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Abstract: This paper constructs a nonlinearly parametrized hypersonic cruise vehicle model on
the basis of the existing on-orbit flight data using a curve-fitting technique. The hypersonic cruise
vehicle system is separated into two interconnected subsystem: an attitude subsystem with rotational
dynamics and a velocity subsystem with engine dynamics. The continuous adaptive controllers are
designed for two subsystems using a novel function bounding technique and appropriate coordinate
transformations, respectively, which ensure the global boundedness of all signals and achieve the non-
zero equilibrium point regulation of nonlinearly parametrized hypersonic vehicle systems. One of
the implications of this result is that growing nonlinearities in the uncertain model of the hypersonic
vehicle system may be allowed for global stabilization. A simulation result verifies the effectiveness
of the proposed adaptive control scheme.

Keywords: hypersonic vehicle; nonlinear parametrizaion; function bounding technique; adaptive
regulation

1. Introduction

It has been known that hypersonic vehicle dynamic models are extremely complicated
multivariate systems with serious nonlinearity, strong coupling, fast time-variability, and
uncertainty, compared with the traditional air vehicle. These characteristics make the
vehicle modeling and control research extremely scientific and challenging for the controlled
hypersonic vehicles [1–4].

Hypersonic technique plays an important role in the future of military, political and
economic development, since it has both the advantages of aviation technology and the
incomparable advantages of spacecraft, which is used to cruise in the atmosphere and
cross the atmosphere to re-orbit operation. As one typical application of the hypersonic
technique, the research of hypersonic vehicles in modeling and control has attracted increas-
ing attention over the last few decades [5–10]. In reference [5], for uncertain longitudinal
dynamics of a hypersonic aircraft model, a nonlinear controller was designed using a robust
sum-of-squares/robust linear matrix inequality method. In the literature [6], an adaptive
sliding controller for the multi-input multi-output (MIMO) systems was proposed based on
a variable structure control technique, which achieved the desired performance for the lon-
gitudinal dynamics of a generic hypersonic vehicle. When the actuator saturations, external
disturbances or system faults appear in a hypersonic vehicle model, there are a lot of new
control problems for control-oriented model of air-breathing hypersonic vehicles [7–10].

Fortunately, some difficult control issues have been researched to help to describe and
understand these complexities and difficulties during the past years. These studies have
mainly focused on velocity control and attitude control [11–16]. These references mainly
considered the attitude and velocity tracking control problem for a longitudinal model
of hypersonic vehicles. For an attitude dynamic model, based on the longitudinal model
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the references [11,15,16] discussed, the attitude control problem and the tracking control
problem were mainly elaborated. In addition, many strategies have also been presented to
design an appropriate controller for the longitudinal model with the flexible models. For
example, for the longitudinal model using approximate linearization or the input–output
feedback linearization based formulation, some traditional control design methods have
also been used to construct the controller, including adaptive control, gain scheduling
control and variable structure control, and so on [17–19]. It may be conceptually simple
for the controller construction to meet certain objectives when the system dynamics are
straightforward. With the persistent higher requirement for control objective and the better
accuracy of control schemes, many existing methods are not effective enough to provide
satisfactory performance when the longitudinal dynamics have severe uncertainties and
undergo strong state coupling.

While these control methods succeed in solving many control problems, there is a
common feature: the parameters in aerodynamic models are assumed to exist linearly in
equations, that is, the controlled systems are linearly parametrized. However, aerodynamic
models of real hypersonic vehicles have complicated structures and uncertain parameters,
which cannot be linearly parametrized. The objective of this paper is to construct a nonlin-
early parametrized aerodynamic model and develop an adaptive control scheme to address
the following basic question:

If the longitudinal dynamic model of the hypersonic vehicles includes uncertain parameters
and unknown functions with nonlinear parametrization, is it possible and how to design an adaptive
state-feedback controller for the hypersonic vehicle system to achieve desired performance?

In order to seek a solution scheme to answer the aforementioned question, we in-
troduce suitable transformations to convert the hypersonic vehicle control system to be
investigated into a system with a strict-feedback form. Then, we propose a recursive
procedure in designing an adaptive state-feedback controller based on a function bounding
technique [20] and a backstepping method [21]. The designed controller guarantees global
stability of the resulting closed-loop system. The main features and contributions of this
paper are from three aspects:

(i) Nonlinearly parametrized models are built by a curve-fitting technique according to
aerodynamic data, which improve the accuracy of models and extends the scope of a
nonlinear controlled object.

(ii) An effective coordinate transformation and a new parameter separation technique are
introduced to make the unknown parameters separate from the nonlinear dynamics.

(iii) The adaptive backstepping control method improves the adaptability and robustness
of the control algorithm, only requiring the structure of the upper-bound function
bounding knowledge.

This paper is organized as follows. In Section 2, the hypersonic vehicle model is
presented and the control objective is stated. In Section 3, the adaptive controllers are
developed which ensure the closed-loop system global stability and achieve the hypersonic
vehicle system adaptive regulation, where some preliminaries including several technical
lemmas are also given. In Section 4, the simulation result verifies the effectiveness of the
proposed adaptive control scheme. Finally, some conclusions are summarized in Section 5.

2. Modeling of Hypersonic Vehicle Model

The rigid-body dynamics of hypersonic vehicle studied in this paper is from [6], and
we consider hypersonic cruising regimes and leave out ascent and reentry maneuvers.
The longitudinal dynamic model of the hypersonic vehicle can be described by a set of
differential equations as
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V̇ =
T cos α− D

m
− g sin γ, (1)

γ̇ =
L + T sin α

mV
− g cos γ

V
, (2)

ḣ = V sin γ, (3)

α̇ = q− γ̇, (4)

q̇ =
Myy

Iyy
. (5)

The lift force T, drag force D, thrust force L and the pitching moment Myy are modeled as
follows [4]:

T =
1
2

ρV2S[CTΦ(α)Φ + CT(α)], (6)

D =
1
2

ρV2SCD(α), (7)

L =
1
2

ρV2SCL(α), (8)

Myy =
1
2

ρV2Sc̄[CM(α) + CMq(q) + Cδ
Mδ]. (9)

The nomenclatures are given in Table 1, where states are {V, h, γ, θ, q}, control inputs
are {δ, φ}, and unknown parameters are {g, m, Iyy, ρ, S, c̄} and C∗∗ . Aerodynamic coeffi-
cients CTΦ(α), CT(α), CMq(q) are smooth functions, which have the following expressions

CTΦα) = Cα3

TΦα3 + Cα2

TΦα2 + Cα
TΦα + C0

TΦ and CT(α) = Cα3

T α3 + Cα2

T α2 + Cα
Tα + C0

T and
CMq(q) = (c̄/2V)q(Cα2

Mqα2 + Cα
Mqα + C0

Mq). Aerodynamic coefficients CD(α), CL(α) and
CM(α) will be determined later. In what follows, suppose that all the state variables are
available for feedback control design.

Table 1. States, inputs and physical constants.

V vehicle velocity g acceleration of gravity
γ flight-path angle m vehicle mass
α angle of attack Iyy moment of inertia
q pitch rate ρ air density
Φ engine throttle S reference area of the wing
δ elevator angular deflection c̄ mean aerodynamic chord
h height

The real-life hypersonic vehicles have complex dynamics with high nonlinearity,
strong coupling and fast time-varying. In addition, the complex flight environment results
in the uncertain dynamics of a hypersonic vehicle system model. Those factors may result
in the system dynamics unable to be linearly parametrized, that is, unknown system pa-
rameters only are represented in nonlinear functions. To obtain accurate expressions of the
aerodynamic coefficients for the hypersonic vehicle, it needs to describe nonlinear func-
tion relationships between aerodynamic forces T, L, D or aerodynamic moment Myy and
velocity V, angle of attack α, pitch rate q, elevator angular deflection δ and engine throttle
setting Φ, based on the flight data of literature [22,23]. It needs be pointed out that the
aerodynamic coefficients in the existing results are almost based on linearly parametrized
expressions. Therefore, in this work, we give the nonlinearly parametrized analytic expres-
sions of aerodynamic functions at velocity V = 25, 600 ft/s and height h = 600, 000 ft and
two fitting indexes: sum of squares error (SSE) and coefficient of determination (R-square)
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by a data fitting curve technique. Our results are shown the drag coefficient CD during the
cruise phase can be modeled as

CD = 1.631− 0.8702 cos(0.0499α) + 0.1957 sin(0.0499α), (10)

whose SSE is 0.000199 and R-square is 0.9999. Similarly, the lift coefficient CL is

CL = 0.08289 sin(0.03914α− 0.02531), (11)

whose SSE is 2.257× 10−5 and R-square is 0.996. The contribution to moment due to angle
of attack CM(α) is

CM(α) = −0.1461 + 0.1645 cos(0.0531α)− 0.08719 sin(0.0531α), (12)

whose SSE is 4.162× 10−7 and R-square is 0.999.

Remark 1. The SSE means a sum of the square of error between fitting data and original data.
If an SSE is closer to 0, the selected function is more accurate and the data prediction is more
successful. The R-square characterizes the accuracy of data fitting. If the R-square is closer to 1, the
explanatory power of the coefficients is stronger and the fitting function is better. According to afore-
mentioned data, we also fit linearly parametrized models of coefficients CD, CL and CM(α) as follows:
CD = 3.493 × 10−4α2 + 0.02216α + 0.7421, CL = 1.653 × 10−3α + 0.01206 and
CM(α) = −4.871 × 10−6α2 − 0.008197α + 0.02365, and give the corresponding SSE and
R-square, whose values of SSEs are 4.01 × 10−3, 8.74 × 10−4 and 2.71 × 10−3 and values of
R-squares are 0.9970, 0.8454 and 0.9962, respectively. Therefore, nonlinear aerodynamic coefficients
possess better modeling accuracy than linear aerodynamic coefficients.

To design state-feedback controllers for the nonlinear longitudinal model of the hyper-
sonic vehicle, several clarifications about aerodynamic coefficients are addressed as follows:

(i) Because the nonlinearly parametrized form of CL is sinusoidal, the coefficient CL can
be approximate to a linear relation of α in a small range value of α.

(ii) Considering the uncertainties of aerodynamic coefficients and developing the accuracy
of curve fitting, we define the aerodynamic coefficients in (10)–(12) as the unknown
aerodynamic coefficients, which can be expressed as

CL = Cα
Lα + C0

L, (13)

CD = C0
D + C1

D cos(ω1α) + C2
D sin(ω1α), (14)

CM(α) = C0
M + C1

M cos(ω2α) + C2
M sin(ω2α). (15)

In this model, Cα
L, C0

L, Ci
D, Ci

M, ω1, ω2, i = 0, 1, 2, are the unknown parameters.

To design adaptive state-feedback controllers, the following assumptions and lemmas
are used to obtain the hypersonic vehicle system with a strict-feedback form.

Assumption 1. In (2), the term T sin α can be neglected since it is generally much smaller than
lift L.

Assumption 2. The speed change of the hypersonic vehicle is slow, and the variation range is small.

Remark 2. From the literature [24,25], the value of T sin α is about two orders of magnitude smaller
than the value of L in (2) during the cruise phase condition based on data by NASA report [1] and
T sin α has low impact on the flight-path angle, which makes Assumption 1 reasonable.

Useful lemmas are applied in the controller design and stability analysis. Proofs of
Lemmas 1 and 2 can be found in [21,26].
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Lemma 1. If m > 0, n > 0 and a ≥ 0, then for any x ∈ R, y ∈ R, there exists c > 0 such that

axmyn ≤ c|x|m+n +
n

m + n

(
m

(m + n)c

)m
n

a
m+n

n |y|m+n.

Lemma 2. For any real-valued continuous function f (x, y) where x ∈ Rm, y ∈ Rn, there are
smooth scalar value functions a(x) ≥ 0, b(y) ≥ 0, c(x) ≥ 1 and d(y) ≥ 1 such that

f (x, y) ≤ a(x) + b(y), f (x, y) ≤ c(x)d(y).

In this paper, our control objective is to concentrate on global adaptive control of the
nonlinearly parametrized hypersonic vehicle system of the form (1)–(5) under Assumption 1
and Assumption 2. The designed continuous adaptive controllers make the closed-loop
system stable in the sense of Lyapunov and achieve adaptive regulation.

3. Control Design and Stability Analysis

In this section, it is observed from Equations (1)–(9) that the rate change of attitude is
mainly governed by the elevator deflection δ and the velocity is mainly controlled by the
throttle setting Φ. Therefore, we separate the longitudinal dynamics into two subsystems:
an attitude subsystem with rotational dynamics and a velocity subsystem with engine
dynamics. Then, we adopt the backstepping method and design adaptive controllers for
two subsystems, separately.

3.1. The Attitude Subsystem Design

The purpose of this part is to explain and solve the adaptive regulation problem for the
uncertain attitude subsystem with rotational dynamics (2)–(5) within a partial nonlinearly
parametrized coefficient of aerodynamic force (15). A continuous adaptive state feedback
controller can be explicitly constructed with the help of a backstepping control method and
a parameter separation technique.

When the flight path angle γ varies between −90◦ and 90◦, the Equation (3) shows
that a nonlinear mapping between the height h and the flight path angle γ is an one-to-one
relationship, that is, when the flight path angle γ regulates a steady state value during the
cruise phase, the height h also achieves the corresponding value. Therefore, we consider the
adaptive regulation problem of the γ-α-q subsystem (2), (4) and (5) instead of the attitude
subsystem (2)–(5) in the procedure of control design.

For the attitude subsystem, we summarize the following theorem.

Theorem 1. For the uncertain attitude subsystem (2)–(5) with partial nonlinear parametrization
of the type (6)–(15), the following continuous adaptive state-feedback controller,

u1(t) = u1(x(t), Ψ̂(t)), t ≥ 0, (16)
˙̂Ψ(t) = Γ(x(t), Ψ̂(t)), t ≥ 0, (17)

where x = [x1, x2, x3]
T = [γ, θ, q]T with the pitch angle θ = γ + α, and u1 = δ, Γ(·) is a

continuous function, and Ψ̂(t) is the on-line estimate of unknown parameter Ψ determined later,
achieves the adaptive regulation problem with global stability of the closed-loop system.

Proof. To apply the backstepping control method to the attitude subsystem (γ-α-q subsys-
tem) subsystem (2), (4) and (5), we first formulate the attitude subsystem (γ-α-q subsystem)
into a strict-feedback form.

According to Assumption 1 and (13), the Equation (2) can be transformed into

ẋ1 = γ̇ =
ρV2S(Cα

Lα + C0
L)

2mV
− g cos γ

V
= g1(V)x2 + f1(x1, V), (18)



Processes 2023, 11, 263 6 of 14

where g1(V) =
ρV2SCα

L
2mV and f1(x1, V) = ρV2S

2mV (C0
L − Cα

Lx1)− g cos x1
V is a continuous function.

From (4), the kinematic model of the pitch angle is transformed into

ẋ2 = θ̇ = α̇ + γ̇ = q = x3. (19)

Similarly, in view of (9) and (15), the dynamic model (5) of the pitch rate can be
rewritten as

ẋ3 = q̇ =
Myy

Iyy
=

ρV2Sc̄Cδ
M

2Iyy
δ +

ρV2Sc̄
2Iyy

(
CM(α) + CM(q)

)
= g3(V)u1 + f3(x1, x2, x3, V), (20)

where g3(V) =
ρV2Sc̄Cδ

M
2Iyy

, and f3(·) = ρV2Sc̄
2Iyy

(
CM(α) + CMq(q)

)
is a continuous function of

nonlinear parameterization.
From the above definitions, we obtain the longitudinal model of a hypersonic vehicle

as the strict feedback form

ẋ1 = g1(V)x2 + f1(x1, V), (21)

ẋ2 = x3, (22)

ẋ3 = g3(V)u1 + f3(x1, x2, x3, V). (23)

We know that g1(V) and g3(V) are just functions of the velocity V. It follows from Assump-
tion 2 that

ġ1(V) = 0, ġ3(V) = 0. (24)

According to admissible ranges for system states in [27], there exist positive constants
g11(ψ), g12(ψ), g31(ψ), g31(ψ) such that g1(V) and g3(V) satisfy the following inequalities

0 < g11(ψ) ≤ g1(V) ≤ g12(ψ),
0 < g31(ψ) ≤ g3(V) ≤ g32(ψ), (25)

where ψ represents the uncertainty.
To achieve the desired objective, we introduce the coordinate transformation

y1 = x1, (26)

y2 = g1x2 + f1(x1, V), (27)

y3 = g3x3 + ḟ1(x1, V). (28)

With (24), the system (21)–(23) can be transformed into the following form

ẏ1 = y2, (29)

ẏ2 = y3, (30)

ẏ3 = g1(V)g3(V)u1 + f (y1, y2, y3, V), (31)

where f (y1, y2, y3, V) = g1(V) f3(x1, x2, x3, V)+ f̈1(x1, V) is a continuous function of y1, y2, y3
with nonlinear parameterization and f (0, 0, 0, V) is a nonzero unknown bounded function.

The left proof is based on an inductive argument, which simultaneously constructs
a Lyapunov function and designs a continuous adaptive state feedback controller for
system (29)–(31). It is divided into two parts.

Part I: the procedure of adaptive controllers

First, inequality (25) ensures

0 < a(ψ) ≤ g1(V)g3(V) ≤ b(ψ), (32)
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where a(ψ) and b(ψ) are unknown bounded constants.
Since f (y1, y2, y3, V) is a continuous function, it deduces from Lemma 2 that

f (y1, y2, y3, V) ≤ (|y1|+ |y2|+ |y3|)γ(y1, y2, y3)c(ψ) + M(ψ), (33)

where γ(y1, y2, y3) is a smooth function without unknown uncertainties, M(ψ) is an un-
known upper bound of f (0, 0, 0, V), and c(ψ) ≥ 1 is an unknown constant.

Define

Ψ =
( c(ψ)

a(ψ)

)2
+

c(ψ)
a(ψ)

+
M(ψ)

a(ψ)
, (34)

which is an unknown bounded constant in admissible ranges [27]. Using the backstepping
method, we explicitly construct an alternative Lyapunov function and a one-dimensional
adaptive controller for the nonlinearly parameterized system with respect to the new
unknown parameter Ψ. This designed adaptive controller applied to the uncertain altitude
subsystem (2)–(5) can solve the adaptive regulation problem.

Initial Step: Define ξ1 = y1 − y∗0 with y∗0 = 0 and Ψ̃(t) = Ψ− Ψ̂(t) where Ψ̃(t) is the
estimate error. Choose the Lyapunov function

V1 =
1
2

ξ2
1 +

1
2

Ψ̃2 (35)

which is apparently positive and proper. The derivation of V1 along the trajectories of (29)
is given by

V̇1 = −p1ξ2
1 + ξ1(y2 − y∗1) + ξ1y∗1 + p1ξ2

1 − Ψ̃ ˙̂Ψ, (36)

where y∗1 is a virtual control signal. Choosing the virtual control signal y∗1 = −p1ξ1, the
Equation (36) can be expressed as

V̇1 = −p1ξ2
1 + ξ1ξ2 − Ψ̃ ˙̂Ψ, (37)

where ξ2 = y2 − y∗1 is a state error and p1 is a design parameter.
Second Step: Choose the Lyapunov function

V2 = V1 +
1
2

ξ2
2. (38)

Then, with (37) and Lemma 1, the time derivative of V2 along the solutions of (30) is

V̇2 = −p1ξ2
1 + ξ1ξ2 − Ψ̃ ˙̂Ψ + ξ2(ẏ2 − ẏ∗1)

≤ −p1ξ2
1 − p2ξ2

2 − Ψ̃ ˙̂Ψ + ξ2(y3 − y∗2) + ξ2y∗2 + (p2 + c1)ξ
2
2, (39)

where p2 is a design parameter and c1 is a constant.
Selecting a virtual control signal y∗2 = −(p2 + c1)ξ2 and defining a state error ξ3 =

y3 − y∗2 , we have

V̇2 = −p1ξ2
1 − p2ξ2

2 + ξ2ξ3 − Ψ̃ ˙̂Ψ. (40)

Third Step: We construct the positive and proper Lyapunov function

V3 = V2 +
ξ2

3
2a(ψ)

. (41)
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From (32), (40) and the fact that ξiy∗i ≤ 0 for i = 1, 2, 3 with y∗3 = u1, we know that the time
derivative of V3 along the solutions of (31) is

V̇3 ≤ −p1ξ2
1 − p2ξ2

2 − Ψ̃ ˙̂Ψ + ξ3u1 + ξ2ξ3 +
ξ3

a(ψ)
f (y1, y2, y3, V)− ξ3

a(ψ)
∂y∗2
∂ξ2

ξ̇2. (42)

Next, to design a suitable actual controller u1, it needs to estimate the last three terms
on the right-hand side of (42) appropriately.

Due to the equality ξi = yi− y∗i−1 and the definitions of y∗i−1, i = 1, 2, 3, one easily deduces

y1 = ξ1, y2 = ξ2 − p1ξ1, y3 = ξ3 − (p2 + c1)ξ2. (43)

From Lemma 1, with the aid of (34), (43) and the definition of Ψ, we have

ξ3

a(ψ)
f (y1, y2, y3, V) ≤ 1

2
ξ2

1 +
1
3

ξ2
2 + c2γ2(·)ξ2

3Ψ + γ(·)ξ2
3Ψ + |ξ3|Ψ, (44)

where c2 is a known constant.
It follows from Lemma 1, the definition of y∗2 , (43) and c(ψ) ≥ 1 that

− ξ3

a(ψ)
∂y∗2
∂ξ2

ξ̇2 ≤
1

a(ψ)
|ξ3|(c3|ξ3|+ c4|ξ2|+ c5|ξ1|) ≤

1
2

ξ2
1 +

1
3

ξ2
2 + c6ξ2

3Ψ, (45)

where c3, c4, c5, c6 are known constants.
With Lemma 1, we have

ξ2ξ3 ≤
1
3

ξ2
2 +

3
4

ξ2
3. (46)

Substituting (44)–(46) into (42), we have

V̇3 ≤ −
3

∑
i=1

piξ
2
i + ξ3

[
u1 + (

3
4
+ p3)ξ3 +

(
c2γ2(·)ξ3 + γ(·)ξ3 + c6ξ3 + sign(ξ3)

)
Ψ̂
]

+
[(

c2γ2(·)ξ2
3 + γ(·)ξ2

3 + c6ξ2
3 + |ξ3|

)
− ˙̂Ψ

]
Ψ̃. (47)

From (47), we choose an adaptive control law

˙̂Ψ = c2γ2(·)ξ2
3 + γ(·)ξ2

3 + c6ξ2
3 + |ξ3|, (48)

and a controller

u1 = −(3
4
+ p3)ξ3 −

(
c2γ2(·)ξ3 + γ(·)ξ3 + c6ξ3 + sign(ξ3)

)
Ψ̂, (49)

such that

V̇3 ≤ −
3

∑
i=1

piξ
2
i ≤ 0, (50)

where pi, i = 1, 2, 3 are design parameters.

Part II: stability analysis of the closed-loop system

By the existence and the continuity of solutions, the closed-loop system states com-
posed of Y(t) = [Ψ̃(t), y(t)]T are defined with y(t) = [y1(t), y2(t), y3(t)]T . From (35),
(38), (41), we know V3 = V̄3 +

1
2 Ψ̃2 where V̄3 = 1

2 ξ2
1 +

1
2 ξ2

2 +
1

2a(ψ) ξ2
3, as the function of

ξ = [ξ1, ξ2, ξ3]
T , is positive definite and radially unbounded. From [28], there is a K∞

function ν1 such that

V3 ≥ min{1, 1/a(ψ)}V̄3 + Ψ̃2/2 ≥ ν1(‖Ξ‖), (51)
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where Ξ = [ξ, Ψ̃
2 ]

T . Similarly, there exists a K∞ function ν2 such that

V3 ≤ max{1, 1/a(ψ)}V̄3 + Ψ̃2/2 ≤ ν2(‖Ξ‖). (52)

Together with (51), we have

ν1(‖Ξ‖) ≤ V3(Ξt) ≤ ν2(‖Ξ‖), (53)

where Ξt is the state of the closed-loop system.
For any ε > 0, noting that lims→∞ ν1(s) = ∞, one always finds a β = β(ε) satisfying

β > ε > 0, such that ν2(ε) ≤ ν1(β). Because of the fact that V̇3(Ξt) ≤ 0, we have

V3(Ξt) ≤ V3(Ξ0) < +∞, t ≥ 0, (54)

where Ξ0 is the initial state. According to (53), if Ξ0 < ε, we have

ν1(‖Ξ‖) ≤ V3(Ξt) ≤ V3(Ξ0) ≤ ν2(ε) ≤ ν1(β). (55)

From (55), it deduces ‖Ξ‖ ≤ β. Due to Ψ̃ = Ψ− Ψ̂, we obtain

|Ψ̂| ≤ Ψ + |Ψ̃| ≤ Ψ + 2‖Ξ‖ ≤ Ψ + 2β < ∞. (56)

With the coordinate transformation (43) and the boundedness of ξi(t), it is easy to obtain
the boundedness of yi(t) for i = 1, 2, 3.

From (54), the boundedness of Ξ and continuity of V3, we know that limt→∞ V(Ξt)
exists and is finite. Together with (50), we have∫ +∞

0
ξ2

i (s)ds ≤ − 1
pi

∫ +∞

0
V̇3(Ξs)ds =

1
pi

V3(Ξ0)−
1
pi

lim
t→∞

V3(Ξt) < ∞.

On the other hand, noting (29)–(31), (43), (49), (56) and the boundedness of Ξ(t), we
know that Ξ̇(t) is bounded. Thus, Ξ(t) is uniformly continuous in t, so is ξ2

i (t), for i = 1, 2, 3.
Then, using Barbalat’s Lemma in [28], we obtain limt→∞ ξ2

i (t) = 0, which in turn shows
that limt→∞ ξ(t) = 0. It follows from (43) that limt→∞ yi(t) = 0 for i = 1, 2, 3.

From (26)–(28), we have

lim
t→∞

x1(t) = 0, (57)

lim
t→∞

(g1(V)x2(t) + f1(x1(t), V)) = 0, (58)

lim
t→∞

(g1(V)x3(t) + ḟ1(x1(t), V)) = 0. (59)

From Assumption 2, (21) and (58), we obtain

lim
t→∞

ḟ1(x1(t), V) = 0. (60)

Therefore, we have

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) = x∗2 , lim
t→∞

x3(t) = 0, (61)

where x∗2 is the equilibrium point during the cruise phase.
Up to now, we have achieved the adaptive regulation of the closed-loop systems with

the designed controller (49) and the adaptive law (48). ∇

3.2. The Velocity Subsystem Design

In this section, we will design a continuous state-feedback controller for the velocity
subsystem to regulate the vehicle velocity with the engine throttle φ.
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For the velocity subsystem (1), we conclude the following theorem.

Theorem 2. For the uncertain velocity subsystem (1), a following designed adaptive state-feedback
controller,

u2(t) = u2(z1(t), Θ̂(t)), t ≥ 0, (62)
˙̂Θ(t) = Υ(z1(t), Θ̂(t)), t ≥ 0, (63)

where u2 = Φ, z1 = V −Vd with Vd being a desired velocity, Υ(·) is a continuous function, and
Θ̂(t) is an on-line estimate of unknown parameter Θ, which is determined later, solves the adaptive
regulation problem with the global stability of the closed-loop system.

Proof. The Equation (1) is rewritten as

ż1 = k(V, α)u2 + h(z1, α), (64)

where

k(V, α) =
ρV2SCTΦ(α) cos α

2m
, (65)

h(z1, α) =
ρV2SCT(α) cos α

2m
− ρV2SCD(α)

2m
− g sin γ− V̇d, (66)

where h(0, α) is a bounded uncertainty for a given constant α.

Note that k(V, α) is a function of system states V and α. According to admissible
ranges for system states in [27], there exist positive constants k1(ψ), k2(ψ) such that k(V, α)
satisfies the following inequality

0 < k1(ψ) ≤ k(V, α) ≤ k2(ψ), (67)

where ψ represents the uncertainty.
Because h(z1, α) is a smooth function, it deduces from Lemma 1 that

h(z1, α) ≤ |z1|λ(z1)d(ψ) + N(ψ), (68)

where λ(z1) is a continuous function without uncertainties, N(ψ) is an unknown upper
bound of |h(0, α)|, and d(ψ) ≥ 1 being an unknown constant.

On the basis of (67) and (68), we define

Θ =
d(ψ)
k1(ψ)

+
N(ψ)

k1(ψ)
. (69)

Now, we are ready to design a controller for the velocity subsystem (64) with respect
to the new unknown parameter Θ using the candidate Lyapunov function.

Consider the candidate Lyapunov function

W =
1

2k1(ψ)
z2

1 +
1
2

Θ̃2, (70)

which is positive definite and proper, where Θ̃ = Θ− Θ̂ being a parameter error and Θ̂ is
the estimate of Θ.

Using (67)–(69) and the fact that z1u2 < 0, the derivation of W along the trajectories
of (64) is given by

Ẇ =
1

k1(ψ)
z1(k(V, α)u2 + h(z1, α))u− Θ̃ ˙̂Θ
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≤ −q1z2
1 + z1(u + q1z1 + Θ̂z1λ(z1) + Θ̂sign(z1)) + Θ̃(z2

1λ(z1) + |z1| − ˙̂Θ), (71)

where q1 > 0 is a known parameter.
According to (71), choosing the adaptive law

˙̂Θ = z2
1λ(z1) + |z1| (72)

and the controller

u2 = −q1z1 − Θ̂z1λ(z1)− Θ̂sign(z1) (73)

renders

Ẇ ≤ −q1z2
1 ≤ 0. (74)

The stability analysis of the velocity subsystem with the adaptive controller (72) and (73)
is similar to that of Theorem 1, and is omitted here. ∇

Remark 3. For the adaptive control design, large gains pi, q1 may lead to large control magnitude
of u1(t) defined in (49) and u2(t) defined in (73), so the design parameters are suitably selected to
avoid the rapid change of control inputs. For the robust adaptive control design, the gains pi, q1 are
suitably selected based on some trade-off of convergence rate and steady state error.

4. Simulation Results

In this section, we use simulation results to verify the effectiveness of our adaptive
control schemes for the attitude subsystem (21)–(23) and the velocity subsystem (64).

4.1. Simulation Systems

According to the literature [29,30], model parameters of the hypersonic vehicle are
given as m = 9375, S = 17, ρ = 6.7429× 10−5, Iyy = 7× 106, c̄ = 80 and g = 9.8. All the
parameters of the refined hypersonic vehicle system are listed as follows:

Cα3

TΦ = −1.109× 101, Cα2

TΦ = 7.887× 10−1, Cα1

TΦ = 1.045, C0
TΦ = 1.876× 10−1,

Cα3

T = −1.095, Cα2

T = −5.082× 10−1, Cα1

T = −7.12× 10−2, C0
T = −3× 10−3,

Cα2

Mq = 2.265× 10−3, Cα1

Mq = 1.765× 10−3, C0
Mq = −2.938× 10−1, CMδ = −1.290,

Cα
L = 3.244× 10−3, C0

L = −2.098× 10−3,

C0
D = 1.631, C1

D = −0.8702, C2
D = 1.957× 10−1, ω1 = 4.987× 10−2,

C0
M = −1.461× 10−1, C1

M = 1.645× 10−1, C2
M = −8.719× 10−2, ω2 = 5.314× 10−2.

The trim condition of the nonlinearly parametrized hypersonic vehicle system (21)–(23)
and (64) during a cruise phase is given as γ∗ = 0 rad, α∗ = 0.1151 rad, q∗ = 0 rad/s,
V∗ = 15060 ft/s, δ∗ = 0.0137 rad, Φ∗ = 2.4498.

4.2. Simulation Results

In this subsection, for the attitude subsystem (21)–(23) and the velocity subsystem (64),
the controllers u1 and u2 are designed as

u1 = −(3
4
+ p3)ξ3 −

(
c2γ2(·)ξ3 + γ(·)ξ3 + c6ξ3 + sign(ξ3)

)
Ψ̂,

u2 = −q1z1 − Θ̂z1λ(z1)− Θ̂sign(z1) (75)
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and the parameter update laws ˙̂Ψ and ˙̂Φ are chosen as

˙̂Ψ = c2γ2(·)ξ2
3 + γ(·)ξ2

3 + c6ξ2
3 + |ξ3|,

˙̂Θ = z2
1λ(z1) + |z1|, (76)

where γ(·) and λ(·) are the determined continuous functions in Section 3.
If the initial condition of the closed-loop system is chosen as [x1(0), x2(0), x3(0), z1(0)]T =

[0.12, 0.5, 0.02, 1]T and [Ψ̂(0), Θ̂(0)]T = [1, 1]T , one can obtain Figures 1–6. Four states
[γ, α, q, V] are shown in Figures 1 and 2 and two control inputs [δ, Φ] are shown in
Figures 3 and 4, where the blue lines mean the responses of states and inputs of the hy-
personic vehicle and the red lines mean the control accuracy in the stable phase, which
indicate that the designed controllers δ, Φ regulate the states of the hypersonic vehicle to
the equilibrium point [0 rad, 0.115 rad, 0 rad/s, 15060 ft/s]. Two parameter estimates [Ψ̂, Θ̂]
are shown in Figures 5 and 6, which indicate parameter estimates Ψ̂, Θ̂ are the desired
bounded functions.
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Figure 1. The state responses of the altitude subsystem.

The response of state for the velocity subsystem vs. time (sec)
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Figure 2. The state error response of the velocity subsystem.

The response of control input δ for the altitude subsystem vs. time (sec)
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Figure 3. The control input response of the altitude subsystem.

The response of control input Φ for the velocity subsystem vs. time (sec)
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Figure 4. The control input response of the velocity subsystem.
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Parameter estimate for the altitude subsystem vs. time (sec)
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Figure 5. The parameter estimate response of the altitude subsystem.

Parameter estimate for the velocity subsystem vs. time (sec)
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Figure 6. The parameter estimate response of the velocity subsystem.

5. Conclusions

In this paper, we build nonlinearly parametrized rigid-body vehicle dynamics of
a hypersonic vehicle and propose an adaptive control scheme combining a parameter
separation technique and a backstepping method, which achieves a global stability of a
nonlinearly parametrized hypersonic vehicle. Other adaptive control problems currently
under investigation include a disturbance rejection and noise cancellation problem based
on the proposed adaptive control schemes and the state feedback output tracking problem
for a general multivariable system with nonlinear parametrization.
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