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Abstract: Wound healing continues to pose a challenge in clinical settings. Moreover, wound
management must be performed properly and efficiently. Acute wound healing involves multiple
cell divisions, a new extracellular matrix, and the process of formation, such as growth factors and
cytokines, which are released at the site of the wound to regulate the process. Any changes that
disrupt the healing process could cause tissue damage and prolong the healing process. Various
factors, such as microbial infection, oxidation, and inflammation, can delay wound healing. In
order to counter these problems, utilizing natural products with wound-healing effects has been
reported to promote this process. Several natural products have been associated with wound healing,
most of which are from medicinal plants. However, secondary microbial metabolites have not been
extensively studied for their wound-healing properties. Further, investigations on the wound-healing
control of natural microbial products are required due to a lack of studies. This review discussed the
in vivo and in vitro research on the wound healing activities of natural microbial products, which
may assist in the development of better wound treatments in the future.
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1. Introduction

The skin can be broken or opened by wounds caused by chemical, thermal, or physical
injuries [1,2]. The skin is an organ that covers the external surface of the body, and it protects
the bones, muscles, internal organs, and ligaments below it with multiple layers of ectoder-
mal tissues. The skin also protects against heat, injury, light, and microbes [3–5]. Several
regulatory molecules and cells must work together in order for wound re-epithelialization
to occur. Within the skin layers, embedded cellular and molecular substances initiate
healing at the designated phases when the cutaneous layer is damaged [6,7].

Despite a systematic process, wound healing in the human body is one of the most
convoluted biological actions because the following phases overlap: inflammation, the
cellular phase (granulation), contraction of the wound area (wound contraction), collagen
deposition (collagen formation), epithelialization (epithelialization), and remodeling of
scars (cicatrization) (Scheme 1) [3,6]. Upon successful completion of all these events, the
disruption of the anatomical and the skin’s functional state is restored [3]. There are several
factors that can interfere with these healing processes, resulting in impaired wound healing.
In the case of impaired healing, such as delayed acute and chronic wounds, the healing
process generally has not progressed through the normal healing stages. The majority of
chronic wounds are caused by ulcers associated with ischemia, venous causes or infection,
and diabetes mellitus [2].

A natural product with medicinal properties, which contribute to alleviating these fac-
tors, can facilitate the wound-healing process and be developed as a future drug. Over the
last few years, numerous research has investigated the wound-healing properties of natural
products that contain antioxidant, anti-inflammatory, collagen promotion, and antibacterial
properties [5]. Various phytochemicals, including alkaloids, tannins, flavonoids, terpenoids,
phenolic, essential oils, and saponin compounds, may contribute to the medicinal effects.
Natural products, including phytochemicals, play an important role in wound healing due
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to these properties [3,7,8]. Among natural wound-healing materials, hyaluronic acid has
been used in the preparation of wound bandages due to its collagen deposition enhance-
ment, epithelialization, and wound vascularization. At present, there are many wound
dressings that contain hyaluronic acid available on the market, such as Hyalo Regen from
Fidia Pharma, USA, NJ, as well as Hyalofill®and Hyalosafe®from Anika Therapeutics,
Bedford, MA [9].
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Scheme 1. Various stages of wound healing.

Recently, natural microbial products have been reported to be an important source of
drug discovery [10,11] due to their diverse chemical scaffolds [12]. However, the discovery
of natural microbial products possessing wound-healing properties is still not widely
investigated. The objective of this review is to highlight the use of selected microbial
natural products in promoting wound-healing processes.

2. Biosurfactant

The ability of biosurfactants to interact with modifying surfaces makes them surface-
active compounds (SACs). In nature and biotechnology, these biomolecules serve different
functions due to their physiological roles and physicochemical properties due to their
amphiphilic nature and their production by different microorganisms. The benefits of SACs
over synthetic surfactants include low toxicity, increased biodegradability, low critical
micelle concentrations, and environmental acceptability [13–15].

In addition, these compounds exhibit antifungal [16], antibacterial [17], antiviral [18],
and antitumor [19] properties. Moreover, their antiadhesive activity and antibiofilm proper-
ties contribute to the inhibition of adhesion and colonization by pathogenic microorganisms
and biofilm removal [13,20]. In chronic wounds, biofilms contribute to chronic wounds
and infection, thereby causing a delay in the healing process. The most commonly found
pathogens in chronic wounds are Pseudomonas aeruginosa and Staphylococcus aureus. It is
difficult to identify biofilms embedded in deeper layers, such as P. aeruginosa biofilms, with
wound smear cultures. Further, antibiotic resistance within the biofilms is a critical problem
in chronic wound management [21–23]. Due to these reasons, the scientific community
and physicians consider wound treatment and biofilm prevention as major priorities in
the healing process. As a result, SACs have recently emerged as promising wound-healing
agents that cause minimal irritation and are highly compatible with human skin [13,20].
Moreover, these bioproducts speed up the re-epithelialization process and the deposition
of collagen, resulting in faster wound healing [24,25].

Surfactin A (1, Figure 1) isolated from Bacillus subtilis was reported to promote wound
healing and the inhibition effects of scars. Amid the healing process, 1 upregulated ex-
pression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth fac-
tor. Moreover, it accelerated keratinocyte migration via the mitogen-activated protein
kinase and factor nuclear-κB (NF-κB) signaling pathways, followed by the regulation of
pro-inflammatory cytokine secretion and macrophage phenotypic exchange. In addition,
1 could heal the wound due to its antioxidant properties, with an IC50 = 0.55 mg/mL [25,26].
It also prevented scar tissue formation by inhibiting the expression of α-smooth muscle
actin (α-SMA) and transforming growth factor (TGF-β).
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sophorolipid (4).

An in vitro study of a biosurfactant (BS) of a glycolipid nature (2, Figure 1), iso-
lated from Bacillus licheniformis SV1, exhibited adequate cytocompatibility and increased
3T3/NIH fibroblast proliferation. An approach using a BS ointment in vivo stimulated
re-epithelialization, fibroblast proliferation, and the faster deposition of collagen in skin
excision wounds in rats, thereby demonstrating its potential to improve wound healing
through transdermal delivery [27].

In a previous study, mice were treated with an ointment containing rhamnolipid (3,
Figure 1) after creating severe wounds on their backs. The results of histopathological
studies showed that 3 improved wound closure and collagenases, and it reduced inflam-
mation by reducing the level of TNF-α without causing any negative skin reactions. There
is evidence that dirhamnolipid therapy can alleviate scarring on the skin, as it has shown
effects in rabbit ear hypertrophic scar models, with a depletion in α-SMA expression, type
I collagen fibers, and scar elevation index scores [28].

By substituting human skin with an in vitro model of human dermal fibroblasts, a cell
culture model was utilized to demonstrate the wound-healing capacity of sophorolipid
(4, Figure 1), revealing that 4 affected the human skin fibroblast expression of elastase
inhibition collagen I mRNA, with IC50 = 38.5 µg/mL. Additionally, an in vitro wound-
healing evaluation in the human colorectal adenocarcinoma (HT-29) cell line showed a
significant increase in collagenase-1 expression in HT-29 colorectal adenocarcinoma cells
after treatment for 48 h with 4 [29,30].
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3. Flavonoids

The flavonoid class of compounds possesses various biological functions, making
them important sources of new pharmaceuticals, including those for treating skin wounds.
The structure–activity relationship is one of the main factors that contributes to the pharma-
ceutical properties of flavonoids [31–33]. Their anti-inflammatory [34], antibacterial [35],
antioxidant [36], and antifibrotic [37] properties depend largely on the presence of hydroxyl
groups due to high hydroxylation.

It has already been demonstrated that flavonoids exhibit significant pharmacological
activity, such as increasing epithelialization rates, modulating inflammatory cytokinases,
reducing mononuclear cells in the proliferative phase, accelerating wound contraction
rates, and promoting vasculogenesis and angiogenesis. Therefore, there is potential for
flavonoids to be used as a treatment for various chronic diseases that lead to cutaneous
lesions, including diabetes mellitus, which causes many amputations worldwide [38–41].

Baicalin (5, Figure 2) is a flavone glycoside with anti-inflammatory, antiviral, and
photoprotective properties [42]. Compound 5 blocks the pathological keratinocyte changes
in psoriatic patients [43]. An antioxidant and anti-inflammatory effect may be responsible
for the wound-healing properties of the baicalin nanohydrogel preparation. Moreover,
5 inhibits nitric oxide and tumor necrosis factor-α (TNF-α), which are both important
elements in the inflammatory process [44]. Finally, 5 was found to exist in the endophytic
fungus Spiropes sp. and played a major role in the pharmacological action of Scutellaria
baicalensis [42,45].

Processes 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

3. Flavonoids 114 

The flavonoid class of compounds possesses various biological functions, making 115 

them important sources of new pharmaceuticals, including those for treating skin 116 

wounds. The structure–activity relationship is one of the main factors that contributes to 117 

the pharmaceutical properties of flavonoids [31–33]. Their anti-inflammatory [34], anti- 118 

bacterial [35], antioxidant [36], and antifibrotic [37] properties depend largely on the pres- 119 

ence of hydroxyl groups due to high hydroxylation. 120 

It has already been demonstrated that flavonoids exhibit significant pharmacological 121 

activity, such as increasing epithelialization rates, modulating inflammatory cytokinases, 122 

reducing mononuclear cells in the proliferative phase, accelerating wound contraction 123 

rates, and promoting vasculogenesis and angiogenesis. Therefore, there is potential for 124 

flavonoids to be used as a treatment for various chronic diseases that lead to cutaneous 125 

lesions, including diabetes mellitus, which causes many amputations worldwide [38–41]. 126 

Baicalin (5, Figure 2) is a flavone glycoside with anti-inflammatory, antiviral, and 127 

photoprotective properties [42]. Compound 5 blocks the pathological keratinocyte 128 

changes in psoriatic patients [43]. An antioxidant and anti-inflammatory effect may be 129 

responsible for the wound-healing properties of the baicalin nanohydrogel preparation. 130 

Moreover, 5 inhibits nitric oxide and tumor necrosis factor-α (TNF-α), which are both im- 131 

portant elements in the inflammatory process [44]. Finally, 5 was found to exist in the 132 

endophytic fungus Spiropes sp. and played a major role in the pharmacological action of 133 

Scutellaria baicalensis [42,45]. 134 

Kaempferol (6, Figure 2) is known to inhibit cancer growth; reduce inflammation; 135 

promote antioxidant activity; and protect the heart, liver, and brain [46]. With a 1% w/w 136 

ointment concentration, 6 exhibited wound-healing activity in diabetic and non-diabetic 137 

rats. This wound-healing activity was studied utilizing incision and excision wound mod- 138 

els [47]. According to both models, kaempferol showed crucial wound-healing activity, as 139 

indicated by the increase in the granulation tissue weight and hydroxyproline content in 140 

the incision wound model, as well as a reduction in the wound area, faster epithelializa- 141 

tion, increased dry weight of the tissue, and increased hydroxyproline content in the ex- 142 

cision wound model [48]. Moreover, 6 was found in many edible vegetables and the ex- 143 

tract of the endophytic fungi Fusarium chlamydosporum from Tylophora indica [49–51]. 144 

Bioflavonoids such as quercetin (7, Figure 2) are known for their anti-atherosclerotic, 145 

anti-hypercholesterolemic, anti-hypertensive, anti-inflammatory, and anti-obesity prop- 146 

erties [52]. Preclinical research has shown 7 to possess wound-healing properties [53,54]. 147 

A study by Jangde et al. evaluated quercetin's wound-healing properties in vitro and in 148 

vivo. The results indicated that wound healing was significantly accelerated, and the 149 

wound termination time significantly decreased compared to the regular dosage forms. 150 

These results suggested that connectivity tissue disorders can be treated effectively as 151 

wound-healing approaches [54]. Quercetin was found in more than 20 plants [42]. More- 152 

over, in terms of obtaining quercetin from bacteria, it was isolated for the first time from 153 

a cyanobacterium, Anabaena aequalis Borge [55]. 154 

 155 

Figure 2. Chemical structures of baicalin (5), kaempferol (6), and quercetin (7). 156 Figure 2. Chemical structures of baicalin (5), kaempferol (6), and quercetin (7).

Kaempferol (6, Figure 2) is known to inhibit cancer growth; reduce inflammation;
promote antioxidant activity; and protect the heart, liver, and brain [46]. With a 1% w/w
ointment concentration, 6 exhibited wound-healing activity in diabetic and non-diabetic
rats. This wound-healing activity was studied utilizing incision and excision wound
models [47]. According to both models, kaempferol showed crucial wound-healing activity,
as indicated by the increase in the granulation tissue weight and hydroxyproline content in
the incision wound model, as well as a reduction in the wound area, faster epithelialization,
increased dry weight of the tissue, and increased hydroxyproline content in the excision
wound model [48]. Moreover, 6 was found in many edible vegetables and the extract of the
endophytic fungi Fusarium chlamydosporum from Tylophora indica [49–51].

Bioflavonoids such as quercetin (7, Figure 2) are known for their anti-atherosclerotic,
anti-hypercholesterolemic, anti-hypertensive, anti-inflammatory, and anti-obesity proper-
ties [52]. Preclinical research has shown 7 to possess wound-healing properties [53,54]. A
study by Jangde et al. evaluated quercetin’s wound-healing properties in vitro and in vivo.
The results indicated that wound healing was significantly accelerated, and the wound ter-
mination time significantly decreased compared to the regular dosage forms. These results
suggested that connectivity tissue disorders can be treated effectively as wound-healing
approaches [54]. Quercetin was found in more than 20 plants [42]. Moreover, in terms of
obtaining quercetin from bacteria, it was isolated for the first time from a cyanobacterium,
Anabaena aequalis Borge [55].
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4. Quinones

Biochemical pigments called quinones are established in several living organisms,
including fungi, bacteria, a few animals, and higher plants. There are many forms of
quinones in nature, such as naphthoquinones, benzoquinones, polycyclic quinones, and
anthraquinones. Quinones are formed when polynuclear hydrocarbons, aromatic amines,
and polyhydric phenols are oxidized [56]. Quinones and their derivatives are known to be
potential antioxidants. In particular, hydroxyquinones are powerful antioxidants due to
their dihydroxy groups located in the ortho position. Several hydroxyquinones, including
pseudopurpurin, purpurin, and alizarin, are highly effective as antioxidants. In contrast,
emodin, aloe-emodin, chrysophanol, and rhein have shown lower efficacy due to the
absence of the ortho-dihydroxyl groups. This indicates that the ortho-dihydroxy structure
of quinone and its derivatives significantly influences its radical scavenging properties [57].

A new antibiotic, MT81 (8, Figure 3), was isolated and purified from Penicillium
nigricans culture media. It was found that 8 was a polyhydroxy anthraquinone, which
exhibited antibacterial properties, along with an antiprotozoal effect toward Leishmania
donovani promastigotes in vitro. Moreover, 8 was investigated for its wound-healing effect
in mice. The result exhibited the healing effects of an 8 ointment on mice infected with
pathogenic organisms, and it was comparable to the positive control, nitrofurazone. This
indicates that the antimicrobial effect of 8 helps to heal infected wounds by inhibiting
microorganisms [58].

Processes 2022, 10, x FOR PEER REVIEW 5 of 16 
 

 

4. Quinones 157 

Biochemical pigments called quinones are established in several living organisms, 158 

including fungi, bacteria, a few animals, and higher plants. There are many forms of qui- 159 

nones in nature, such as naphthoquinones, benzoquinones, polycyclic quinones, and an- 160 

thraquinones. Quinones are formed when polynuclear hydrocarbons, aromatic amines, 161 

and polyhydric phenols are oxidized [56]. Quinones and their derivatives are known to 162 

be potential antioxidants. In particular, hydroxyquinones are powerful antioxidants due 163 

to their dihydroxy groups located in the ortho position. Several hydroxyquinones, includ- 164 

ing pseudopurpurin, purpurin, and alizarin, are highly effective as antioxidants. In con- 165 

trast, emodin, aloe-emodin, chrysophanol, and rhein have shown lower efficacy due to 166 

the absence of the ortho-dihydroxyl groups. This indicates that the ortho-dihydroxy struc- 167 

ture of quinone and its derivatives significantly influences its radical scavenging proper- 168 

ties [57]. 169 

A new antibiotic, MT81 (8, Figure 3), was isolated and purified from Penicillium nig- 170 

ricans culture media. It was found that 8 was a polyhydroxy anthraquinone, which exhib- 171 

ited antibacterial properties, along with an antiprotozoal effect toward Leishmania do- 172 

novani promastigotes in vitro. Moreover, 8 was investigated for its wound-healing effect 173 

in mice. The result exhibited the healing effects of an 8 ointment on mice infected with 174 

pathogenic organisms, and it was comparable to the positive control, nitrofurazone. This 175 

indicates that the antimicrobial effect of 8 helps to heal infected wounds by inhibiting mi- 176 

croorganisms [58]. 177 

Emodin (9, Figure 3) is a natural anthraquinone derivative found in a wide variety of 178 

higher plants. Emodin obtained from microorganisms was first described as frangula- 179 

emodin, which was isolated from the fungus Dermocybe sanguinea Wulf [59–61]. In addi- 180 

tion, 9 was identified as one of the pigmented products in the culture extracts of Penicil- 181 

lium brunneum Udagawa, Cladosporium fulvum Cooke, Penicillium avellaneum, Penicilliopsis 182 

clavariaeformis, Penicillium islandicum Sopp, Aspergillus wentii Wehmer, Aspergillus 183 

ochraceus Wilhelm, and Aspergillus cristatus [62–69]. Neuroprotective, anti-inflammatory, 184 

anticancer, antibacterial, anti-osteoporotic, hepatoprotective, antiviral, anti-allergic, and 185 

immunosuppressive properties are known to be associated with 9 [70]. Furthermore, the 186 

wound-healing activity of 9 using the excisional wound model in rats has been reported 187 

at dose levels of 100, 200, and 400 μg/mL [71]. 188 

Hennotannic acid (10, Figure 3), also known as lawsone, is an orange-red dye ex- 189 

tracted from the leaves of Lawsonia inermis L., often known as the henna tree. However, 190 

Sarang et al. reported the production of 10 from an endophytic fungus, Gibberella monili- 191 

formis, isolated from the leaf tissues of Lawsonia inermis [72]. Moreover, 10 exhibited anti- 192 

bacterial, antifungal, antiparasitic, antitumor, and antiviral properties [73]. By using an 193 

excision and incision model, Mandawgade and Patil investigated the wound-healing ef- 194 

fects of 10 at dose levels of 50 mg/kg (per oral) and 0.1 mg/kg (topical/ointment). Based on 195 

the result, 10 exhibited significant wound-healing activity in both models [74]. Another 196 

study on 10 also demonstrated crucial wound-healing activity in rodents [75]. 197 

  198 

Figure 3. Chemical structures of MT81 (8), emodin (9), and hennotanic acid (10). 199 

5. Phenolic Acids 200 

Figure 3. Chemical structures of MT81 (8), emodin (9), and hennotanic acid (10).

Emodin (9, Figure 3) is a natural anthraquinone derivative found in a wide variety
of higher plants. Emodin obtained from microorganisms was first described as frangula-
emodin, which was isolated from the fungus Dermocybe sanguinea Wulf [59–61]. In addition,
9 was identified as one of the pigmented products in the culture extracts of Penicillium brun-
neum Udagawa, Cladosporium fulvum Cooke, Penicillium avellaneum, Penicilliopsis clavariae-
formis, Penicillium islandicum Sopp, Aspergillus wentii Wehmer, Aspergillus ochraceus Wilhelm,
and Aspergillus cristatus [62–69]. Neuroprotective, anti-inflammatory, anticancer, antibacte-
rial, anti-osteoporotic, hepatoprotective, antiviral, anti-allergic, and immunosuppressive
properties are known to be associated with 9 [70]. Furthermore, the wound-healing activity
of 9 using the excisional wound model in rats has been reported at dose levels of 100, 200,
and 400 µg/mL [71].

Hennotannic acid (10, Figure 3), also known as lawsone, is an orange-red dye extracted
from the leaves of Lawsonia inermis L., often known as the henna tree. However, Sarang et al.
reported the production of 10 from an endophytic fungus, Gibberella moniliformis, isolated
from the leaf tissues of Lawsonia inermis [72]. Moreover, 10 exhibited antibacterial, anti-
fungal, antiparasitic, antitumor, and antiviral properties [73]. By using an excision and
incision model, Mandawgade and Patil investigated the wound-healing effects of 10 at
dose levels of 50 mg/kg (per oral) and 0.1 mg/kg (topical/ointment). Based on the result,
10 exhibited significant wound-healing activity in both models [74]. Another study on 10
also demonstrated crucial wound-healing activity in rodents [75].
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5. Phenolic Acids

Polyphenol is usually found in plants and marine organisms. Since polyphenols pos-
sess antimicrobial, regenerative, and antioxidant properties, they have significant potential
for application in wound treatment [76–78]. Besides their antimicrobial and antioxidant
activity, polyphenols are also considered to be highly bioactive agents in wound dressings
for acute wound treatment, thereby playing an important role in wound healing [76,79].

Chlorogenic acid (11, Figure 4) is an ester of caffeic acid with phenolic acid (quinic acid),
established in twenty medicinal plants and twenty-nine fungal taxa, including Phomopsis,
Colleterotrichum, Phoma, Alternaria, and Xylariales [42,45]. Moreover, 11 showed significant
wound-healing activity in both in vivo and in vitro investigations [80,81]. A recent study
demonstrated that 11 promotes wound closure and capillary tube formation, as well as
enhanced wound closure with keratinocytes in vitro [80]. In addition, 11 has been shown
to enhance collagen synthesis by upregulating TNF-α and TGF-β during wound healing. It
may promote wound healing in excision wounds due to its antioxidative properties [81].
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Gallic acid (12, Figure 4) is a phenolic compound that can be found in plants, as well
as nineteen endophytic fungal taxa [45]; 12 exhibits strong anti-inflammatory and antioxi-
dant properties. During in vitro experiments, 12 accelerated keratinocyte and fibroblast
migration and wound healing [82]. In addition, 12 enhanced the expression of TGF-β and
inhibited the nuclear factor κB (NF-κB), along with the proliferation and maturation phase
of wound healing [83].

6. Peptides

Several bioactive peptides have been explored for their prospective therapeutic use
in wound healing [84]. Traditional wound-healing therapies, including cytokines, growth
factors, immunomodulatory factors, and plant-derived chemicals, are particularly diffi-
cult to translate into clinical practice for acute wound healing [85]. Further, research on
bioactive peptides with excessive specificity, stability, and activity has attracted consider-
able attention compared to drugs with high costs, low activity, and delivery and safety
problems [84,86,87].

Acremonamide (13, Figure 5), a new cyclic depsipeptide obtained from Acremonium
sp., was isolated in an ongoing effort to discover new marine-derived natural products
with wound-healing effects [88]. It is known that species of the genus Acremonium pro-
duce various secondary metabolites, such as hydroquinones, diterpenes, isocoumarins,
sesquiterpenes, peptides, benzophenones, and butanolides [89]. These fungal strains also
produce cyclic depsipeptides, an interesting bioactive natural product [89–92]. In in vivo
experiments using the human wound healing RT2 Profiler PCR array, adjustments in the
wound-healing genes’ expression were screened to determine the mechanisms behind
the wound-healing properties of 13. The result demonstrated, for the first time, that 13
increased keratinocyte and fibroblast motility, as well as COL1A2 and ACTC1 expression,
thereby enhancing the wound-healing process [88].
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Chondramide A (14, Figure 5) and its analogs isolated from a terrestrial myxobac-
terium, Chondramyces crocatus, were examined for the growth-inhibiting activity of actin
cytoskeletons [93]. The actin cytoskeleton plays a significant role in wound healing—it
allows actomyosin to contract, recruits repair machinery, and migrates cells [94]. By using
highly purified recombinant actin from T. gondii, in vitro polymerization assays confirmed
that both synthetic and natural products target the actin cytoskeleton, with EC50 values
ranging from 0.3 to 1.3 µM. The results indicate that the chondramide treatment can prevent
parasitic invasion and generate faster results than standard therapeutic agents such as
pyrimethamine [95].

Other studies reported the wound-healing activity of jasplakinolide (15, Figure 5)
and apratyramide (16, Figure 5) [96,97]. By binding to F-actin, 15 stabilized the actin
filaments in vivo, leading to actin lumps and polynucleation, which are important in
wound healing [96]. Moreover, 16, a natural product isolated from a cyanobacterium, has
been described to exert wound-healing effects by inducing vascular endothelial growth
factor A [97].

7. Triterpenoids

Terpenoids are plant-derived phytochemicals with a large variety of chemical struc-
tures derived from isoprene and usually have polycyclic structures. They are classified into
monoterpenes, diterpenes, triterpenes, tetraterpenes, sesquiterpenes, and hemiterpenes,
depending on the number of isoprene units in their structures. Triterpenes either have
a tetracyclic or pentacyclic structure [98–100]. Among pentacyclic triterpenes, oleanane,
lupane, and ursane derivatives exhibit anti-inflammatory, anticancer, antioxidant, antivi-
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ral, and cardioprotective activities. In contrast, tetracyclic triterpenes have mostly been
studied for their cytotoxic and anticancer biological properties [101–104]. In recent years,
systematic studies have examined the efficacy of triterpenes as wound healers. Based on
the results of these studies, these phytocompounds have been displayed to promote wound
healing by accelerating epithelialization and collagen formation and deposition, regardless
of the wound type. Furthermore, their integration into various medicinal formulations
is an effective option for wound management through their long-term delivery of active
compounds. In conclusion, triterpenoids have been identified as an emerging class of
wound care therapies [98,105].

Asiaticoside (17, Figure 6) is a triterpenoid saponin, which is found in Centella asiatica
(L.), as well as in an endophytic fungus, Colletotrichum gloeosporioides, obtained from Centella
asiatica (L.) [106,107]. Based on the ability of 17 to induce the development of granulation
tissue and collagenase-induced epithelialization in rabbits, it was proven that 17 exhibits
wound-healing properties [108]. In addition, 17 also induces type I collagen synthesis in
human dermal fibroblast cells [109].
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8. Others

In addition to their skin-rejuvenating properties, probiotics have also been described
to ease atopic eczema, atopic dermatitis, wound healing, and the innate immunity of the
skin. It has been demonstrated that non-viable cultures of lactic acid bacteria can exert
antimicrobial and immunomodulatory effects. Several studies have shown that lactic acid
bacteria compounds, such as cell wall fragments and metabolites, can enhance the skin
barrier function and elicit particular immune responses [110–112].

Lipoteichoic acid (18, Figure 7) is an immune-stimulating systemic component in
the cell walls of both pathogenic and non-pathogenic Gram-positive bacteria. It plays a
crucial role in the growth and physiology of bacteria [113]. Previous research has revealed
that 18 could distribute as a crucial pathogen-associated molecular motif, resulting in
nitric oxide (NO) production and the stimulation of NF-kB, along with the construction
of pro-inflammatory mediators and cytokines [114,115]. In addition, lipoteichoic acid
from beneficial probiotics has been reported to induce tolerance by protecting against the
production of the pro-inflammatory cytokines related to TNF-α sepsis and increasing the
resistance to microbial infection among dermal cells [110]. Furthermore, upon the topical
application of 18, it was found to promote skin protection against microbial infections by
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triggering toll-like receptors and displayed skin-wound-healing capabilities by activating
human β-defensin mechanisms, in addition to its antimicrobial properties [116,117].
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In chemical synthesis or microbial fermentation, lactic acid (19, Figure 7) is constructed
as one of the α-hydroxy acids, which appear in the alpha position of the acid and comprise
one hydroxyl group attached to the alpha position [118,119]. The use of lactic acid has been
widespread for many years in skin-care products and cosmetic regimens, and it is known to
show antibacterial properties that are effective against most pathogenic microbes [120,121].
In addition to its antimicrobial properties, 19 is considered a preventative remedy for acne
vulgaris [122]. Further, because of its ability to improve the function of the stratum corneum
barrier, 19 has shown potential for numerous skin applications, and it improved ceramide
production by keratinocytes [123].

In heterofermentative lactic acid bacteria, acetic acid (20, Figure 7) can be produced
from the hexose monophosphate or pentose pathway [124]. In particular, 20 has been used
in treating microbial infections and superficial infections, as well as burns, on various
occasions [125]. It has been shown to display antibacterial activity against many microbes,
including P. aeruginosa and S. aureus [110]. When various antibiotic-resistant strains cause
inflammation, and therapeutic options are inadequate, acetic acid has been recommended
as the greatest treatment option [125].

Diacetyl (21, Figure 7), also known as 2,3-butanedione, can be produced by certain
strains of Streptococcus, Leuconostoc, Pediococcus, and Lactobacillus, and 21 has shown possible
antimicrobial dermal properties, with the highest sensitivity against Gram-negative bacteria
and fungi rather than Gram-positive bacteria [121]. In addition, at a very low concentration
of 100 ppm, 21 has been established to exert bactericidal activity against S. aureus and
Escherichia coli. Although the antimicrobial activity of 21 has been proven thoroughly, there
is little research on its topical function, and extensive investigation is required to determine
how it affects the skin and other tissues [41,126–128].
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9. Conclusions

This review highlighted several microbial natural products with antibacterial, anti-
inflammatory, antioxidant, and actin cytoskeleton growth-inhibitory activities that are
important in promoting wound-healing activities. Successful wound-healing treatment is
crucial for the better quality of life of patients. Identifying the active compounds responsi-
ble for the wound-healing properties and their mechanism is currently challenging. There
is a high demand for wound-healing agents; therefore, the upscaling of their production
needs to be investigated. Several reviews have reported the wound-healing properties of
plants and bioactive compounds derived from plants [3,129–132]. In addition, the antioxi-
dant, antimicrobial, anticancer, and anti-inflammatory properties of microbial compounds
have also been widely reviewed [11,133–136]. However, research on the wound-healing
properties of microbial compounds is still lacking; therefore, further investigations on the
wound-healing control of natural microbial products are required. This information may
help to develop better treatments for wound healing.

Based on the reported results, compounds 1, 12, 13, 14, 15, 16, and 19 exert their
wound-healing properties by accelerating keratinocyte migration to enhance wound closure.
Moreover, compounds 8, 9, 10, 18, 19, 20, and 21 show antibacterial activity; the bioactive
minimum inhibitory concentration (MIC) values of 9 were 28.9 µm for Bacillus subtilis and
14.4µm for Staphylococcus aureus. However, 9 was not active against two Gram-negative
bacteria (Klebsiella pneumoniae and Escherichia coli) at the highest concentration (1851.9µm)
tested [137]. Similarly, 9 has been reported to exhibit antimycobacterial and broad-spectrum
antibacterial activity, particularly against M. tuberculosis (lowest MIC = 0.9µm) and Gram-
positive bacteria (lowest MIC < 14.8µm) [69]. A broad range of MIC values of 10 was
reported for Fusarium oxysporum (574 mmol/L), Aspergillus niger (861 mmol/L), A. flavus
(287 mmol/L), and Candida albicans (2.933 mmol/L) [138]. In addition, compounds 1 and
3 prevented scar tissue formation, with a reduction in α-SMA expression. Compounds 3,
5, 11, and 18 reduced inflammation by decreasing the level of TNF-α, while compounds
1, 11, and 12 led to enhanced TGF-β expression. In the case of compound 11, it has been
shown to enhance collagen synthesis by upregulating TNF-α and TGF-β during wound
healing. Furthermore, compound 2 from Bacillus licheniformis increased 3T3/NIH fibroblast
proliferation, compound 4 showed a significant increase in collagenase-1 expression in
HT-29 colorectal adenocarcinoma cells, and compounds 6 and 7 are well known for their
anti-inflammatory activity, which can significantly accelerate the increase in the granulation
tissue weight. These results prove that all compounds can be used effectively as wound-
healing treatments.
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131. Nowak, A.; Zielonka-Brzezicka, J.; Perużyńska, M.; Klimowicz, A. Epilobium angustifolium L. as a Potential Herbal Component of
Topical Products for Skin Care and Treatment-A Review. Molecules 2022, 27, 3536. [CrossRef] [PubMed]

132. Ryall, C.; Duarah, S.; Chen, S.; Yu, H.; Wen, J. Advancements in Skin Delivery of Natural Bioactive Products for Wound
Management: A Brief Review of Two Decades. Pharmaceutics 2022, 14, 1072. [CrossRef] [PubMed]

133. Hang, S.; Chen, H.; Wu, W.; Wang, S.; Fang, Y.; Sheng, R.; Tu, Q.; Guo, R. Progress in Isoindolone Alkaloid Derivatives from
Marine Microorganism: Pharmacology, Preparation, and Mechanism. Mar. Drugs. 2022, 20, 405. [CrossRef] [PubMed]

http://doi.org/10.1186/s12906-019-2625-2
http://doi.org/10.1007/s11274-018-2493-9
http://www.ncbi.nlm.nih.gov/pubmed/29980864
http://www.ncbi.nlm.nih.gov/pubmed/27560471
http://doi.org/10.1111/jam.12137
http://www.ncbi.nlm.nih.gov/pubmed/23311666
http://doi.org/10.1111/j.1600-0625.2009.01060.x
http://www.ncbi.nlm.nih.gov/pubmed/20113345
http://doi.org/10.1007/s10482-014-0239-8
http://doi.org/10.1111/j.1365-2567.2005.02160.x
http://doi.org/10.1016/j.tim.2011.09.004
http://doi.org/10.1016/j.micinf.2006.01.008
http://doi.org/10.2174/138161209788682325
http://doi.org/10.3390/molecules23040863
http://www.ncbi.nlm.nih.gov/pubmed/29642579
http://doi.org/10.1007/s13213-012-0561-1
http://doi.org/10.1016/S0190-9622(96)90602-7
http://doi.org/10.1111/j.1346-8138.2006.00003.x
http://doi.org/10.1002/jsfa.3808
http://doi.org/10.29333/ejgm/82586
http://doi.org/10.1016/S0740-0020(02)00159-4
http://doi.org/10.1038/nri3010
http://www.ncbi.nlm.nih.gov/pubmed/10342110
http://doi.org/10.3390/molecules27175541
http://www.ncbi.nlm.nih.gov/pubmed/36080308
http://doi.org/10.3390/molecules27113536
http://www.ncbi.nlm.nih.gov/pubmed/35684473
http://doi.org/10.3390/pharmaceutics14051072
http://www.ncbi.nlm.nih.gov/pubmed/35631658
http://doi.org/10.3390/md20060405
http://www.ncbi.nlm.nih.gov/pubmed/35736208


Processes 2023, 11, 30 16 of 16

134. De Sá, J.D.M.; Kumla, D.; Dethoup, T.; Kijjoa, A. Bioactive Compounds from Terrestrial and Marine-Derived Fungi of the Genus
Neosartorya. Molecules 2022, 27, 2351. [CrossRef]

135. Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-Derived Indole Alkaloids and Their Biological
and Pharmacological Activities. Mar. Drugs 2021, 20, 3. [CrossRef]

136. Zhang, D.; Li, S.; Fan, M.; Zhao, C. The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade.
Drug Des. Devel. Ther. 2022, 16, 3493–3555. [CrossRef]

137. Chukwujekwu, J.C.; Coombes, P.H.; Mulholland, D.A.; van Staden, J. Emodin, an antibacterial anthraquinone from the roots of
Cassia occidentalis. S. Afr. J. Bot. 2006, 72, 295–297. [CrossRef]

138. Xavier, M.R.; Santos, M.M.S.; Queiroz, M.G.; de Lima Silva, M.S.; Goes, A.J.S.; De Morais, M.A., Jr. Lawsone, a 2-hydroxy-1,4-
naphthoquinone from Lawsonia inermis (henna), produces mitochondrial dysfunctions and triggers mitophagy in Saccharomyces
cerevisiae. Mol. Biol. Rep. 2020, 47, 1173–1185. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/molecules27072351
http://doi.org/10.3390/md20010003
http://doi.org/10.2147/DDDT.S377921
http://doi.org/10.1016/j.sajb.2005.08.003
http://doi.org/10.1007/s11033-019-05218-3
http://www.ncbi.nlm.nih.gov/pubmed/31811499

	Introduction 
	Biosurfactant 
	Flavonoids 
	Quinones 
	Phenolic Acids 
	Peptides 
	Triterpenoids 
	Others 
	Conclusions 
	References

