
Citation: Chen, P.-Y.; Lin, H.-Y.; Pai,

N.-S.; Huang, J.-B. Construction of

Edge Computing Platform Using 3D

LiDAR and Camera Heterogeneous

Sensing Fusion for Front Obstacle

Recognition and Distance

Measurement System. Processes 2022,

10, 1876. https://doi.org/10.3390/

pr10091876

Academic Editor: Blaž Likozar

Received: 15 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Construction of Edge Computing Platform Using 3D LiDAR
and Camera Heterogeneous Sensing Fusion for Front Obstacle
Recognition and Distance Measurement System
Pi-Yun Chen, Hsu-Yung Lin, Neng-Sheng Pai * and Jing-Bin Huang

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
* Correspondence: pai@ncut.edu.tw

Abstract: This research aims to utilise heterogeneous sensor fusion using 3D Light Detection and
Ranging (LiDAR) and cameras, combined with an object recognition system and a ranging system, to
construct an edge computing platform such that a vehicle equipped with the platform can perform
computations offline in real time. This work comprises two main sections: the first is heterogeneous
fusion, and the second is obstacle recognition and ranging detection. To achieve heterogeneous sensor
fusion, 3D–3D point matching was used to find rigid body transformation between two sensors and
finally project the LiDAR 3D point cloud image onto the 2D image. For object recognition, YOLOv4-
Tiny was used as the detection network. A lightweight network architecture and high computational
speed could be effectively used on edge computing hardware with limited performance. Further, by
drawing the bounding box, we could detect the point cloud within the bounding box to estimate the
distance to the obstacle. For detecting distance, we conducted experiments in two ways: ‘minimum
point in box’ and ‘median point in box’ and compared the results. With heterogeneous sensor fusion,
object recognition and the ranging system, detecting the category and distance of obstacles ahead
of the vehicle was possible in real time. Furthermore, integrating the edge computing platform
architecture enabled moving the entire system offline, making it an independent system that returns
results in real time. Finally, a dynamic test was conducted on a road. The experiment showed that
the detection speed of YOLOv4-Tiny in the dynamic test was higher than 60 FPS, and the accuracy
rate surpassed 70%. Furthermore, the distance detection error of the 3D LiDAR was less than 3 cm,
which is sufficiently accurate to be applied to complex environments on roads.

Keywords: 3D LiDAR (Light Detection and Ranging); rigid body transformation; heterogeneous
sensor fusion; YOLOv4; object recognition; edge computing

1. Introduction

The vigorous development of High-Performance Computing (HPC) and cloud com-
puting have led to technological innovations in fields such as AI, intelligent robots and
autonomous driving. In particular, car manufacturers worldwide are actively investing
in autonomous vehicles and related technologies. Self-driving cars need to be equipped
with various cutting-edge technologies to function, such as self-driving systems, GPS
positioning, car body design and multiple sensors. The combination of technologies en-
ables the car to constantly sense its surrounding environment and immediately respond to
any emergency [1]. Technologies commonly used in anti-collision systems include image
recognition, ultrasound, infrared, radar and LiDAR. Each has its own advantages and dis-
advantages and is useful in different situations. A complete anti-collision system requires
multiple sensors working together, combining the strengths of multiple sensors to achieve
heterogeneous sensor fusion to obtain richer and more accurate environmental information.

The industry definition of autonomous vehicles is generally based on the J3016 stan-
dard of the Society of Automotive Engineers (SAE). Vehicles are divided into six levels
bases on the degree of automation, from Level 0 (without automation) to Level 5 (fully
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automated). In 2019, SAE updated to the J3018 standard, which provides road safety
guidelines for Levels 3–5 vehicles. The updated standard better reflects the current and
future need for road safety testing with autonomous driving technology [2]. Self-driving
cars will not replace manual driving overnight; instead, there will be a gradual shift from
manual to autonomous driving. This process relies on the continuous development and im-
provement of Advanced Driver Assistance Systems (ADAS). In ADAS, Forward Collision
Warning (FCW) reminds the driver to reduce the speed or take evasive measures when it
detects that the relative position and speed of the vehicle in front reaches certain criteria.
This helps reduce the number of accidents. In addition, a more advanced Autonomous
Emergency Braking (FCW) system can take over the control of the vehicle when the driver
does not respond appropriately in a situation. Regardless of whether the driver steps on
the brake, AEB will activate to reduce the speed of the vehicle to avoid accidents or reduce
the seriousness of injuries caused by accidents [3].

Furthermore, with the rise of artificial intelligence, several fields are also utilising AI
technology. One such example is the introduction of AI in the IoT, transforming it into AIoT
(AI + IoT), which optimises the traditional IoT and makes it more intelligent. However, with
the development of AI, the IoT and big data, technical challenges such as cloud computing
efficiency, AI computing power and big data analysis are also encountered. Among them,
AI edge computing technology is the main focus of development in the global industry.
The market is optimistic about the development of AI edge computing because it has low
latency, responds fast, maintains privacy (especially with the option of offline processing),
consumes little power and is safe when processing and transmitting data. In the past,
server equipment was simply used to collect data and computation relied on sending data
and receiving responses from the cloud or fog. However, with the introduction of AI edge
computing, it is possible to perform computations on an edge computation device that has
undergone machine learning and optimisation processes to achieve real-time AI computing
for specific tasks without going through the network and the cloud [4]. Each car can be
regarded as an edge node and equipped with an edge computing platform within the
vehicle-to-everything network. Each node can independently perform calculations using
predesigned software or programmes in the platform to ensure that the most appropriate
decision is made in the shortest time. Computation and decision-making do not need to
go through the cloud server. When communication is permitted, the calculation results or
decision events are returned to the cloud database for backend personnel to review the
necessity and accuracy of each decision in order to provide the basis for future system
updates and revisions.

2. Literature Review

Our research referenced literature of four main categories: ROS, sensors, heteroge-
neous sensor fusion and object detection.

2.1. Robot Operating Systems

Robot Operating System (ROS) [5] is a flexible framework that can be used to write
robot software. It assumes the role of a communication bridge between the robot’s hardware
and software. Under this framework, the operating system of the robot can be integrated
more easily and comprehensively. One of the advantages of the ROS framework is that
the incompatibility and difficulties in the integration between sensors and other hardware
can be avoided when developing algorithms based on this architecture. ROS toolkits work
independently without interfering with each other, making them easy to maintain. This
is similar to the Simultaneous Localization And Mapping (SLAM) [6] technology that is
usually found in autonomous driving. Even YOLO, which has been very popular in object
detection in recent years, uses Darknet as its working environment that can also be built in
ROS [7]. Therefore, our research is based on ROS for system development.
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2.2. Sensors

The first step is determining how to obtain information from the surrounding envi-
ronment to detect obstacles ahead; the solution is sensors. Sensors commonly used in
vehicle anti-collision systems include the infrared, ultrasonic, camera, radar and LiDAR.
Kallhammer et al. used a low-resolution Far Infrared (FIR) lens to detect the possibility of
pedestrians present ahead [8]. Yi et al. used ultrasound to detect obstacles in a disturbed
environment [9]. In recent years, cameras have been frequently used combined with deep
learning algorithms to identify obstacles or scan lane lines warn drivers when they have
crossed a line. Tesla’s autopilot system uses the front lens to identify vehicles and the lane
ahead, the millimeter-wave radar to track the vehicle’s distance ahead and several ultra-
sonic radars placed around the vehicle to sense surrounding vehicles and obstacles [10].
Google’s self-driving car is equipped with a 3D LiDAR having a 360◦ field of view on
the roof and some small radars on the bumper. A camera is also present in front of the
rear mirror to detect stop lights, stop signs, pedestrians, bicycles, etc. [11]. This work uses
cameras to detect the types of obstacles and 3D LiDAR as a sensor for measuring distances.

2.3. Heterogeneous Sensor Fusion

The ideal sensing unit of an autonomous vehicle must have three characteristics
simultaneously: high resolution, high precision and strong weather resistance. However, no
single sensor fulfils all three characteristics; therefore, combining the strengths of different
sensors using heterogeneous sensing fusion is one way to overcome the shortcomings
of each sensor. Sensor fusion can be divided into three main modes. The first is the
complementary fusion mode. In this mode, each sensor’s scanning area does not overlap.
For example, installing millimetre-wave radars at the front and rear of the vehicle, in which
each radar is responsible for different areas, thus increasing the overall sensing range of the
system. The second is the competitive fusion mode; in this mode, multiple same sensors
scan the same area to improve the overall recognition accuracy of the system or different
sensors can scan the same object to provide the same or different physical information. For
example, using a camera to identify the type of obstacle while a millimeter-wave radar
and LiDAR provide the position and distance of the obstacle. This mode provides a more
accurate and complete set of information regarding the object being detected. The last mode
is the cooperative fusion mode, which is similar to competitive fusion, except that after a
sensor detects or identifies something, instead of only relying on its own information, it
needs to use the information provided by other sensors before returning a result. This mode
improves the speed and accuracy of identification [12]. Our research uses the cooperative
fusion mode for heterogeneous sensing fusion.

However, a mutual reference point must be found between different sensors before
the information they provide can be fused. In the case of a camera and a 3D LiDAR,
the field of view and the dimensions of the data are different; therefore, the two sets
of data need to be aligned first. In [13], a correction method based on 3D–3D point
correspondences is proposed when aligning the data for a camera and 3D LiDAR. The
method finds the relationship of the translation and rotation between the LiDAR and the
camera by fusing point clouds from multiple images at different locations and performing
multiple iterations. Nowicki [14] further discusses the time offset between sensors; the
author believes that not only the spatial relationship needs to be corrected, but the time
offset will also affect the final fitting result. The time offset is generally caused by the
different scanning frequency of each sensor, the speed of data processing and the delay of
data transmission. To solve this problem, the author proposed a complete LiDAR-Camera
spatiotemporal calibration method.

2.4. Object Detection

Object Detection can be divided into two categories: traditional algorithms and
deep learning algorithms. In recent years, improvements in the performance of CPU
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and GPU computing coupled with the rapid development of CNN have also helped in
object detection.

There are two main schools of using deep learning in object detection. First is using
an object detector in a candidate region, also known as the two-stage detector. The most
representative of this school is the R-CNN proposed by Girshick et al. [15], the improved
Fast R-CNN [16], Faster R-CNN [17] and Mask R-CNN [18]. The two-stage detector func-
tions by first proposing candidate regions (finding the target object), and then classifying
the candidate regions. Although it has a higher accuracy rate than a one-stage detector, it is
also slower. The second school is the faster one-stage detector, one of the most common
ones among which is the Single Shot MultiBox Detector (SSD) proposed by Liu et al. [19],
the YOLO proposed by Redmon et al. [20], YOLO9000 [21], YOLOv3 [22] and YOLOv4 [23]
proposed by Bochkovskiy et al. One-stage detectors can predict the location of the object
and classify the object simultaneously. Thus, it may be slightly inferior in detection accuracy
but is considerably faster than two-stage detectors.

The main goal is to use 3D LiDAR and camera to achieve heterogeneous sensing
fusion, and to build a forward obstacle recognition and distance measurement system on
top of the edge computing platform.

3. Materials and Methods

In this research, we explain our methodology in three parts: heterogeneous sensor
fusion, the YOLOv4-Tiny network and distance detection of obstacles ahead. The system
architecture is shown in Figure 1. And the Mind Map is shown in Figure 2.
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3.1. Heterogeneous Sensor Fusion

(A) Camera calibration: To project the 3D point cloud of LiDAR onto the 2D image, we
must first obtain the mathematical model of the camera projection. Camera calibration
is the process of finding the projection matrix that converts world coordinates to image
coordinates. To find the correlation between the three-dimensional geometric position of a
point on an object in real space and its corresponding point in the image, establishing a
geometric model of the camera is necessary [24]. The world coordinates are converted to
camera coordinates using the camera’s external parameter matrix and projected onto the
2D image using the camera’s internal parameter matrix. The projection process is shown
in Figure 3.
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The homogeneous coordinate representation of the mathematical model of the camera
under ideal imaging circumstances is shown in Equation (1) [25],

u
v
1

 = K[R|t]


X
Y
Z
1

 =

 fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




X
Y
Z
1

 (1)

where u and v are the coordinates of the image plane (unit: pixels) and K is the camera’s
internal parameter matrix. [R|t] is the transformation matrix that converts from world
coordinates to camera coordinates, which includes the rotation matrix R and the translation
matrix t. (X, Y, Z) are the world coordinates. The internal reference matrix contains the
vertical and horizontal offset of the image origin to the centre of the aperture cx, cy, as
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well as the focal lengths fx, fy. The conversion from world coordinates (X, Y, Z) to camera
coordinates (xc, yc, zc) can be separately written in form of Equation (2),xc

yc
zc

 = R

X
Y
Z

+ t (2)

The conversion from camera coordinates to image coordinates (u, v) is shown in
Equations (3) and (4), where zc 6= 0.

u = fx × xc / zc + cx (3)

v = fy × yc / zc + cy (4)

An ideal pinhole camera has no lens; thus there is no distortion occurs. However, an
actual camera needs a lens and an image sensor; hence, radial distortion and tangential
distortion will occur, and they can be corrected using Equations (5) and (6) [25],

x′c =
xc

zc

(
1 + k1r2 + k2r4 + k3r6

)
+ 2p1

xc

zc

yc

zc
+ p2

(
r2 + 2

(
xc

zc

)2
)

(5)

y′c =
yc

zc

(
1 + k1r2 + k2r4 + k3r6

)
+ p1

(
r2 + 2

(
yc

zc

)2
)
+ 2p2

xc

zc

yc

zc
(6)

where r2 =
(

xc
zc

)2
+
(

yc
zc

)2
, k1, k2 and k3 are the distortion coefficients of radial distortion,

and p1, p2 are the distortion coefficients of tangential distortion. After correcting the
distortion, the original image coordinates (u, v) are corrected using Equations (7) and (8).

u = fx × x′c + cx (7)

v = fy × y′c + cy (8)

(B) LiDAR-Camera Calibration: To find the transformation between LiDAR and the
camera, we need to use two sets of 3D points that correspond to each other. The camera
image provides one set of 3D points, and the other is the LiDAR 3D point cloud. Finding
the corresponding correspond between these sets of points yields [R|t] . The camera can
only provide 2D RGB images; thus, to generate 3D information using the camera, our
research uses ArUco Markers as AR labels [26]. Figure 4 is a schematic of ArUco Markers.
The green grid lines in the figure represent the internal 5 × 5 coded area, and the red grid
lines represent the outer border. The grid lines serve as indicators, and the actual labels do
not have grid lines.
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The position of the camera can be estimated using the ArUco Markers. The markers
show the 3D positional relationship between the camera and the markers, which then
shows the positional relationship with the calibration plate. Then, we stick the label on a
rectangular piece of cardboard that act as a calibration board. If the size of the calibration
board and the position of the ArUco Markers are known, the positions of the four corners
of the board can be calculated. The label can provide the conversion between the centre of
the label and the camera. The corner points of the board are converted using the coordinate
system of ArUco Markers to the camera’s coordinate system. These corner points will be
used as 3D points in the camera. The 3D point correspondence of LiDAR can be found
by detecting the edges of the calibration plate and using Random Sample Consensus
(RANSAC) to fit the edges to find the corners. After obtaining the 3D points of LiDAR and
the camera, the conversion between the two coordinate systems can be found by iterating
the closest point. The function for finding the conversion is shown in Equation (9) [13],

(R, t) = argmin
R∈SO(3),t∈R3

‖(RP + t)−Q‖2 (9)

where ‖ · · · ‖2 is the 2-norm, P = {P1, P2, . . . , Pn} is the point cloud of LiDAR,
Q = {Q1, Q2, . . . , Qn} is the point cloud of the camera and R and t are rotation and
the translation matrix that converts LiDAR coordinates to camera coordinates, respectively.
SO(3) indicates rotating in a 3D space and R3 represents three dimensions.

(C) Real-time Data Fusion: Using the camera’s internal parameters, the projection matrix
and the transformation matrix from LiDAR coordinates to the camera coordinates, the
LiDAR 3D point cloud can be projected onto the 2D image. The projection formula is shown
in Equation (10), Ptx

Pty
Ptz

 = K[R|t]TL2C


XLiDAR
YLiDAR
ZLiDAR

1

 (10)

where (Ptx, Pty, Ptz) is the coordinate after projecting the 3D point cloud onto the im-
age, TL2C is the transformation matrix from LiDAR coordinates to camera coordinates
and (XLiDAR, YLiDAR, ZLiDAR) is the original coordinate on the 3D point cloud. Because
(Ptx, Pty, Ptz) is not the actual image coordinates after the projection, according to the char-
acteristics of homogeneous coordinates, if all the values of this coordinates are multiplied
by a nonzero real number, the coordinate will represent the same point. Therefore, to find
the actual coordinates after the 3D point cloud is projected onto the image in 2D, both
Ptx and Pty can be simply divided by Ptz, yielding the projection coordinates (uPt, vPt), as
shown in Equations (11) and (12),

uPt = Ptx/Ptz (11)

vPt = Pty/Ptz (12)

3.2. YOLOv4-Tiny Network

(A) Network architecture: Our research utilises the YOLOv4-Tiny [23] network for
obstacle recognition. As a detection network, its main purpose is to reduce the complexity
of the network and improve the efficiency of computations to achieve real-time computing.
The architecture comprises 21 convolutional layers, 11 routing layers, 3 pooling layers,
one upsampling layer and two prediction layers. The YOLOv4-Tiny architecture diagram
is shown in Figure 5. The CBLR block in the figure is composed of convolution, batch
normalise and the Leaky Relu activation function. The CL block is composed of convolution
and the linear activation function.
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(B) Bounding Boxes: YOLOv4-Tiny draws a bounding box upon detecting an object.
Each bounding box contains the center point of the bounding box (bx, by), width (bw), height
(bh) and category (C), as shown in Figure 6.
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For ease of system integration, this research uses darknet_ros as the YOLO execution
environment. Three topics will be published in darknet_ros: the number of detected
objects found_object, the bounding box matrix bounding_boxes and the image with the
bounding boxes drawn detection image; only the first two are actually used in this research.
The bounding box matrix contains the data of multiple bounding boxes. YOLO may
simultaneously detect one or more targets and integrate the data of multiple bounding
boxes into the topic to enable other systems to obtain the prediction data easily. The data
structure is shown in Figure 7. Data provided by bounding box is different from the original
bounding box drawn by YOLOv4-Tiny, which directly provides the centre point, width and
height of the box. Instead, it provides the upper left corner (xmin, ymin) and lower right
corner (xmax, ymax) coordinates of the bounding box in the image.
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3.3. Detecting Distance of Obstacles Ahead

A drawback of using 3D LiDAR to detect an object’s distance is that a single object
may correspond to multiple points. The distance of each point may be different owing
to changes in the object’s surface profile or environmental interference. To find the corre-
sponding points of the object, this research uses the bounding box information obtained
in the previous section as the basis. Points within the bounding box are selected as the
corresponding points of the object, and the distance of the object can be determined by
checking these points.

(1) Minimum point in box: We check for all points within the bounding box and find the
one with the minimum value as the distance, as shown in Equation (13),

D = min
0≤i≤n

(PDi) (13)

where D is the distance to the object, PD is the matrix of all points within the bounding box,
i indicates the index of a point and n is the total number of points within the bounding box.

In an obstacle anti-collision system, if the point with the minimum value in the
bounding box is used as the object distance, the surface protrusion of the obstacle need not
be considered because the possible first impact point (the closest point) of the obstacle is
detected. However, this method is also more susceptible to environmental interference.
YOLOv4-Tiny can detect objects as normal even when the background or the object is
slightly obscured. However, these slight environmental interferences could result in LiDAR
detecting an incorrect point within the bounding box. This means that the detected point
is not the actual distance to the object. The area more susceptible to interference is the
periphery of the bounding box. To solve this problem, this research uses the centre point
and boundaries of the bounding box as the basis and shrinks the detection range of the
bounding box towards the centre. This greatly reduces the background and peripheral
interference and minimises the effects of distortion, thus yielding more accurate distances.

(2) Medium point in box: Environmental interferences can usually be solved by shrinking
the detection range of the bounding box, but interferences in the centre of the box remain
unsolved. Another problem is that smaller objects and objects further away may be
undetectable once the detection range shrinks. This research uses a second method, sorting
all points within the bounding box and choosing the medium point as the object distance.
We use the bubble sort algorithm, as shown in Equation (14),

P′D = sort(PD) (14)

where PD is the matrix of all points within the bounding box, sort() is the ascending bubble
sort algorithm that sorts values from small to big and P′D is the ordered matrix after sorting.
The medium point is chosen using Equation (15),

D =

{
P′D n+1

2
, i f n is odd number.

1
2

(
P′D n

2
+ P′D n+1

2

)
, i f n is even number.

(15)

where D is the distance to the object and n is the total number of points within the bounding
box.

The advantage of using the medium point within the bounding box lies is that it
is unaffected by environmental interference and is able to find the real distance of most
objects. However, this distance might not be the shortest distance to the object. Table 1
shows the differences between using the minimum point and medium point, each with its
own advantages and best use-cases.
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Table 1. Using the minimum point and the medium points within the bounding box: a comparison.

Minimum Point in Box Medium Point in Box

Computation Complexity Low High
Acquires the minimum distance? Yes Possibly

Solves Environmental Interferences? Slightly Yes

Best Use-cases Anti-collision systems Finding an object’s
real distance

4. Results
4.1. Steps and Goals of the Experiment

In this research, we use the Velodyne VLP-16 and the Logitech HD Webcam C525 as
sensors and the NVIDIA Jetson AGX Xavier as the edge computing platform. First, we find
the rigid body transformation between the two sensors through 3D–3D point matching.
Then, we project the 3D point cloud image onto the 2D image and write the programme
with the ROS Package to achieve real-time processing. We also tested the hardware resource
occupancy in each power mode when the completed system is executed on Jetson AGX.
Finally, we performed a dynamic test on the actual road. Figure 8 shows the steps of the
experiment conducted in this research and the goal of each step.
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4.2. Calibration

In order to achieve the fusion of image and 3D point cloud data, it is necessary to
correct the camera and 3D LiDAR to find out the conversion relationship between the two
data. Before performing the joint calibration of LiDAR and the camera, we obtain the inter-
nal parameters and projection matrix of the C525 camera through the Camera_Calibration
toolkit in ROS. Figure 9 shows the internal parameters and projection matrix of the C525.
This maps to Equation (1) camera internal matrix and camera external matrix in preparation
for joint correction.
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Figure 9. C525 Internal parameters and projection matrix.

Next, we prepare the calibration board with the ArUco Markers and suspend it.
Figure 10 shows the suspension of the calibration board and size markings. In the figure, L
and W represent the length and width of the calibration board, respectively, and BL and
BW represent the distance between the ArUco Markers and the edge of the calibration
board, respectively. Finally, M represents the side length of the ArUco Markers. Table 2
shows the detailed specifications of the three calibration plates used in this research.
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Table 2. Specifications of the three calibration boards.

Board Size
ArUco Markers ID 51, ID 461, ID 718

L 30
W 30
BL 2.3
BW 2.3
M 13.5

Unit: cm.

We start the joint calibration after obtaining the camera internal parameters and
projection matrix and preparing the calibration plate. This research focuses on using two
and three calibration plates to calibrate and compare the results. Figure 11 shows the four
windows during joint calibration: (a) shows the raw image of the camera; (b) is the ArUco
Markers detection window; (c) is the point cloud image filtered by reflection intensity and
initially aligned with the camera coordinate system; and (d) is the point cloud image where
the edge is manually selected. The green frame is the manual boundary, and points within
the selected boundary will turn red while the rest will remain blue. When calibrating, we
start from the calibration board on the left, starting from the upper left edge and finishing
selecting the four edges in clockwise order. Then, we select the next calibration board.
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Figure 11. Four windows during joint calibration.

Using the LiDAR-Camera Calibration method proposed in A. Dhall etc. [13], a cali-
bration plate with Augmented Reality (AR) graphics is used to make the 2D image also
provide 3D information and mark the four edges of the plate on the 3D point cloud map
through the manual box selection method. The iterative closest point is used to find the
correspondence between the two point clouds. The transformation matrix will align the
two point clouds by minimizing the Euclidean distance between the corresponding points.
After the conversion relationship is obtained, in order to project the 3D point cloud onto
the image, in addition to the relationship between the two, the internal parameters of the
camera and its projection matrix are required.

Figure 12 is the result of using two calibration plates. Average transformation is the
transformation matrix that converts LiDAR coordinates to camera coordinates. During
calibration, the distance between the sensor and the calibration plate is approximately
110 cm, and the calibration plate should occupy as much space as possible in the camera’s
field of view.
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Figure 12. Results of using two calibration plates.

When using three calibration plates, for the camera’s and LiDAR’s fields of view to
accommodate three calibration plates simultaneously, the distance between the sensor
and calibration plate must be increased to 134 cm, and fewer VLP-16 laser rays scan each
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calibration plate. This reduces the number of point clouds on the edges. Figure 13 shows
the calibration results of using three calibration plates. The Root Mean Square Error (RMSE)
of the final conversion is approximately thrice than that when using two calibration plates,
and the deviation in the actual final projection is also more obvious.
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4.3. Combining the Instant Point Cloud and Image

After the LiDAR and the camera are jointly calibrated, the transformation matrix
between the two can be obtained. The 3D point cloud of the LiDAR can be instantly
projected onto the 2D image of the camera using the ROS Package designed in our research.
Figures 14 and 15 show the projection results using the transformation matrix obtained via
the joint calibration. The color of the points in the figures represents the distances. The
nearer a point, the redder it becomes, and the further away, the greener it becomes. In
Figure 15, three calibration plates are used to obtain the transformation matrix. Compared
with Figure 14, the deviation of the projection of Figure 15 is more obvious. Therefore,
points cannot be accurately projected onto the correct position.
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4.4. Recognition and Measuring the Distance of Obstacles Present Ahead

For recognising obstacles present ahead, the image input size is 640 × 480 pixels and
the total number of YOLOv4-Tiny categories is 80. In our experiment, we use the weights
provided by the official weight file. Then, we find the distance to the object using the
information given by the bounding box. Figure 15 uses the minimum point in 100% of
the bounding box. This method ensures that we find the shortest distance between the
sensor and the object but is more susceptible to environmental interferences. In the obstacle
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anti-collision system, the point with the smallest distance within the bounding box is used
as the target distance. This system avoids bulges and the unevenness of the obstacle to
detect the first point of collision of the obstacle, and it has the most straightforward and
fastest computations. However, this method affects distance detection when two objects
overlap. For example, in Figure 16, the chair interfered with the human body, resulting in
an inaccurate distance.
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Figure 16. Measuring distance using the minimum point within the bounding box.

Figure 17 uses the medium point within the bounding box to measure distance.
Compared with using the minimum point within the bounding box, which is easily affected
by overlapping objects, the size of the bounding box can be ignored when using the median
points within the bounding box to ensure that the measured distance is focused on the
correct object. In other words, interferences within the bounding box can be avoided, but
the result could be wrong if the object is smaller or further away or too few points are
present within the bounding box.
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Figure 18 shows the same use of the middle point in the bounding box to measure the
distance in the indoor multi-person environment can also be a good way to find the object
to identify the bounding box and distance.
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Figure 18. Distance measurement for multi-person environments.

Figure 19 shows the results of the actual dynamic test on the road. The effective
detection distance of LiDAR is 100 m, and the detection error is less than 3 cm. Within 10 m,
the average obstacle detection accuracy of YOLOv4-Tiny dynamic detection can surpass
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70%. Through this experiment, it can be concluded that the system proposed in this article
can be applied to the ever-changing environment on the road.
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Figure 19. Road test results.

Figure 20 shows the identification of people and vehicles in road tests. Figure 21
shows the real-time recognition effect for dynamic objects and the frame rate is up to 56.3.
Through this experiment, it can be concluded that the system proposed in this article can
be applied to the ever-changing environment on the road.
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Figure 21. Instant dynamic vehicle environment testing.

4.5. Edge Computing Platform Performance Test

In this paper, in order to simulate the posture state of the vehicle, a remote-controlable
mobile vehicle is composed of a European aluminum extrusion type as the skeleton, and
all the sensors, edge computing platforms, displays and power supplies are installed here,
and the parts that cannot be directly installed, this paper uses 3D printing technology to
print suitable fixed parts to complete the assembly, and the assembled mobile vehicle is
shown in Figure 22. Remotely controlled mobile carrier.

NVIDIA Jetson AGX Xavier provides seven power modes. The mode with the best
performance is MAXN. Our research uses GPU computing with YOLOv4-Tiny, and the
rest uses CPU computing with Jetson AGX. We also utilize Jetson stats tools to monitor the
usage of resources. Table 3 shows the CPU and GPU usage status during the execution of
the system and the operating speed of YOLOv4-Tiny in each power mode.
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Table 3. Jetson AGX tests for each power mode.

Power Mode CPU Average
Usage

The Number of
CPU Working

Cores

GPU Average
Usage

YOLOv4-Tiny
FPS

0 (MAXN) 53.3% (2.3 GHz) 8 >77% (1.4 GHz) 60
1 (10 W) × × × ×
2 (15 W) 100% (1.2 GHz) 4 >95% (675 MHz) 22

3 (30 W ALL) 72.5% (1.2 GHz) 8 >80% (905 MHz) 40
4 (30 W 6core) 82% (1.4 GHz) 6 >80% (905 MHz) 35
5 (30 W 4core) 95.8% (1.8 GHz) 4 >88% (905 MHz) 32
6 (30 W 2core) 100% (2.1 GHz) 2 >50% (905 MHz) 20

7 (15 W
DESKTOP) 98% (2.2 GHz) 4 >95% (675 MHz) 24

In modes 0, 3 and 4, the system is in a relatively stable state. In other modes, the
resource occupancy fluctuates between close to full load and close to idle. During this
fluctuation, the system is slower and lags. Taking mode 6 as an example: the GPU usage
is much lower than that of other modes, but other systems are on the edge of collapsing
and cannot perform the tasks they are supposed perform. Mode 1 is completely unable to
run the system. Only mode 0 (MAXN), mode 3 (30 W ALL) and mode 4 (30 W 6core) can
efficiently run the system. Mode 0 and mode 3 use all eight cores for computation, and the
main difference lies in the difference in computing performance caused by different core
clocks. Mode 4 uses six cores and is slightly inferior to the first two in terms of smoothness.
With respect to the speed to YOLOv4-Tiny, mode 0 (MAXN) performs the best, with an
average of 60 fps and a maximum of approximately 80 fps.

5. Discussion and Perspective

This research aims to use heterogeneous sensor fusion using 3D Light Detection and
Ranging (LiDAR) and cameras, combined with an object recognition system and a ranging
system. However, many different sensors need to be used in autonomous vehicles. It is
expected that more sensors of different properties can be added in the future, so as to
realize a more perfect self-driving sensing system.

This paper only identifies the obstacles in front of the vehicle, but the self-driving
vehicle needs to grasp the surrounding environmental conditions at the same time, and
the VLP-16 used in this system has a 360◦ field of view. Therefore, in the future, we can
use a large field of view of the ring lens, or use the image stitching technology to integrate
the field of view of multiple cameras, so that the sensing range of the system is no longer
confined to the front of the vehicle, but can grasp the environmental information 360◦ in all
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directions. In addition to expanding the original field of view, sensors of other properties
can also be added, such as infrared, ultrasonic and millimeter wave radar, so that the
system can be more adapted to different environments.

6. Conclusions

Our research uses edge computing as a basis to design an obstacle recognition system
that can also measure the distance between the sensor and the obstacle. Our research
has two main parts: heterogeneous sensor fusion and obstacle recognition and ranging.
We use 3D–3D point matching for heterogeneous sensor fusion to find the rigid body
transformation between the 3D LiDAR and the camera. First, we use the camera to detect
the calibration plate attached with ArUco Markers to obtain the 3D points in the camera
coordinates. Then, we compare those points with the point cloud in the LiDAR coordinates
and select the four edges of the calibration plate. The, we iteratively use the closest point to
find the transformation matrix between the two sensors. Finally, we use the transformation
matrix, camera internal parameters and projection matrix to project the point cloud onto
the 2D image. YOLOv4-Tiny is used as the obstacle recognition network. Its lightweight
architecture and high computing speed are suitable for hardware with limited performance
such as edge computing platforms. For measuring distances, once the object is detected
and a boundary box is drawn, we use the ‘minimum point within the bounding box’ and
the ‘median point within the bounding box’ to determine the distance of the object.

Our research constructed this system on an edge computing platform, making it an
offline, independent and instant computing system. We put this system on a moving
vehicle and conducted a final test on the road. Experiment results show that even with an
edge computing platform with limited computational capacity, the system reaches 60 fps,
above 70% accuracy and a margin of error less than 3 cm using the YOLOv4-Tiny network.
This proves that the system proposed in this study can be applied to the ever-changing
environment on the road. However, this system is currently imperfect; more sensors of
different properties can be added in future work to increase the sensing field of view and
the robustness of the overall system.
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Abbreviations

ADAS Advanced Driver Assistance Systems
AEB Autonomous Emergency Braking
AI Artificial Intelligence
CNN Convolutional Neural Networks
FCW Forward Collision Warning
FIR Far Infrared
HPC High-Performance Computing
IoT Internet of Things
LiDAR Light Detection and Ranging
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RANSAC Random Sample Consensus
RMSE Root Mean Square Error
ROS Robot Operating System
SAE Society of Automotive Engineers
SLAM Simultaneous Localization And Mapping
SSD Single Shot MultiBox Detector
YOLO You Only Look Once
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