coal, respectively, for six-layer coarse coal nozzles and six-layer fine coal nozzles.

As shown in Figure 2, each combustor assembly is composed of thirty-four layers
of damper baffles; the bottom of the burner in the vertical direction is one layer of an
Underfire Air (UFA) nozzle (AAA), and upwards are six layers of coarse coal nozzles
(AR\BR\CR\DR\ER\FR), six layers of fine coal nozzles (AL\BL\CL\DL\EL\FL), and
two layers of CCOFA nozzles (CCOFA-A\B). There is a SOFA burner on the top, including
six layers of SOFA nozzles (SOFA-A\B\C\D\E\F). There is end air (AA) between UFA
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and AR, and two layers of auxiliary air nozzles (AB\ABB, BC\BCC, CD\CDD, DE/DEE,
EF/EFF) are arranged between every adjacent two layers of coarse coal nozzles. Finally,
there is a secondary air nozzle FF arranged in the middle of the coarse and fine coal nozzles,
and BCL is arranged between BL and CL.
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2.2. Variable Analysis and Selection
2.2.1. The Influence of AT on the Total Air Flow of the Boiler

Zhou et al. [34] conducted a unified investigation on 66 coal samples in China and
calculated the amount of air required for each coal sample to release 100 MJ of heat. The
statistical results show that the average air volume required is approximately equal to
26,265 L. The deviation between each required air volume and the average air volume is
less than 5% for all coal samples, except one coal sample. The deviation of the air volume
required for 14 coal samples is between ±2.5 and ±5%, and the deviation of the air volume
required for the remaining 51 coal samples and the average air volume is less than ±2.5%.
The conclusion is that if the theoretical air volume is calculated according to the unit mass
of fuel, the difference between different coal types is very large; if the theoretical air volume
is calculated according to the unit heat, the difference is not much. A certain load requires a
certain amount of heat; that is, a certain amount of air. Therefore, the optimal air volume of
the boiler should be an amount that only varies with load, not coal. So, a novel concept was
presented, the air-to-carbon ratio, which is defined as the mass ratio of air volume required
and carbon in coal. Theoretically, the air-to-carbon ratio is more accurate and reasonable
than the air-to-coal ratio in the boiler’s air supply control system. Therefore, precise air
volume control will effectively improve boiler efficiency. However, the accuracy of the
boiler air supply control is affected by the AT, which changes with seasons and time. To the
ideal gas state equation is shown as Equation (1):

pVϕ = nRT (1)
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where P represents the pressure (Pa), Vϕ represents the air volume (m3), n represents the
amount of air matter (mol), T represents the air thermodynamic temperature (K), and R
represents the ideal air constant. Equations (1)–(3) can be obtained:

pM = ρnRT (2)

ρTmax

ρTmin

=
Tmin

Tmax
(3)

where M represents the air quantity, ρ represents the air density, Tmax and Tmin, respectively,
represent the highest and lowest values of AT year-round in the Weifang Power Plant, and
ρTmax and ρTmin , respectively, represent the gas density corresponding to the highest and
lowest temperature values throughout the year.

Let us take the target unit as an example to quantitatively analyze the influence of
AT on the air flow control of the boiler. Figure 3 represents the temperature curves at the
inlet of the air preheater of the target boiler of the Weifang Power Plant for one whole
year and three days, respectively. The figure shows that the annual temperature interval is
−6~38 ◦C, and the whole day temperature span is close to 15 ◦C. According to Equation
(3), the air density varies close to 13% throughout the year and close to 5% throughout the
day. Under the existing control strategy, a certain load matches the certain total air flow, but
the mass flow of the total air changes with the density at different Ats; as a result, under a
certain load, the mass of the total air varies with AT, which affects the optimal air supply
volume and decrease the boiler efficiency. Therefore, the total air supply control strategy
should be improved by considering the impact of the AT.
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2.2.2. The Influence of COM-Mill on Damper Control

The six coal mills of the unit convey pulverized coal, respectively, for the six-layer
coarse pulverized coal nozzle and the six-layer fine pulverized coal nozzle. For example,
mill A is connected to the AR and AL layer nozzles, and the COM-Mill directly affects
the opening control of the air damper. Table 2 shows the running number of coal mills
corresponding to different load intervals. It can be seen in Table 2 that there is a difference
in the running number of coal mills in the load overlap interval. Therefore, the utilization
of load and COM-Mill to subdivide the combustion conditions of the boiler contributes to
improving the accuracy of the model.
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Table 2. The operation mode of the coal mill under different loads of boilers.

Operation Mode of Coal Mill Boiler Load MCR

Operation of six coal mills 80–100%
Operation of five coal mills 60–100%
Operation of four coal mills 45–80%
Operation of three coal mills 35–60%
Operation of two coal mills

(Mixed combustion of coal and
fuel oil in 10–50% BMCR)

10–40%

Oil gun operation 0–30%

2.2.3. Variable Selection

According to the above variable analysis and boiler control principle, Table 3 lists
the combustion MVs and data range. The combustion MVs include the opening of the air
dampers and the total air, and the MVs are numbered x1–x47 in sequence. The performance
variables affected by the MVs in Table 3 include the boiler efficiency and NOx emissions
listed in Table 4 because unit 3 usually delivers the low-pressure steam to partly meet the
needs of municipal heating from November of each year to March of the next year. MSFlow
is selected to describe the unit load, and boiler efficiency is represented as the ratio of
MSFlow to total coal quantity in this paper. The steam coal ratio is calculated by Equation
(4), which represents the boiler efficiency under the classification of LHVC; the sensors of
NOx emissions are located at the SCR inlet.

Rsc = Main steam f low/Total coal f low (4)

Table 3. Manipulated variables.

Variable Description Regression Variable Symbol Operation Range (%)

Primary air x1–x12
AR\BR\CR\DR\ER\FR
AL\BL\CL\DL\EL\FL [0, 100]

Secondary air x13–x26
AAA\AA\AB\ABB\BC\BCC\CD
CDD\DE\DEE\EF\EFF\FF\BCL [0, 100]

Over-fire air x27–x34

CCOFA-A\CCOFA-B
SOFA-A\SOFA-B\SOFA-C
SOFA-D\SOFA-E\SOFA-F

[0, 100]

Coal mill capacity air flow x35–x46
MA1\MA2\MB1\MB2\MC1\MC2
MD1\MD2\ME1\ME2\MF1\MF2 [0, 100]

Total air x47 TA [0, 100]

Table 4. Performance variables.

Parameter Description Symbol Operation Range

NOx emissions (mg/m3) - [0, 1000]
Boiler efficiency (%) η [3, 15]

The performance variables of boiler combustion in Table 4 are affected by MVs and are
also closely related to boiler operating conditions. In order to approximate the applicable
conditions of the linear model, this paper takes the MSFlow, AT, LHVC, and COM-Mill
as the basis for subdividing working conditions, as shown in Table 5. When the MSFlow
optimization interval is 50−100%, the AT interval is selected between the lowest and
highest temperature at the inlet of the forced draft fan all year. The LHVC comes from the
test results of coal entering the furnace by the fuel operation department of the power plant.
The COM-Mill ranges from three to six.
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Table 5. Condition variables.

Parameter Description Symbol Operation Range

Main steam flow (t/h) MSFlow [1000, 2000]
Ambient temperature (◦C) AT [–8, 38]

Lower heating value of coal (KJ/kg) Qnet,ar [17642, 26991]
Combination mode of coal mills - 3–6

3. Data Processing

In this paper, a linear model is presented to approximate the non-linear process. The
linear model cannot be used directly in the data processing of the original sampled data,
so data preprocessing is utilized to support modeling. Firstly, resample and clean the
original data. Secondly, select steady-state data. Then, the data are classified according
to the COM-Mill, and FCM is used to cluster the conditional variables after classification.
Finally, the sampling values that are better than the average boiler efficiency η, the average
Nox emissions NOx in the partition are selected in each partition, and then the model spare
dataset is formed. The procedure of data preprocessing is shown in Figure 4.
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3.1. Data Cleaning

Researchers can independently select the sampling interval when extracting data from
the DCS historical database. In order to reduce the amount of data, Smrekar et al. [35]
resampled data for 0.5 min, 1 min, and 1.5 min, respectively. The results show that the
1 min resampling interval not only follows the dynamic process of the measured signals
but also filters small fluctuations. The historical operating data of unit 3 from May 2021 to
June 2022 was extracted by utilization of a 1 min sampling interval method in this paper,
with a total of 604,800 sampling points.

Due to the complex environment of the industrial production site, it is inevitable that
sensor failures and information transmission errors will occur, resulting in incorrect data,
such as garbled codes (data with *), in the original sampled data. Erroneous data, outage
data, and data beyond the optimized range are deleted through data cleaning. Figure 5
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shows the statistical results of data cleaning, in which valid data accounted for 79.5% and
invalid data accounted for 20.5%.
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3.2. Selection of Steady-State Data

Based on the data-driven MLR model, the steady-state operation data of the boiler
is used to establish a combustion optimization model. When load is frequently adjusted,
the dynamic characteristics of the boiler will change accordingly and the thermal variables
that represent mainly the operation state of the unit also fluctuate, leading to the historical
operating data at the same period cannot be a true reflection of input-output relationship
of the system. For data-driven boiler combustion optimization, it is necessary to obtain
historical data under steady-state conditions [36,37]. This paper uses the sliding window
method [38,39] to filter the steady-state data in the historical data.

The AT changes relatively slowly, and the coal quality batch changes periodically, so
the MSFlow is selected as the criterion for the steady-state data of the unit. The steady-state
criterion of the sliding window method is shown in Equation (5):

σxj =

√√√√ 1
N − 1

t+N−1

∑
τ=t

(xτ
j − xj)2 ≺ σ

set

xj
(5)

where t represents the start time, xτ
j represents the value of the j-th characteristic variable

at time t, N represents the length of the sliding window, in minutes; xj represents the mean
value of the j-th feature variable when the length of the sliding window is N, σxj represents

the steady-state test result of the j-th characteristic variable, σ
set

xj
represents the preset

steady-state critical threshold of the j-th characteristic variable.
We scanned all the valid data of the MSFlow and recorded the data interval in accor-

dance with Equation (5). Figure 6 shows an example of steady state detection-a historical
data segment of 1200 min, the steady-state critical threshold is 20, and the length of the
sliding window is N = 60, which is 1 h. Figure 6 shows that three steady-state intervals
have been found, with time lengths of 83, 107, and 61 min respectively.

3.3. Cluster Analysis
3.3.1. Data Classification

The literature [39] clustered the load and coal quality coefficient in the clustering
process and then classified according to the COM-Mill in the clustering interval. This
classification method can be improved logically because when the number of running coal
mills is small, such as two mills running, the load range covered in the historical data is
less. There may be only one load cluster under this COM-Mill that cannot be clustered
anymore. This paper proposes data classification according to the COM-Mill first, and then
clusters based on MSFlow, AT, and LHVC. This method can ensure that the division of
working conditions is more reasonable. Figure 7 shows the proportion of all COM-Mills in
the steady-state effective data.
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3.3.2. Clustering Method

At present, the antecedent identification methods widely used in thermal process TS
modeling are FCM clustering, GK clustering, GG clustering, etc. The above clustering
methods provide the possibility for local linearization modeling of non-linear thermal
processes [40]. In this paper, the FCM algorithm is used to cluster analysis of MSFlow, AT,
and LHVC, and the minimization of the objective function of the FCM algorithm is shown
in Equation (6):

minJ(uij, ci) =
K
∑

i=1

N
∑

j=1
um

ij

∣∣∣∣∣∣xj − ci

∣∣∣∣∣∣2
s.t.

K
∑

i=1
uij − 1 = 0, j = 1, 2, · · · , N; i = 1, 2, · · · , K

(6)

where xj represents the cluster object, ci represents the cluster center, uij represents the
object xj belonging to the weight of category i, and m is the weight index. For this type of
equation-constrained optimization problem, the Lagrangian multiplier λj is introduced,
and the corresponding Lagrangian function is Equation (7):

L(uij, ci, λj) =
K

∑
i=1

N

∑
j=1

um
ij || xj − ci

2
||−

N

∑
j=1

λj

(
K

∑
i=1

uij − 1

)
(7)
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Calculate the partial derivatives of ci and uij through Equation (7), and then calculate
the cluster center point ci and the degree of membership uij:

uij =
1

K
∑

l=1

( ||xj−ci ||
||xj−cl ||

) 2
m−1

(8)

ci =

N
∑

j=1
um

ij xj

N
∑

j=1
um

ij

(9)

The input of the FCM algorithm includes the number of clusters K. This paper calculates the
number of clusters of MSFlow, AT, and LHVC according to Equations (10)–(12). According to
the control characteristics of the boiler and the recommendations of the operation engineer, the
initial interval is set to 50, 4, and 1000. After the effective data are classified by the combination
mode of coal mills, the maximum and minimum values of the MSFlow and AT and the low-
level coal calorific values in each combination are extracted. Divide the difference by the initial
interval and take an integer to obtain it, as shown in Equations (10)–(12):

[KMSFlow] =
MSFlowmax −MSFlowmin

50
(10)

[KAT ] =
Tmax − Tmin

4
(11)

[
KQnet,ar

]
=

Qnet,armax −Qnet,armin

1000
(12)

where [×] denotes that the largest integer is no more than x and [KMSFlow], [KAT ] and[
KQnet,ar

]
are the numbers of clusters of MSFlow, AT, and LHVC.

It is worth noting that because the historical data under different coal mill combinations
are different, the MSFlow rate, AT, and LHVC range are different, so the number of clusters
under different coal mill combinations is also different.

Algorithm 1 illustrates the FCM-based iterative approach, and the default number of
iterations t is 100 times.

Algorithm 1: FCM-based Iterative Approach

Input: All of the cluster object xj, cluster number K
Output: Cluster center ci
Step1. Initialize the membership values, uij
Step2. At t-step: calculate the centers by Equation (8).
Step3. Update uij by Equation (9).
Step4. Compute the value of the objective function J(t),

J(t) =
K
∑

i=1

N
∑

j=1
um

ij ||xj − ci ||2

Step5. If
∣∣∣J(t) − J(t−1)

∣∣∣< ε , then stop; otherwise return to step 2.

3.4. Data Filtering

A data-driven multi-objective combustion optimization method is studied in this
paper. The optimization objectives are boiler efficiency and NOx emissions. The partitioned
data are filtered according to the mean value of boiler efficiency η and NOx emissions NOx
in the interval to establish a model spare dataset. Figure 8 shows a schematic diagram of
data filtering in a certain partition.
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3.5. A Case Study

Taking the COM-Mill 111110 as an example (that is, the A-E mill runs and the F mill
stops), this paper deploys a cluster analysis on 142,619 steady-state historical sampling
points. The relevant data interval is analyzed under this combination and shown in Table 6.

Table 6. Condition variables of 111110 coal mill combinations.

Variable Description Symbol Operation Range

Main steam flow (t/h) MSFlow [1091.99, 1991.28]
Ambient temperature (◦C) AT [−4.38, 38.09]

Lower heating value of coal (KJ/kg) Qnet,ar [19,699, 24,758]
Coal mill combination - 111,110

According to the condition variable distribution interval of the COM-Mill (111110), the
cluster number of MSFlow, AT, and LHVC is calculated according to Equations (10)–(12). As
shown in Table 7, the FCM algorithm is used to calculate the clustering results of each clustering
object. Among them, the weight index is m = 2, the maximum number of iterations is J = 100,
and the iteration termination condition is ε= 0.00001.

Table 7. Condition variable cluster result of 111110 coal mill combinations.

Condition
Variables

Parameter
Description Cluster Result

Main
steam
flow

[KMSFlow] 17
Cluster center 1259.81 1319.76 1373.22 · · · 1959.59

Cluster interval [1203.8, 1289.7] [1289.82, 1346.49] [1346.5, 1387.08] · · · [1906.13, 1991.28]
Number of samples 2831 5241 8714 · · · 1090

Ambient
temperature

[KAT] 10
Cluster center 0.04 3.63 6.83 · · · 32.59

Cluster interval [−4.38, 1.83] [1.84, 5.23] [5.24, 8.87] · · · [30.75, 38.09]
Number of samples 11,767 16,391 18,277 · · · 8786

Low
calorific

value

[KQnet,ar] 5
Cluster center 19,989 20,805 22,330 23,243 24,273

Cluster interval [19,699, 20,375] [20,452, 21,557] [21,600, 22,758] [22,795, 23,736] [23,763, 24,758]
Number of samples 7652 22,262 34,785 46,612 31,308

4. MLR Model
4.1. Model Description

The regression analysis method is to study the correlation and structural state of the
relationship between variables by establishing a statistical model and an effective tool for
model prediction [41]. This paper uses an MLR model to establish the mapping between
boiler efficiency and manipulated variables, as shown in Equation (13):

η = β0 + β1x1 + β2x2 + · · ·+ βpxp (13)



Processes 2023, 11, 2889 13 of 23

where η represents boiler efficiency, which can be obtained by Equation (4), x1–xp represents
the 47 manipulated variables listed in Table 3, β0 represents the regression constant, and
β1–βp represents the regression coefficients.

4.2. Least Squares Estimation of Regression Parameters

Regression parameter estimation methods include least squares estimation, regression
value, residual error, and maximum likelihood estimation. The number of boiler sampling
points n extracted in this paper is much larger than the number of regression variables p, so
this paper uses least squares estimation to solve the regression parameters. The regression
parameter fitting model is shown in Equation (14):

ηi = β0 + β1xi,1 + β2xi,2 + · · ·+ βpxi,p (i = 1, 2, · · · , n) (14)

Then, the corresponding Jacobian matrix J is shown in Equation (15):

J =


1 x1,1 · · · x1,p
1 x2,1 · · · x2,p
...

... · · ·
...

1 xn,1 · · · xn,p

 (15)

Sign:

η =


η1
η2
...

ηn

, β =


β0
β1
...

βp

 (16)

Then, the least squares estimator of the regression parameter β can be calculated by
Equation (17):

β= (JTJ)−1JTη (17)

4.3. Optimal Model Selection
4.3.1. SRM to Determine the Regression Variable

When selecting variables in this paper, the combustor damper, coal mill capacity air
flow, and total air are selected as candidate manipulated variables. Not all the manipu-
lated variables in Table 3 have a significant impact on the boiler efficiency, and the more
manipulated variables in the regression equation are not the better. Therefore, there is a
problem of how to select manipulated variables that have a significant impact on boiler
efficiency. Not all the manipulated variables in Table 3 have a significant impact on the
boiler efficiency, and the more manipulated variables in the regression equation are not
the better. Therefore, it is necessary to select manipulated variables that have a significant
impact on boiler efficiency when the regression model is established.

This paper proposes to adopt SRM to determine the optimal regression variables
in each partition; its basic idea is to enter and remove manipulated variables one by
one. The specific steps are as follows: each time a variable is introduced, the selected
variables are checked one by one, and when the original introduced variable is no longer
significant due to the introduction of subsequent variables, it is removed. The introduction
or elimination of a variable requires an F test to ensure that the regression equation contains
only significant variables before the introduction of the variable [41,42]. In order to prevent
the infinite loop of variable introduction and elimination, the significance level needs to
meet the followinginequality constraints: αentry < αremoval .

4.3.2. Model Performance Criterion

In order to ensure the accuracy of the model, this paper applies the four-fold cross-
validation method. In each partition, the backup dataset is randomly divided into four
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groups equally; each fold is used for model testing, and the remaining three groups are
used for model training. Then, select the model with the smallest root mean square error
(RMSE) among the four evaluations. The RMSE equation is as follows:

RMSE =

√√√√√ n
∑

i=1
(ηTE

i − η̂TE
i )

2

n
(18)

where n represents the number of sampling points in the test set, ηTE
i and η̂TE

i are, respec-
tively, the i-th real sampled value and the predicted value of the boiler efficiency in the
test set.

4.4. Optimization of Manipulated Variables

The main purpose of this paper is to predict and control the boiler efficiency. In order
to achieve the purpose of boiler efficiency control, a method to obtain partial derivatives of
the MLR equation is proposed to calculate the optimal value of each manipulated variable:

∂η

∂xj
= β j (j = 1, 2, · · · , p) (19)

where β j > 0 represents the increase in the j-th regression variable, which can improve
boiler efficiency, β j < 0 represents the decrease inthe j-th regression variable, which can
improve boiler efficiency, and β j ≈ 0 represents the adjustment of the j-th regression
variable, which has little effect on boiler efficiency.

For a group of real-time control data X̂ =
{

x̂1, x̂2, · · · , x̂p
}

of the boiler, the real-time
efficiency of the boiler under this working condition can be calculated by Equation (4).
η̂, obtain the efficiency optimization target value through the boiler efficiency prediction
model (13) corresponding to the operating condition zone:

ηmax = β0 + β1 x̂1 + β2 x̂2 + · · ·+ βp x̂p (20)

if ηmax − η̂ > 0, there is room for tuning, and Equation (21) can be obtained through
Equation (19):

ηmax−η̂
∆xj

= β j

s.t. xaim
j = ∆xj + x̂j, j = 1, 2, · · · , p

(21)

where ∆xj represents the optimized adjustment difference of the manipulated variable and
xaim

j represents the optimized target value of the manipulated variable.

5. Test Analysis and Industrial Online Application
5.1. Application Test Analysis

This paper establishes a data-driven MLR model based on the historical operating
data in a specific partition to predict the boiler efficiency in the partition and calculates the
optimal value of the manipulated variable according to the MLR equation to achieve the
purpose of improving boiler efficiency.

5.1.1. Selection of Historical Data

In this paper, COM-Mill is selected as 111110, and the MSFlow clustering [1479.44,
1511.99], the AT clustering [16.38, 19.62], and LHVC clustering [21600, 22758] are used
as partitions. Then, carry out a data-driven combustion optimization application test.
First, select the sampling points that are better than the average boiler efficiency η and
the average NOx emission NOx in the zone as the candidate dataset for parameter fitting.
Then, 800 sampling points are randomly selected from the candidate dataset and evenly
divided into four groups according to the number of samples, performing four-fold cross-
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validation on the model, including the training dataset (600 samples) and the test dataset
(200 samples).

5.1.2. MLR Model and Prediction Performance

Based on four sets of training datasets, the SRM is used to calculate the regression
variables. Take the significance level αentry = 0.3, αremoval = 0.35, fit the four sets of the MLR
models, and then use the four sets of the test datasets to select the optimal model through
RMSE, as in Equation (22):

η= 19.983 + 0.02x1 − 0.042x2 − 0.036x4 + 0.004x5 + 0.016x6 + 0.203x10 − 0.026x11
+ 0.03x13 − 0.033x14 + 8.581x16 − 0.033x17 + 0.07x19 + 0.022x20 − 0.014x21
− 0.015x22 − 0.013x23 + 0.008x24 + 2.222x25 − 1.278x26 + 0.03x28 + 0.019x30
− 0.02x31 + 0.017x32 − 0.007x34 − 0.088x40 + 0.108x42 − 0.062x41 − 0.017x47

(22)

The fitting result shows that the model with the smallest RMSE in this partition includes
28 manipulated variables. Table 8 lists the order of introducing and removing regression
variables in the selection process of the SRM. Among them, x8, x7, x38, x29 are removed
after being introduced, indicating that there is a correlation between the variables. This
method of selecting elements can effectively reduce the multicollinearity problem between
the introduced variables and improve the quality of the model.

Table 8. Variable entry and removal order.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Entry x5 x34 x26 x1 x40 x29 x22 x7 x25 x42 x4 x20 x16 x21 x8 x38 x6 x32
Removal

Order 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Entry x14 x31 x28 x24 x19 x2 x23 x13 x10 x30 x41 x17 x11 x47
Removal x8 x7 x38 x29

The optimal model based on Equation (22) was experimented on the training and
test sets, and the prediction results of the model on the training set are shown in Figure 9,
which has an RMSE of 0.39%. Figure 10 shows the prediction results of the model on the
test set, and its RMSE is 0.65%. It shows that the model prediction accuracy satisfies the
application demands.
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5.2. Online Test of Combustion Optimization System
5.2.1. System Description

The combustion optimization system will optimize the control signals for the DCS,
both the input of the real-time signals from the unit DCS and the output of the optimization
signals from the optimization system. Figure 11 shows the online combustion optimization
system. The optimized system hardware is connected to the PI real-time database of the
supervisory information system (SIS). The combustion optimization model of each partition
is embedded in the optimization system software. The combustion optimization system
software obtains the real-time data of the units in the PI database by the utilization of
Structured Query Language (SQL). The optimization model calculates the optimal value
of the MVs under the current operating state based on the condition variables in the real-
time operating state of the unit and transfers the optimized MV signals to the DCS. The
combustion optimization system becomes a closed loop by an operator using the ON/OFF
switch, and the optimized signals are involved in the boiler combustion online control. The
feedback information of the optimized control signals can be reviewed through the history
station of the DCS.
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Taking the total air optimization signal as an example, a DCS configuration logic of
the signal is presented shown in Figure 12. The signal labeled as J5.3.1 is the deviation
between the total air optimization control signal and the original one of the DCS. The signal
labeled as J5.78.1 will be summed with the output of the original total air signal of the DCS
to form a new optimal total air signal to the controlled device, which is the output value
of the optimized deviation signal after judgments, speed limit, and amplitude limit. In
order to reduce the disturbance of the optimized signal to the DCS and ensure the safe
operation of the unit, the optimized deviation signal has a speed limit of 1%/s, and the
upper and lower safety limits are ±5% (notes: the limits of the optimization signal will
affect the optimization results).
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Take the total air optimization signal as an example again. The processes are shown
in Figure 13: the dynamic process and stable state of the optimized total air signal in the
DCS after the combustion optimization system is ON. Figure 13 shows that the feedback
value of the total air flow is a little lower than its setpoint, which is 70% because of the
performance degradation of the equipment. After the combustion optimization system
is switched ON, the total air flow optimization value (deviation) is 5%. The sum effect of
the optimization value that is the dynamic response process of the total air flow can be
reviewed by checking the feedback value of the total air flow. This is because the limit rate
in the configuration logic is set to 1%/s in Figure 12.
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5.2.2. Full-Scale Test

The combustion optimization OCS is applied to the Weifang Power Plant unit 3. In
this paper, a full-scale test is designed for the combustion optimization OCS, and the test
plan uses the exit/input system for 24 h each. Table 9 shows the test time statistics. After
the optimization system is put into use, the system automatically recognizes the working
condition zone according to the current unit COM-Mill, MSFlow, AT, and LHVC. Match
the combustion optimization model in the corresponding zone, calculate the optimized
value corresponding to the controlled parameter, and transmit the optimized signal to the
DCS logic to participate in the real-time control of the boiler. Figure 14 shows the main
interface of the combustion optimization OCS.

Table 9. Statistics of the test time and MSFlow interval.

Operating Status Operation Time MSFlow (t/h) Samples (min)

Exit 1 December 2022 10:00–
2 December 2022 10:00 [1350, 1950] 1440

Input 2 December 2022 15:00–
3 December 2022 15:00 [1300, 1750] 1440
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5.2.3. Analysis of the Test Results

The coal quality and UBC in fly ash before and after the online control system for
combustion optimization is put into use are shown in Table 10. The data come from the
average of the data detection of four shifts per day. It is worth noting that UBC in fly ash
under optimized operating conditions is reduced by 2.02% compared with unoptimized
operating conditions.

This paper uses the MSFlow to characterize the load. Table 9 counts the MSFlow
intervals before and after optimization, and the overlap interval is 1350~1750 t/h. This
paper only compares and analyzes the total coal quantity, exhaust gas temperature, oxygen
content in flue gas, and NOx emissions in the MSFlow overlapping interval, as shown
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in Figure 15. Among them, the total coal quantity has been converted into standard
coal based on LHV. When 1350 < MSFlow < 1525 t/h, the optimized boiler total coal
quantity is higher than the unoptimized boiler. For other MSFlow intervals, the opti-
mized boiler’s total coal quantity is significantly lower than the unoptimized boiler. When
1350 < MSFlow < 1550 t/h, with the increase in MSFlow, the boiler exhaust gas tempera-
ture rises rapidly under optimized conditions, which is significantly higher than under
unoptimized conditions. The main reason is that the proper amount of coal is encountered
with excessive air, which leads to an increase in exhaust gas flow and an increase in exhaust
gas thermal loss. From the oxygen content in flue gas change trend, it can be seen that
the oxygen content in flue gas in this MSFlow interval is obviously higher, which can
prove that the “air-to-coal ratio” of this interval deviates from the standard value. When
MSFlow > 1550 t/h, with the increase in MSFlow, the boiler exhaust gas temperature tends
to be stable under the optimized working conditions, and slightly drops. The main reason
is that when the oxygen content in flue gas in the MSFlow interval is reasonably controlled,
the “air-to-coal ratio” tends to be normal.

Table 10. Boiler combustion coal quality and UBC in fly ash before and after the test.

Operating
Status

Proximate Analysis (wt%, as Received)
LHVC
(KJ/kg)

UBC in
Fly Ash

(%)Moisture Volatile
Matter

Fixed
Carbon Ash

Exit 7.23 9.86 56.91 26.00 23,066 11.63
Input 6.35 9.27 59.73 24.65 23,888 9.61
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As shown in Figure 16, when 1350 < MSFlow < 1450 t/h, with the increase in MS-
Flow, the NOx emission under the optimized working condition rapidly increases from
390 mg/m3 to 427 mg/m3. Combined with the analysis of the oxygen content in flue
gas in Figure 12, the main reason is that the excess air coefficient in the MSFlow section
is large, the strong oxidation and low reduction atmosphere in the combustion zone is
enhanced, or the strong reduction and low oxidation atmosphere in the burnout zone is
weakened [43]. When MSFlow > 1450 t/h, as MSFlow increases, NOx emissions under
optimized conditions tend to be stable and slowly decrease. Combined with the oxygen
content in flue gas, the oxygen content in flue gas in the MSFlow interval is reduced, and the
excess air coefficient is restored to an appropriate level. The low oxidation atmosphere in
the combustion zone inhibits the production of NOx, and the strong reducing atmosphere
in the burnout zone effectively reduces NOx concentration.
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After calculation, the boiler efficiency before and after optimization increased by
0.69%, The average value of NOx emissions decreased from 419.2 mg/m3 to 407.1 mg/m3,
a decrease of 2.85%. In general, optimizing the input of the system improves the economy
and environmental protection of boiler operation.

6. Conclusions

In order to effectively improve boiler combustion efficiency, reduce the co-emission of
NOx and carbon dioxide, and aim at actual industrial application requirements, this paper
proposes a data-driven online combustion optimization system. Boiler combustion is a
non-linear process with violent fluctuations. The idea of piecewise linearization is used to
divide the historical data based on the multi-variable combination of MSFlow, AT, LHVC,
and COM-Mill to obtain a lot of partitions, and the linear model was used to construct
local linear models for each partition. The multiple local linear models approximate
global non-linearity. The prediction error of the data-driven MLR model is small and can
meet industrial application requirements. The full-scale industrial test of the combustion
optimization online control system based on this model also obtained effective optimization
results. The results show that the average value of NOx emissions (6%O2) decreased by
2.85% and had an average increase of 0.39% in boiler efficiency.

The main contributions of this paper are as follows:
We quantitatively analyze the influence of ambient temperature on boiler combustion

control and adopt the FCM algorithm to divide the historical data by taking the ambient
temperature as the criterion with the promotion of the modeling accuracy.

The boiler historical data with non-linear characteristics are divided into a lot of data
partitions, which are linear. Taking the industrial operational data of coal-fired boilers in
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the Weifang Power Plant as an example, an MLR model is used to establish the mapping
relationship between MVs and boiler efficiency, which is suitable for online application.

A partial derivative is used to calculate the optimal control deviation of model vari-
ables, and it participates in the online real-time closed-loop control of the boiler.

The optimal values of the MVs are calculated by the partial differential method and
are transferred to the DCS of the boiler combustion system to participate in the online
closed-loop control.
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Nomenclature

Acronyms
DCS Distributed Control System
SIS Supervisory Information System
PI Plant Information System
CFD Computational Fluid Dynamic
ANN Artificial Neural Network
GA Genetic Algorithm
SVR Support Vector Regression
MLR Multiple Linear Regression
CCS Carbon Capture and Storage
MSF Main Steam Flow
AT Ambient Temperature
LHVC Lower Heating Value of Coal
SRA Stepwise Regression Algorithm
FCM Fuzzy C-Means
CV Controlled Variable
MV Manipulated Variable
OCS Online Control System
LNCFS Low NOx Concentric Firing System
SOFA Separated Over Fire Air
CCOFA Close-Coupled Over Fire Air
UFA Underfire Air
MCR Maximum Continuous Rating
BMCR Boiler Maximum Continuous Rating
SCR Selective Catalytic Reduction
RMSE Root Mean Square Error
I/O Input/Output
SQL Structured Query Language
Symbols
η Defined boiler efficiency
J(t) The value of the objective function after the iteration
ε Convergence condition of objective function iteration
αentry The significance level of the introduced variable
αremoval The significance level of the eliminated variable
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