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Abstract: In the context of carbon peaking and carbon neutralization, distributed photovoltaics is a
relatively mature new energy power generation technology that is being widely promoted. However,
the randomness and volatility of distributed generation bring severe challenges to the distribution
network’s operation. Based on this, taking the typical scenario of a high proportion of distributed
photovoltaic grid connections against the background of a whole-county photovoltaic system as the
research object, this paper constructs a source-grid-load-storage coordination optimal scheduling
model in distribution networks, considering the spatial distribution of power flow, tie-line power
fluctuation, grid loss, and voltage amplitude from the perspective of optimal day-to-day scheduling.
Next, the Lehmer weighted and improved multi-mutation cooperation strategy differential evolution
(LW-IMCSDE) algorithm is introduced to enhance the differential evolution algorithm based on the
weighted Lehmer average, improved multi-mutation cooperation, and population update strategies.
The feasibility and effectiveness of the algorithm are investigated by using a test function to verify its
effectiveness. Finally, the feasibility and effectiveness of the proposed strategy are verified in two
typical power scenarios: summer and winter.

Keywords: distributed photovoltaic; source-grid-load-storage; LW-IMCSDE algorithm; hierarchical
optimization; multi-scene; distribution network

1. Introduction

In the context of carbon peaking and carbon neutralization, the new energy repre-
sented by distributed photovoltaics (PVs) shows a high proportion of access [1]. However,
the randomness and volatility of distributed PV output bring severe challenges to the dis-
tribution network’s safe and stable operation when there is a high proportion of access [2].
Therefore, the aspects of large-scale grid connection of distributed PVs and the optimal
scheduling strategy of source-grid-load-storage in distribution networks [3] have become
important aspects in the research field of new power systems [4].

Given the randomness and volatility of new energy output, a centralized or decen-
tralized energy optimization control strategy can be adopted [5]. Some scholars have
established a multi-timescale energy optimization model and proposed a rolling optimal
scheduling strategy [6–8] that considers the uncertain response model of time-sharing
electricity prices and the time response characteristics of an interruptible load. In ref. [9],
the interruptible load is taken as the reserve capacity of the system, and the user-side
interactive dispatching model is established to deal with the reverse peak regulation and
volatility of wind power. Refs. [10,11] put forward the integrated operation mode of source-
grid-load-storage energy control and economic operation at the park and system levels,
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which verifies the economy and sustainability of source-grid-load-storage coordination
and optimization of the operation mode. An affine, adjustable, and robust reactive power
optimization algorithm is proposed in [12]. By adjusting the grid’s reactive power flow,
the system loss and node voltage are optimized. Ref. [13] takes the microgrid group as the
research object, focuses on the energy management and power coordination control strategy
in the off-grid mode, and realizes the stable operation of the system. However, the current
power dispatching optimization strategies mostly study and analyze the equivalence of
source-grid-load-storage concentration in the power system, and fail to consider the power
flow operation state on a spatial scale [14].

Traditionally, power systems consist of three parts: generation source, transmission
grid, and load demand. In the future, energy storage will also become an indispensable
part of power systems, since more flexibility is required to render the optimal operation
of systems with high penetration of variable energy resources. There have been many
studies focused on the establishment of grid dispatching models. Minimizing grid loss [15]
and improving voltage quality [16] are often regarded as the optimization objective, and
most existing studies have focused on active or reactive power dispatching [17,18]. There-
fore, the coupling effect of active and reactive power on grid dispatching is typically not
fully considered.

Relevant research has shown that a combined active and reactive optimization strategy
is more effective than a single optimization strategy [19], but with a high percentage of
distributed PV connected to the grid, the various links in the power system have a wide
variety of control variables, higher dimensionality, and more complex calculations, making
it difficult to adapt to optimization needs with the help of traditional artificial intelligence
algorithms. Ref. [20] used an improved genetic algorithm to optimize a distribution grid
containing wind turbines. Ref. [21] improved the differential evolution (DE) algorithm
with the help of a penalty function and applied it to the optimization problem of grid-
connected photovoltaic and adjustable resources in the power system. Ref. [22] improved
the DE algorithm with the help of the Artificial Bee Colony algorithm and applied it to
dynamic economic dispatching. Ref. [23] improved the initialization strategy of the DE
algorithm in the optimal reactive power scheduling problem and updated the scaling
factor and crossover probability using an adaptive adjustment strategy. At present, al-
though artificial intelligence algorithms are widely used in active/reactive power system
scheduling optimization [24,25], the proportion of grid-connected renewable energy units
such as wind turbines (WTs) and PVs in the above studies is limited. Therefore, in the
face of multi-objective optimization problems with a high proportion of distributed PVs
connected to the grid, all their improvement strategies have disadvantages, such as the
high probability of falling into a local optimum, low convergence accuracy, and difficulty
in best-fitness optimization.

Thus, this paper takes the typical scene of a high proportion of distributed PV grid
connections in the context of a whole-county PV as the research object, and from the point
of view of day-ahead optimal dispatching, a load-storage coordinated optimal dispatching
model of the distribution network considering tie-line power fluctuation, grid loss and
voltage amplitude is constructed, which takes into account the spatial distribution of power
flow. Next, the Lehmer weighted and improved multi-mutation cooperation strategy dif-
ferential evolution (LW-IMCSDE) algorithm is introduced to improve differential evolution
with forward-inverse initialization, weighted Lehmer average, multi-mutation cooperation
strategy, and an updated population strategy algorithm to improve global merit-seeking
ability and convergence speed of the algorithm in the face of high-dimensional variables.
Finally, the performance of the algorithm is examined using three commonly used test
functions, and we analyze and verify the effectiveness of the model construction and the
proposed strategy through the IEEE’s classical model.
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2. Multi-Objective Optimal Scheduling Model of Source-Grid-Load-Storage
2.1. Optimization Goal
2.1.1. Fluctuating Tie-Line Power between the Distribution Network and Power Grid

To some extent, the fluctuation of tie-line power can reflect the influence of the distri-
bution network on the large power grid. There are two main evaluation indexes to reflect
changes in tie-line power, namely the change rate of tie-line power and the fluctuation rate
of tie-line power [26,27]. The change rate of tie-line power is defined as:

Dgrid =
Pgrid,max − Pgrid,min

∆t
(1)

where Dgrid is the power change rate of the tie line. Pgrid,max and Pgrid,min are the maximum
and minimum values of tie-line power in ∆t time interval, respectively. The volatility
of tie-line power is expressed by the standard deviation of tie-line power, as shown in
Formula (2).

δgrid =

√√√√ 1
T− 1

T

∑
t=1

(Pgrid,t − Pgrid,av)
2 (2)

In this formula, δgrid is the tie-line volatility. Pgrid,av is the average power of the tie-line,
and Pgrid,t is the power of the tie line at time point t, t ∈ T.

2.1.2. Grid Loss

Grid loss is an important economic index of grid power flow optimization. The
reasonable setting of the states of various distributed devices in the system and the active
output of a multi-energy complementary distribution network system can improve the
power flow distribution of the system and effectively control the grid loss of the system.
The mathematical expression is as follows:

Ploss =
N

∑
n=1

Vn ∑
m∈M

Vm(Gnm cos δnm + Bnm sin δnm) (3)

In this formula, Ploss represents the grid loss of the system. Vn and Vm are the voltage
amplitudes of nodes n and m, respectively. Gnm, Bnm, and δnm represent the conductance,
admittance, and phase angle difference between nodes n and m. N is the total number of
nodes and M represents the set of nodes connected to node m.

2.1.3. Node Voltage Deviation

The voltage amplitude of the node is one of the important indexes of power quality.
This is especially true after a large-scale grid connection of distributed PVs when the
power flow direction of the distribution network becomes more complex and diverse,
which increases the risk of the voltage amplitude of the line node exceeding the limit. By
adjusting the reactive power of a PV grid-connected inverter, the system node voltage can
be effectively optimized. The mathematical expression is:

Ugrid =

√√√√ 1
N− 1

N

∑
b=1

(Un −Us)
2 (4)

In this formula, Ugrid is the node voltage deviation rate. Un is the n node voltage
amplitude. Us is the standard voltage amplitude.
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2.2. Constraint Condition
2.2.1. Electric Power Balance Constraint

Pgrid,t +
Npv

∑
x=1

Ppv,x,t =
Nle

∑
l=1

Ple,l,t +
Nke

∑
z=1

Pke,z,t +
Nse

∑
y=1

Pse,y,t (5)

where Ppv,x,t is the xth PV t period active power. Ple,l,t is the lth load t period power. Pke,z,t
is the zth controllable load t period power. Pse,y,t is the yth t period charge and discharge
power of the energy storage (ES) device.

2.2.2. ES Model

The ES constraints can be expressed as follows:

(1) Power constraints of ES equipment:

Kse,bPse,min ≤ Pse,y,t ≤ Kse,bPse,max (6)

where Kse,b is the state of the distributed ES unit (b = 1 means operation, b = 0
means outage). Pse,min and Pse,max are the lower and upper limits of the power of the
distributed ES unit.

(2) Capacity constraints of ES:

Sse,min ≤ Sse,y,t ≤ Sse,max (7)

where Sse,min and Sse,max are the upper and lower limits of the ES capacity of each
distributed ES device unit, and Sse,y,t is the ES capacity of the t period of the ith
distributed ES device unit.

(3) Charge and discharge balance constraints of ES equipment:
Sse,y,t = Sse,y + Pse,y,t

T

∑
t=1

Pse,y,t = 0
(8)

where Pse,y,t is the charge and discharge power of the yth ES device in t period. Sse,y
is the initial ES capacity.

2.2.3. Controllable Load Model

The controllable load constraints can be expressed as follows:

(1) Controllable load power constraints:

Kle,aPle,z,min ≤ Ple,z,t ≤ Kle,aPle,z,max (9)

where Kle,a is the state of distributed controllable load (a = 1 means operation, a = 0
means outage). Ple,z,max and Ple,z,min are the upper and lower limits of zth distributed
controllable load power.

(2) Controllable load electricity constraint:{
Pke,z,t = Ple,z,t − Sle,z,t
0 ≤ Sle,z,t ≤ Sle,z,max

(10)

where Sle,z,max is the upper limit of energy consumption of the distributed controllable
load, and Sle,z,t is the power consumption of the zth controllable load t period.
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2.2.4. Line Power and Grid State Constraints

Assuming that the grid meets the requirements of open-loop operation and the line
power does not cross the line, by adjusting the switch displacement information in the
distribution network, the grid state constraints can be expressed as follows:

Sc,min ≤ Sc,t ≤ Sc,max (11)

where Sc,max and Sc,min are the upper and lower limits of the apparent power of the mth
line, and Sc,t is the apparent power of the t period of the cth line.

Nc(As) = 0 (s = 1, 2, ..., ns) (12)

where As is the sth grid topology state, Nc(As) is the number of electrical loops in the sth
grid topology state, and ns is the total number of grid topology states.

2.2.5. PV Inverter Constraints

Considering the constraints of PV inverter power and operating conditions, the reac-
tive power of the PV grid-connected inverter is fully used, and the PV inverter constraints
can be expressed as follows:

0 ≤ Ppv,x,t ≤ Ppv,x,max
P2

pv,x,t + Q2
pv,x,t ≤ S2

pv,x,t
− tan θx,tPpv,x,t ≤ Qpv,x,t ≤ Ppv,x,t tan θx,t

(13)

where Ppv,x,max is the xth PV t period output power, Spv,x,t is the xth PV t period apparent
power, Qpv,x,t is the xth PV t period reactive power, and θx,t is the xth PV t period inverter
power factor angle.

3. Hierarchical Solution Strategy of the Model
Hierarchical Optimization Framework

In this paper, the hierarchical solution framework of the model is divided into four
levels. Through the coordination and optimization of all levels, the multi-objective optimiza-
tion regulation of the load and storage of the distribution network under the background
of high-proportion PV access is realized. The concrete framework is shown in Figure 1.

PV optimization layer: To maximize the consumption of PV output, the PV output
curve is predicted by meteorological data, and the net load curve is calculated by combining
the load curve and the PV output prediction curve. The results are then transmitted to the
next layer.

Grid optimization layer: Assuming that the grid meets the requirements of open-loop
operation and the line power does not cross the line, by adjusting the switch displacement
information in the distribution network, the topology structure of the grid power flow
and node voltage distribution are optimized and the power flow distribution of the grid is
transferred to the next layer.

ES and controllable load optimization layer: Considering the power and electric
quantity constraints of ES and controllable loads, after optimizing charging, discharging,
and electric power consumption and reducing the power fluctuation and grid loss of tie
lines, the optimized grid power flow distribution is transferred to the next layer.

PV reactive power optimization layer: Considering the constraints of PV inverter
power and operating conditions, the reactive power of the PV grid-connected inverter is
fully used, the node voltage of the grid is adjusted, and the power quality is improved.

Finally, after multi-level optimization, the fitness of the optimization scheme is as-
sessed through normalization.
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Figure 1. Hierarchical optimization framework diagram.

4. LW-IMCSDE Algorithm

The LW-IMCSDE algorithm is introduced to address the problems of complex models,
the high dimensionality of variables, and difficulties in optimization for the high-proportion
distributed PV grid connection optimization problem, as shown below.

4.1. Algorithm Initialization

popT
i,j =

(
popT

i,1, popT
i,2, ...popT

I,D

)
(14)

Spop0
i,j = popj,min + rand

(
popj,max − popj,min

)
Ppop0

k,j = rand
(

popj,max − popj,min
)
− popi,j

(15)

{
pop0

i,j = Spop0
i,j, i f f

(
Spop0

i,j

)
< f

(
Ppop0

i,j

)
pop0

i,j = Ppop0
i,j, otherwise

(16)

where Spop0
i,j is the forward initialization, Ppop0

i,j is the reverse initialization, T in Equation
(16) is the number of evolutionary generations, i ∈ I is the number of populations, j ∈ D is



Processes 2023, 11, 2824 7 of 16

the dimensionality of the variables, f (·) is the fitness value, and popj,max and popj,min are
the upper and lower limits of the population boundaries, respectively. The forward and
reverse initialization further enhance the population diversity compared to the original
initialization strategy.

4.2. Lehmer Weighted Correction Strategy

The crossover probability CR of the DE algorithm mainly reflects the magnitude of
the amount of information exchanged between children and parents and intermediate
variants in the process of crossover. The scaling factor F mainly affects the global merit-
seeking ability of the algorithm. In this study, the Lehmer average corrections CR and F
are introduced, and the initial values of CR and F are taken as 0.5. The correction strategy
is as follows: {

Fn = randn(F, 0.1)
CRc = randc(CR, 0.1)

(17)


Fn =


1 if Fn > 1

Fn else if 0.5 ≤ Fn ≤ 1
0.5 otherwise Fn < 0.5

CRc =


1 if CRc > 1

CRc else if 0.5 ≤ CRc ≤ 1
0 otherwise CRc < 0.5

(18)

{
Fn

i ⊇ Fn

CRc
i ⊇ CRc (19)

where randn is the normal distribution and randc is the Cauchy distribution. The Cauchy
distribution has maximum distribution characteristics, greatly increasing the randomness
of the CRc and providing sufficient samples for the CR, while the F requires a lower
sufficiency of selected samples than the CR, which is why the normal distribution is chosen.
The CRc and Fn values obtained from Equations (17) and (18) are revalued according to
different situations to ensure the feasibility of their results.

MF =
I

∑
i=1

ωF(i) · (Fn)2/
I

∑
i=1

ωF(i) · Fn (20)

MCR =
I

∑
i=1

ωCR(i) · (CRc)2/
I

∑
i=1

ωCR(i) · CRc (21)

where MF is the weighted Lehmer average of F and MCR is the weighted Lehmer average
of CR. The weights of the weighted Lehmer average strategy are updated based on the
adaptation improvement values:

ωCR(i) = ωF(i)∆ f /
I

∑
i=1

∆ f (22)

∆ f = | f c− f (i)| (23)

where f c is the global optimal fitness reference value, and f (i) is the previous generation’s
optimal fitness value for the fast correction of weight values. ωCR(i) is the corrected weight
value of CR, ωF(i) is the corrected weight value of F, ∆ f is the fitness improvement value,
and I is the number of populations.

AF =

{
(1− c) · Fn

i + c×MF, Fn
i 6= ∅

(1− c) · Fn
i + c× rand, otherwise

(24)
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ACR =

{
(1− c)CRc

i + c×MCR, CRc
i 6= ∅

(1− c)CRc
i + c× rand, otherwise

(25)

where c is a constant of (0~1), rand is a random number of (0~1), AF is the weighted
Lehmer average correction value of F, and ACR is the weighted Lehmer average correction
value of CR. The weighted Lehmer average value is added to update AF and ACR to
avoid the premature convergence of the strategy, thus preventing it from falling into a local
optimum. The weighted Lehmer average correction values AF and ACR replace F and CR
in Equation (18) after each iteration, and AF and ACR are continuously corrected by the
optimal fitness reference value according to different stages.

4.3. Multi-Mutation Cooperation Strategy

V1 =


i f rand > ACR

pop + AF(Gbest − Gbad)
otherwise

Gbest + AF(popr1 − popr2)

(26)

V2 =



i f rand > ACR
pop + AF(Pbest − Gbad)+

AF(popr2 − Gbest) + δ(x− pop)
otherwise

Gbest + AF(Ppop− Spop)+
AF(popr3 − popr4) + δ(x− pop)

(27)

V3 =



i f rand > ACR
N
(

pop+Gbest
2 , pop− Gbest

)
,

otherwise
popr1 + AF(Gbest − popr2)+

AF(popr2 − popr3) + δ(x− pop)

(28)

x =

I
∑

i=1
Gbest.i

pop
(29)

where N(·) is the Gaussian distribution, popr1, popr2, popr3, and popr4 are the four ran-
domly selected individuals in the population, Gbest is the global best individual in the
iterative process, Gbad is the global worst individual in the iterative process, and δ is the
weight of influence of the central mean, which plays an important role in the evolutionary
process, and together with the value of x represents the degree of learning from the best
individual. The value of δ is set to 0.04, and Pbest is the agent randomly selected from the
current optimal individual.

V1, V2, and V3 are three parallel mutation strategies, and the optimal mutation strategy
is selected by comparing their corresponding fitness values. For high-dimensional variables,
the parallel approach of multi-mutation collaborative strategies can greatly improve the
optimization-seeking ability.

The global optimality-seeking capability is improved in the mutation strategy V2. Pbest
in V2 uses the global optimum to guide Pbest to help these individuals jump out of the local
optimum when they fall into it. This guidance mechanism can accelerate the convergence
of the algorithm. In addition, a strategy of simultaneous crossover and variation is adopted
to further enhance the convergence speed of the algorithm.

4.4. Fitness Selection Strategy{
f
(
VT) = min( f (V1), f (V2), f (V3))

V = VT (30)



Processes 2023, 11, 2824 9 of 16

where V is the optimal individual, f
(
VT) is the optimal fitness value of the Tth generation,

and f (V1) is the fitness value of the mutation strategy V1.
In this paper, the population is updated by replacing the worst individual in the popu-

lation with popn and popn is determined by Gbest, Pbest, and other coefficients as follows:

Pw =

{
ACR, i f c < ACR
1− ACR, otherwise

(31)

Ps =

{
0, i f f

(
VT) < Gbest

1, otherwise
(32)

Pu =


Gbest

(n1−1)(n2−2)+
GbestPbest

(n3−1)(n2−2)+
1

(n4−1)(n4−2)(n4−2)

/3 (33)

popn = PvPsPu (34)

where Pw is the weight of the updated population, Ps determines whether to update the
population, Pu indicates that the updated population is associated with Gbest and Pbest, and
n1 + n2 + n3 + n4 = I.

5. Example Analysis
5.1. Algorithm Performance Analysis

To verify the performance of the LW-IMCSDE algorithm, two commonly used test
functions are used, as shown in Table 1. The Griewank function is a multi-peak function
with the interval [−600, 600]; the sphere function has only the global optimum and an
interval of [−600, 600]. The number of individual dimensions of the algorithm is set to 20,
and the population size is 100.

Table 1. Test function.

Function Name Function

Griewank f (x) = 1
4000

n

∑
i=1

x2
i − ∏

i∈n

(
xi/
√

xi
)
+ 1

Sphere f (x) =
n
∑
i

x2
i

Figure 2a,b show the performance comparison with the Griewank, Rastrigin, and
sphere functions as the test functions. The IMSDE algorithm is an improved multivariate
policy DE algorithm that considers Equations (28)–(31) without considering the weighted
Lehmer average improvement.

By looking at the comparison in Figure 2a, we can see that the IMSDE algorithm and the
LW-IMCSDE algorithm have significantly better optimizing speeds than the DE algorithm,
but the IMCSDE algorithm has a lower adaptation value than the DE algorithm in the
test function and it is easier for it to fall into the local optimum, whereas the LW-IMCSDE
algorithm not only has a fast optimizing speed but can also jump out of the local optimum.
As can be seen from Figure 2b, the LW-IMCSDE algorithm has an optimal fitness value of 0,
which reaches the optimal value of the function, i.e., the global optimization-seeking ability
is better.
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5.2. Calculation of the Basic Situation

In this study, the parameters of IEEE’s typical distribution network model are selected.
Under the background of whole-county PV, 16 PV grid points, 4 ES access points, and
2 (11 and 30 points) controllable load access points are set up. The six dotted lines in
Figure 3a represent switchable lines, which are used to optimize the grid topology. The
optimal grid topology in summer/winter is the same, as shown in Figure 3b.
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Figure 3. IEEE’s typical distribution network model.

In this study, by combining meteorological parameters such as light and temperature
in a certain place over the past three years, the output scenarios of 16 PV nodes on typical
summer and winter days are simulated. In terms of load power, it is divided into three cat-
egories: industrial load, commercial load, and residential load. According to the historical
load data of a certain place, the paper sets the output scenarios for 27 load nodes on typical
days in summer and winter, where Figure 4a shows the PV output power on a typical day
in summer and Figure 4b shows the typical daily load in summer. Figure 5a shows the
PV output power on a typical day in winter, and Figure 5b shows the typical daily load
in winter.
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5.3. Simulation Calculation Results
5.3.1. Simulation Calculation of a Typical Day in Summer

The controllable load power and the reactive power of the PV inverter are no longer
shown. The ES charging and discharging powers are shown in Figure 6, a comparison of
the results before and after node voltage optimization is shown in Figure 7, the power of
the tie line before and after optimization is shown in Figure 8, and the grid loss before and
after optimization is shown in Figure 9.
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Figure 8. Power of the tie line before and after optimization.
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Figure 9. Grid loss before and after optimization.

Combined with Figures 6–9, the grid losses are significantly elevated after 9:00, and at
the same time, the power demand on the grid rises. So, to reduce grid losses and interactive
power fluctuations, the ES is charged from 1:00 to 9:00. The contact line interactive power
is boosted to provide active power dispatch capacity for high grid losses after 9:00, while
the PV inverter provides a stable voltage when grid losses are elevated. Then, the reactive
power output is boosted.

Finally, the total grid loss was reduced from 1693.43 kW before optimization to
964.82 kW after optimization, with a loss reduction rate of 43.03%. The variance value of
the interactive power with the superior grid was reduced from 1.38 before optimization to
0.37 after optimization, and the volatility of the interactive power was significantly reduced.
The lower limit of the voltage scale value increased from 0.93 pu before optimization to
0.97 pu after optimization.

5.3.2. Simulation Calculation for a Typical Day in Winter

The controllable load power and reactive power of the PV inverter are no longer
shown; the ES charging and discharging powers are shown in Figure 10, a comparison of
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the results before and after the node voltage optimization is shown in Figure 11, the power
of the tie line before and after optimization is shown in Figure 12, and the grid loss before
and after optimization is shown in Figure 13.
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Figure 12. Power of the tie line before and after optimization.

Compared to a typical day in summer, the PV output on a typical day in winter is
smaller, the grid losses and contact line power fluctuations are greater, and the overall
dispatching strategy is similar. Combined with Figures 12 and 13, the grid losses are
significantly elevated after 9:00, and the power demand on the upper grid rises. Therefore,
to reduce grid losses and interactive power fluctuations, the contact line interactive power
is boosted to provide active power dispatch capacity for high grid losses after 9:00, while
the PV inverter boosts the reactive power output when the grid losses rise. The reactive
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power output of the PV is higher due to the lower PV output in the winter compared to
the summer.
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Finally, the total grid loss was reduced from 2289.71 kW before optimization to
1601.43 kW after optimization, with a loss reduction rate of 30.06%. The variance of
power interaction with the grid was reduced from 1.51 before optimization to 0.35 after
optimization, and the volatility of power interaction with the grid was significantly reduced.
The lower limit of the voltage scale value increased from 0.92 pu before optimization to
0.97 pu after optimization.

The above results show that the proposed strategy can reduce total grid losses, contact
line power fluctuations, and node voltage deviation values during typical winter and
summer days when compared with the pre-optimization period.

6. Conclusions

Aiming to resolve the optimal scheduling problem of the distribution network caused
by a high proportion of distributed PV access against the backdrop of whole-county PV,
this paper proposes a hierarchically coordinated optimal control strategy of source-grid-
load-storage and constructs a scheduling model considering the spatial distribution of
power flow. The feasibility and effectiveness of the proposed strategy are verified in two
typical summer and winter power scenarios. The main conclusions are as follows:

(1) Considering the large-scale grid connection of distributed PV, the fixed grid topology
cannot realize the optimal operation of the distribution network. In this paper, the
grid structure is optimized by reasonably opening and closing the tie lines, and the
distribution of node voltage and grid power flow is improved. The ES charging and
discharging power, controllable load power, and PV reactive power are optimized by
hierarchical optimization and adjustment of the grid topology, which reduces grid
losses and power fluctuations on the pulling lines.

(2) By adjusting the ES charging and discharging power and controllable load power,
the fluctuation of tie-line power caused by the high proportion of distributed PV
grid connections is reduced, grid loss is reduced, and the economic operation of the
distribution network is achieved. The characteristics of the reactive power supply
were fully utilized, its reactive output was rationally optimized, the node voltage
amplitude was improved, and the voltage quality was enhanced.

(3) The LM-IMCSDE algorithm improves the comprehensive performance of the al-
gorithm based on the DE algorithm with the help of weighting Lehmer averages,
improved multivariate collaboration, updated populations, and other strategies, as
well as the algorithm test, which shows that the LM-IMCSDE algorithm has features
such as faster convergence speed and stronger global search ability.
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This research focuses on taking the typical scenario of a high proportion of distributed
photovoltaic grid connections against the background. This paper constructs an optimal
scheduling model in distribution networks, considering their adjustment potential to fulfil
grid requirements. However, it is essential to acknowledge certain limitations within
this study, as the scope remains constrained to specific research objectives. In future
research, the relevant work will be further refined and improved, such as excavating the
flexible adjustment capacity of system and framework planning schemes, as well as system
operation strategies under multiple time scales.
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