
Citation: Chen, P.-Y.; Lin, H.-Y.; Pai,

N.-S.; Huang, J.-B. Construction of

Edge Computing Platform Using 3D

LiDAR and Camera Heterogeneous

Sensing Fusion for Front Obstacle

Recognition and Distance

Measurement System. Processes 2022,

10, 1876. https://doi.org/10.3390/

pr10091876

Academic Editor: Blaž Likozar

Received: 15 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Construction of Edge Computing Platform Using 3D LiDAR
and Camera Heterogeneous Sensing Fusion for Front Obstacle
Recognition and Distance Measurement System
Pi-Yun Chen, Hsu-Yung Lin, Neng-Sheng Pai * and Jing-Bin Huang

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
* Correspondence: pai@ncut.edu.tw

Abstract: This research aims to utilise heterogeneous sensor fusion using 3D Light Detection and
Ranging (LiDAR) and cameras, combined with an object recognition system and a ranging system, to
construct an edge computing platform such that a vehicle equipped with the platform can perform
computations offline in real time. This work comprises two main sections: the first is heterogeneous
fusion, and the second is obstacle recognition and ranging detection. To achieve heterogeneous sensor
fusion, 3D–3D point matching was used to find rigid body transformation between two sensors and
finally project the LiDAR 3D point cloud image onto the 2D image. For object recognition, YOLOv4-
Tiny was used as the detection network. A lightweight network architecture and high computational
speed could be effectively used on edge computing hardware with limited performance. Further, by
drawing the bounding box, we could detect the point cloud within the bounding box to estimate the
distance to the obstacle. For detecting distance, we conducted experiments in two ways: ‘minimum
point in box’ and ‘median point in box’ and compared the results. With heterogeneous sensor fusion,
object recognition and the ranging system, detecting the category and distance of obstacles ahead
of the vehicle was possible in real time. Furthermore, integrating the edge computing platform
architecture enabled moving the entire system offline, making it an independent system that returns
results in real time. Finally, a dynamic test was conducted on a road. The experiment showed that
the detection speed of YOLOv4-Tiny in the dynamic test was higher than 60 FPS, and the accuracy
rate surpassed 70%. Furthermore, the distance detection error of the 3D LiDAR was less than 3 cm,
which is sufficiently accurate to be applied to complex environments on roads.

Keywords: 3D LiDAR (Light Detection and Ranging); rigid body transformation; heterogeneous
sensor fusion; YOLOv4; object recognition; edge computing

1. Introduction

The vigorous development of High-Performance Computing (HPC) and cloud com-
puting have led to technological innovations in fields such as AI, intelligent robots and
autonomous driving. In particular, car manufacturers worldwide are actively investing
in autonomous vehicles and related technologies. Self-driving cars need to be equipped
with various cutting-edge technologies to function, such as self-driving systems, GPS
positioning, car body design and multiple sensors. The combination of technologies en-
ables the car to constantly sense its surrounding environment and immediately respond to
any emergency [1]. Technologies commonly used in anti-collision systems include image
recognition, ultrasound, infrared, radar and LiDAR. Each has its own advantages and dis-
advantages and is useful in different situations. A complete anti-collision system requires
multiple sensors working together, combining the strengths of multiple sensors to achieve
heterogeneous sensor fusion to obtain richer and more accurate environmental information.

The industry definition of autonomous vehicles is generally based on the J3016 stan-
dard of the Society of Automotive Engineers (SAE). Vehicles are divided into six levels
bases on the degree of automation, from Level 0 (without automation) to Level 5 (fully

Processes 2022, 10, 1876. https://doi.org/10.3390/pr10091876 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10091876
https://doi.org/10.3390/pr10091876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10091876
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10091876?type=check_update&version=3

Processes 2022, 10, 1876 2 of 19

automated). In 2019, SAE updated to the J3018 standard, which provides road safety
guidelines for Levels 3–5 vehicles. The updated standard better reflects the current and
future need for road safety testing with autonomous driving technology [2]. Self-driving
cars will not replace manual driving overnight; instead, there will be a gradual shift from
manual to autonomous driving. This process relies on the continuous development and im-
provement of Advanced Driver Assistance Systems (ADAS). In ADAS, Forward Collision
Warning (FCW) reminds the driver to reduce the speed or take evasive measures when it
detects that the relative position and speed of the vehicle in front reaches certain criteria.
This helps reduce the number of accidents. In addition, a more advanced Autonomous
Emergency Braking (FCW) system can take over the control of the vehicle when the driver
does not respond appropriately in a situation. Regardless of whether the driver steps on
the brake, AEB will activate to reduce the speed of the vehicle to avoid accidents or reduce
the seriousness of injuries caused by accidents [3].

Furthermore, with the rise of artificial intelligence, several fields are also utilising AI
technology. One such example is the introduction of AI in the IoT, transforming it into AIoT
(AI + IoT), which optimises the traditional IoT and makes it more intelligent. However, with
the development of AI, the IoT and big data, technical challenges such as cloud computing
efficiency, AI computing power and big data analysis are also encountered. Among them,
AI edge computing technology is the main focus of development in the global industry.
The market is optimistic about the development of AI edge computing because it has low
latency, responds fast, maintains privacy (especially with the option of offline processing),
consumes little power and is safe when processing and transmitting data. In the past,
server equipment was simply used to collect data and computation relied on sending data
and receiving responses from the cloud or fog. However, with the introduction of AI edge
computing, it is possible to perform computations on an edge computation device that has
undergone machine learning and optimisation processes to achieve real-time AI computing
for specific tasks without going through the network and the cloud [4]. Each car can be
regarded as an edge node and equipped with an edge computing platform within the
vehicle-to-everything network. Each node can independently perform calculations using
predesigned software or programmes in the platform to ensure that the most appropriate
decision is made in the shortest time. Computation and decision-making do not need to
go through the cloud server. When communication is permitted, the calculation results or
decision events are returned to the cloud database for backend personnel to review the
necessity and accuracy of each decision in order to provide the basis for future system
updates and revisions.

2. Literature Review

Our research referenced literature of four main categories: ROS, sensors, heteroge-
neous sensor fusion and object detection.

2.1. Robot Operating Systems

Robot Operating System (ROS) [5] is a flexible framework that can be used to write
robot software. It assumes the role of a communication bridge between the robot’s hardware
and software. Under this framework, the operating system of the robot can be integrated
more easily and comprehensively. One of the advantages of the ROS framework is that
the incompatibility and difficulties in the integration between sensors and other hardware
can be avoided when developing algorithms based on this architecture. ROS toolkits work
independently without interfering with each other, making them easy to maintain. This
is similar to the Simultaneous Localization And Mapping (SLAM) [6] technology that is
usually found in autonomous driving. Even YOLO, which has been very popular in object
detection in recent years, uses Darknet as its working environment that can also be built in
ROS [7]. Therefore, our research is based on ROS for system development.

Processes 2022, 10, 1876 3 of 19

2.2. Sensors

The first step is determining how to obtain information from the surrounding envi-
ronment to detect obstacles ahead; the solution is sensors. Sensors commonly used in
vehicle anti-collision systems include the infrared, ultrasonic, camera, radar and LiDAR.
Kallhammer et al. used a low-resolution Far Infrared (FIR) lens to detect the possibility of
pedestrians present ahead [8]. Yi et al. used ultrasound to detect obstacles in a disturbed
environment [9]. In recent years, cameras have been frequently used combined with deep
learning algorithms to identify obstacles or scan lane lines warn drivers when they have
crossed a line. Tesla’s autopilot system uses the front lens to identify vehicles and the lane
ahead, the millimeter-wave radar to track the vehicle’s distance ahead and several ultra-
sonic radars placed around the vehicle to sense surrounding vehicles and obstacles [10].
Google’s self-driving car is equipped with a 3D LiDAR having a 360◦ field of view on
the roof and some small radars on the bumper. A camera is also present in front of the
rear mirror to detect stop lights, stop signs, pedestrians, bicycles, etc. [11]. This work uses
cameras to detect the types of obstacles and 3D LiDAR as a sensor for measuring distances.

2.3. Heterogeneous Sensor Fusion

The ideal sensing unit of an autonomous vehicle must have three characteristics
simultaneously: high resolution, high precision and strong weather resistance. However, no
single sensor fulfils all three characteristics; therefore, combining the strengths of different
sensors using heterogeneous sensing fusion is one way to overcome the shortcomings
of each sensor. Sensor fusion can be divided into three main modes. The first is the
complementary fusion mode. In this mode, each sensor’s scanning area does not overlap.
For example, installing millimetre-wave radars at the front and rear of the vehicle, in which
each radar is responsible for different areas, thus increasing the overall sensing range of the
system. The second is the competitive fusion mode; in this mode, multiple same sensors
scan the same area to improve the overall recognition accuracy of the system or different
sensors can scan the same object to provide the same or different physical information. For
example, using a camera to identify the type of obstacle while a millimeter-wave radar
and LiDAR provide the position and distance of the obstacle. This mode provides a more
accurate and complete set of information regarding the object being detected. The last mode
is the cooperative fusion mode, which is similar to competitive fusion, except that after a
sensor detects or identifies something, instead of only relying on its own information, it
needs to use the information provided by other sensors before returning a result. This mode
improves the speed and accuracy of identification [12]. Our research uses the cooperative
fusion mode for heterogeneous sensing fusion.

However, a mutual reference point must be found between different sensors before
the information they provide can be fused. In the case of a camera and a 3D LiDAR,
the field of view and the dimensions of the data are different; therefore, the two sets
of data need to be aligned first. In [13], a correction method based on 3D–3D point
correspondences is proposed when aligning the data for a camera and 3D LiDAR. The
method finds the relationship of the translation and rotation between the LiDAR and the
camera by fusing point clouds from multiple images at different locations and performing
multiple iterations. Nowicki [14] further discusses the time offset between sensors; the
author believes that not only the spatial relationship needs to be corrected, but the time
offset will also affect the final fitting result. The time offset is generally caused by the
different scanning frequency of each sensor, the speed of data processing and the delay of
data transmission. To solve this problem, the author proposed a complete LiDAR-Camera
spatiotemporal calibration method.

2.4. Object Detection

Object Detection can be divided into two categories: traditional algorithms and
deep learning algorithms. In recent years, improvements in the performance of CPU

Processes 2022, 10, 1876 4 of 19

and GPU computing coupled with the rapid development of CNN have also helped in
object detection.

There are two main schools of using deep learning in object detection. First is using
an object detector in a candidate region, also known as the two-stage detector. The most
representative of this school is the R-CNN proposed by Girshick et al. [15], the improved
Fast R-CNN [16], Faster R-CNN [17] and Mask R-CNN [18]. The two-stage detector func-
tions by first proposing candidate regions (finding the target object), and then classifying
the candidate regions. Although it has a higher accuracy rate than a one-stage detector, it is
also slower. The second school is the faster one-stage detector, one of the most common
ones among which is the Single Shot MultiBox Detector (SSD) proposed by Liu et al. [19],
the YOLO proposed by Redmon et al. [20], YOLO9000 [21], YOLOv3 [22] and YOLOv4 [23]
proposed by Bochkovskiy et al. One-stage detectors can predict the location of the object
and classify the object simultaneously. Thus, it may be slightly inferior in detection accuracy
but is considerably faster than two-stage detectors.

The main goal is to use 3D LiDAR and camera to achieve heterogeneous sensing
fusion, and to build a forward obstacle recognition and distance measurement system on
top of the edge computing platform.

3. Materials and Methods

In this research, we explain our methodology in three parts: heterogeneous sensor
fusion, the YOLOv4-Tiny network and distance detection of obstacles ahead. The system
architecture is shown in Figure 1. And the Mind Map is shown in Figure 2.

Processes 2022, 10, x FOR PEER REVIEW 4 of 19

ning frequency of each sensor, the speed of data processing and the delay of data trans-

mission. To solve this problem, the author proposed a complete LiDAR-Camera spatio-

temporal calibration method.

2.4. Object Detection

Object Detection can be divided into two categories: traditional algorithms and deep

learning algorithms. In recent years, improvements in the performance of CPU and GPU

computing coupled with the rapid development of CNN have also helped in object detec-

tion.

There are two main schools of using deep learning in object detection. First is using

an object detector in a candidate region, also known as the two-stage detector. The most

representative of this school is the R-CNN proposed by Girshick et al. [15], the improved

Fast R-CNN [16], Faster R-CNN [17] and Mask R-CNN [18]. The two-stage detector func-

tions by first proposing candidate regions (finding the target object), and then classifying

the candidate regions. Although it has a higher accuracy rate than a one-stage detector, it

is also slower. The second school is the faster one-stage detector, one of the most common

ones among which is the Single Shot MultiBox Detector (SSD) proposed by Liu et al. [19],

the YOLO proposed by Redmon et al. [20], YOLO9000 [21], YOLOv3 [22] and YOLOv4

[23] proposed by Bochkovskiy et al. One-stage detectors can predict the location of the

object and classify the object simultaneously. Thus, it may be slightly inferior in detection

accuracy but is considerably faster than two-stage detectors.

The main goal is to use 3D LiDAR and camera to achieve heterogeneous sensing fu-

sion, and to build a forward obstacle recognition and distance measurement system on

top of the edge computing platform.

3. Materials and Methods

In this research, we explain our methodology in three parts: heterogeneous sensor

fusion, the YOLOv4-Tiny network and distance detection of obstacles ahead. The system

architecture is shown in Figure 1. And the Mind Map is shown in Figure 2.

Figure 1. System architecture. Figure 1. System architecture.

Processes 2022, 10, 1876 5 of 19Processes 2022, 10, x FOR PEER REVIEW 5 of 19

Figure 2. Mind Map.

3.1. Heterogeneous Sensor Fusion

(A) Camera calibration: To project the 3D point cloud of LiDAR onto the 2D image, we

must first obtain the mathematical model of the camera projection. Camera calibration is

the process of finding the projection matrix that converts world coordinates to image co-

ordinates. To find the correlation between the three-dimensional geometric position of a

point on an object in real space and its corresponding point in the image, establishing a

geometric model of the camera is necessary [24]. The world coordinates are converted to

camera coordinates using the camera’s external parameter matrix and projected onto the

2D image using the camera’s internal parameter matrix. The projection process is shown

in Figure 3.

Figure 3. Projection process.

The homogeneous coordinate representation of the mathematical model of the cam-

era under ideal imaging circumstances is shown in Equation (1) [25],

�
�
�
1

� = �[�|�] �

�
�
�
1

� = �
�� 0 ��

0 �� ��

0 0 1

� �

��� ��� ��� ��

��� ��� ��� ��

��� ��� ��� ��

� �

�
�
�
1

� (1)

where � and � are the coordinates of the image plane (unit: pixels) and � is the cam-

era’s internal parameter matrix. [�|�] is the transformation matrix that converts from

world coordinates to camera coordinates, which includes the rotation matrix � and the

Figure 2. Mind Map.

3.1. Heterogeneous Sensor Fusion

(A) Camera calibration: To project the 3D point cloud of LiDAR onto the 2D image, we
must first obtain the mathematical model of the camera projection. Camera calibration
is the process of finding the projection matrix that converts world coordinates to image
coordinates. To find the correlation between the three-dimensional geometric position of a
point on an object in real space and its corresponding point in the image, establishing a
geometric model of the camera is necessary [24]. The world coordinates are converted to
camera coordinates using the camera’s external parameter matrix and projected onto the
2D image using the camera’s internal parameter matrix. The projection process is shown
in Figure 3.

Processes 2022, 10, x FOR PEER REVIEW 5 of 19

Figure 2. Mind Map.

3.1. Heterogeneous Sensor Fusion

(A) Camera calibration: To project the 3D point cloud of LiDAR onto the 2D image, we

must first obtain the mathematical model of the camera projection. Camera calibration is

the process of finding the projection matrix that converts world coordinates to image co-

ordinates. To find the correlation between the three-dimensional geometric position of a

point on an object in real space and its corresponding point in the image, establishing a

geometric model of the camera is necessary [24]. The world coordinates are converted to

camera coordinates using the camera’s external parameter matrix and projected onto the

2D image using the camera’s internal parameter matrix. The projection process is shown

in Figure 3.

Figure 3. Projection process.

The homogeneous coordinate representation of the mathematical model of the cam-

era under ideal imaging circumstances is shown in Equation (1) [25],

�
�
�
1

� = �[�|�] �

�
�
�
1

� = �
�� 0 ��

0 �� ��

0 0 1

� �

��� ��� ��� ��

��� ��� ��� ��

��� ��� ��� ��

� �

�
�
�
1

� (1)

where � and � are the coordinates of the image plane (unit: pixels) and � is the cam-

era’s internal parameter matrix. [�|�] is the transformation matrix that converts from

world coordinates to camera coordinates, which includes the rotation matrix � and the

Figure 3. Projection process.

The homogeneous coordinate representation of the mathematical model of the camera
under ideal imaging circumstances is shown in Equation (1) [25],

u
v
1

 = K[R|t]

X
Y
Z
1

 =

 fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

X
Y
Z
1

 (1)

where u and v are the coordinates of the image plane (unit: pixels) and K is the camera’s
internal parameter matrix. [R|t] is the transformation matrix that converts from world
coordinates to camera coordinates, which includes the rotation matrix R and the translation
matrix t. (X, Y, Z) are the world coordinates. The internal reference matrix contains the
vertical and horizontal offset of the image origin to the centre of the aperture cx, cy, as

Processes 2022, 10, 1876 6 of 19

well as the focal lengths fx, fy. The conversion from world coordinates (X, Y, Z) to camera
coordinates (xc, yc, zc) can be separately written in form of Equation (2),xc

yc
zc

 = R

X
Y
Z

+ t (2)

The conversion from camera coordinates to image coordinates (u, v) is shown in
Equations (3) and (4), where zc 6= 0.

u = fx × xc / zc + cx (3)

v = fy × yc / zc + cy (4)

An ideal pinhole camera has no lens; thus there is no distortion occurs. However, an
actual camera needs a lens and an image sensor; hence, radial distortion and tangential
distortion will occur, and they can be corrected using Equations (5) and (6) [25],

x′c =
xc

zc

(
1 + k1r2 + k2r4 + k3r6

)
+ 2p1

xc

zc

yc

zc
+ p2

(
r2 + 2

(
xc

zc

)2
)

(5)

y′c =
yc

zc

(
1 + k1r2 + k2r4 + k3r6

)
+ p1

(
r2 + 2

(
yc

zc

)2
)
+ 2p2

xc

zc

yc

zc
(6)

where r2 =
(

xc
zc

)2
+
(

yc
zc

)2
, k1, k2 and k3 are the distortion coefficients of radial distortion,

and p1, p2 are the distortion coefficients of tangential distortion. After correcting the
distortion, the original image coordinates (u, v) are corrected using Equations (7) and (8).

u = fx × x′c + cx (7)

v = fy × y′c + cy (8)

(B) LiDAR-Camera Calibration: To find the transformation between LiDAR and the
camera, we need to use two sets of 3D points that correspond to each other. The camera
image provides one set of 3D points, and the other is the LiDAR 3D point cloud. Finding
the corresponding correspond between these sets of points yields [R|t] . The camera can
only provide 2D RGB images; thus, to generate 3D information using the camera, our
research uses ArUco Markers as AR labels [26]. Figure 4 is a schematic of ArUco Markers.
The green grid lines in the figure represent the internal 5 × 5 coded area, and the red grid
lines represent the outer border. The grid lines serve as indicators, and the actual labels do
not have grid lines.

Processes 2022, 10, x FOR PEER REVIEW 6 of 19

translation matrix �. (�, �, �) are the world coordinates. The internal reference matrix con-

tains the vertical and horizontal offset of the image origin to the centre of the aperture ��,

��, as well as the focal lengths ��, ��. The conversion from world coordinates (�, �, �) to

camera coordinates (��, ��, ��) can be separately written in form of Equation (2),

�

��

��

��

� = � �
�
�
�

� + � (2)

The conversion from camera coordinates to image coordinates (�, �) is shown in

Equations (3) and (4), where �� ≠ 0.

� = �� × �� ��⁄ + �� (3)

� = �� × �� �� ⁄ + �� (4)

An ideal pinhole camera has no lens; thus there is no distortion occurs. However, an

actual camera needs a lens and an image sensor; hence, radial distortion and tangential

distortion will occur, and they can be corrected using Equations (5) and (6) [25],

��
� =

��

��

(1 + ���� + ���� + ����) + 2��

��

��

��

��

 + �� ��� + 2 �
��

��

�
�

� (5)

��
� =

��

��

(1 + ���� + ���� + ����) + �� ��� + 2 �
��

��

�
�

� + 2��

��

��

��

��

 (6)

where �� = �
��

��
� �

�
 + �

��
��

� �
�

, �� , ��and �� are the distortion coefficients of radial

distortion, and ��, ��are the distortion coefficients of tangential distortion. After correct-

ing the distortion, the original image coordinates (�, �) are corrected using Equations (7)

and (8).

� = �� × ��
� + �� (7)

� = �� × ��
� + �� (8)

(B) LiDAR-Camera Calibration: To find the transformation between LiDAR and the

camera, we need to use two sets of 3D points that correspond to each other. The camera

image provides one set of 3D points, and the other is the LiDAR 3D point cloud. Finding

the corresponding correspond between these sets of points yields[�|�]. The camera can

only provide 2D RGB images; thus, to generate 3D information using the camera, our re-

search uses ArUco Markers as AR labels [26]. Figure 4 is a schematic of ArUco Markers.

The green grid lines in the figure represent the internal 5 × 5 coded area, and the red grid

lines represent the outer border. The grid lines serve as indicators, and the actual labels

do not have grid lines.

Figure 4. ArUco Markers diagram. Figure 4. ArUco Markers diagram.

Processes 2022, 10, 1876 7 of 19

The position of the camera can be estimated using the ArUco Markers. The markers
show the 3D positional relationship between the camera and the markers, which then
shows the positional relationship with the calibration plate. Then, we stick the label on a
rectangular piece of cardboard that act as a calibration board. If the size of the calibration
board and the position of the ArUco Markers are known, the positions of the four corners
of the board can be calculated. The label can provide the conversion between the centre of
the label and the camera. The corner points of the board are converted using the coordinate
system of ArUco Markers to the camera’s coordinate system. These corner points will be
used as 3D points in the camera. The 3D point correspondence of LiDAR can be found
by detecting the edges of the calibration plate and using Random Sample Consensus
(RANSAC) to fit the edges to find the corners. After obtaining the 3D points of LiDAR and
the camera, the conversion between the two coordinate systems can be found by iterating
the closest point. The function for finding the conversion is shown in Equation (9) [13],

(R, t) = argmin
R∈SO(3),t∈R3

‖(RP + t)−Q‖2 (9)

where ‖ · · · ‖2 is the 2-norm, P = {P1, P2, . . . , Pn} is the point cloud of LiDAR,
Q = {Q1, Q2, . . . , Qn} is the point cloud of the camera and R and t are rotation and
the translation matrix that converts LiDAR coordinates to camera coordinates, respectively.
SO(3) indicates rotating in a 3D space and R3 represents three dimensions.

(C) Real-time Data Fusion: Using the camera’s internal parameters, the projection matrix
and the transformation matrix from LiDAR coordinates to the camera coordinates, the
LiDAR 3D point cloud can be projected onto the 2D image. The projection formula is shown
in Equation (10), Ptx

Pty
Ptz

 = K[R|t]TL2C

XLiDAR
YLiDAR
ZLiDAR

1

 (10)

where (Ptx, Pty, Ptz) is the coordinate after projecting the 3D point cloud onto the im-
age, TL2C is the transformation matrix from LiDAR coordinates to camera coordinates
and (XLiDAR, YLiDAR, ZLiDAR) is the original coordinate on the 3D point cloud. Because
(Ptx, Pty, Ptz) is not the actual image coordinates after the projection, according to the char-
acteristics of homogeneous coordinates, if all the values of this coordinates are multiplied
by a nonzero real number, the coordinate will represent the same point. Therefore, to find
the actual coordinates after the 3D point cloud is projected onto the image in 2D, both
Ptx and Pty can be simply divided by Ptz, yielding the projection coordinates (uPt, vPt), as
shown in Equations (11) and (12),

uPt = Ptx/Ptz (11)

vPt = Pty/Ptz (12)

3.2. YOLOv4-Tiny Network

(A) Network architecture: Our research utilises the YOLOv4-Tiny [23] network for
obstacle recognition. As a detection network, its main purpose is to reduce the complexity
of the network and improve the efficiency of computations to achieve real-time computing.
The architecture comprises 21 convolutional layers, 11 routing layers, 3 pooling layers,
one upsampling layer and two prediction layers. The YOLOv4-Tiny architecture diagram
is shown in Figure 5. The CBLR block in the figure is composed of convolution, batch
normalise and the Leaky Relu activation function. The CL block is composed of convolution
and the linear activation function.

Processes 2022, 10, 1876 8 of 19Processes 2022, 10, x FOR PEER REVIEW 8 of 19

Figure 5. YOLOv4-Tiny architecture diagram.

(B) Bounding Boxes: YOLOv4-Tiny draws a bounding box upon detecting an object.

Each bounding box contains the center point of the bounding box (��, ��), width (��),

height (��) and category (�), as shown in Figure 6.

Figure 6. Bounding boxes drawn using YOLOv4-Tiny.

For ease of system integration, this research uses darknet_ros as the YOLO execution

environment. Three topics will be published in darknet_ros: the number of detected ob-

jects found_object, the bounding box matrix bounding_boxes and the image with the

bounding boxes drawn detection image; only the first two are actually used in this re-

search. The bounding box matrix contains the data of multiple bounding boxes. YOLO

may simultaneously detect one or more targets and integrate the data of multiple bound-

ing boxes into the topic to enable other systems to obtain the prediction data easily. The

data structure is shown in Figure 7. Data provided by bounding box is different from the

original bounding box drawn by YOLOv4-Tiny, which directly provides the centre point,

width and height of the box. Instead, it provides the upper left corner (xmin, ymin) and

lower right corner (xmax, ymax) coordinates of the bounding box in the image.

Figure 5. YOLOv4-Tiny architecture diagram.

(B) Bounding Boxes: YOLOv4-Tiny draws a bounding box upon detecting an object.
Each bounding box contains the center point of the bounding box (bx, by), width (bw), height
(bh) and category (C), as shown in Figure 6.

Processes 2022, 10, x FOR PEER REVIEW 8 of 19

Figure 5. YOLOv4-Tiny architecture diagram.

(B) Bounding Boxes: YOLOv4-Tiny draws a bounding box upon detecting an object.

Each bounding box contains the center point of the bounding box (��, ��), width (��),

height (��) and category (�), as shown in Figure 6.

Figure 6. Bounding boxes drawn using YOLOv4-Tiny.

For ease of system integration, this research uses darknet_ros as the YOLO execution

environment. Three topics will be published in darknet_ros: the number of detected ob-

jects found_object, the bounding box matrix bounding_boxes and the image with the

bounding boxes drawn detection image; only the first two are actually used in this re-

search. The bounding box matrix contains the data of multiple bounding boxes. YOLO

may simultaneously detect one or more targets and integrate the data of multiple bound-

ing boxes into the topic to enable other systems to obtain the prediction data easily. The

data structure is shown in Figure 7. Data provided by bounding box is different from the

original bounding box drawn by YOLOv4-Tiny, which directly provides the centre point,

width and height of the box. Instead, it provides the upper left corner (xmin, ymin) and

lower right corner (xmax, ymax) coordinates of the bounding box in the image.

Figure 6. Bounding boxes drawn using YOLOv4-Tiny.

For ease of system integration, this research uses darknet_ros as the YOLO execution
environment. Three topics will be published in darknet_ros: the number of detected
objects found_object, the bounding box matrix bounding_boxes and the image with the
bounding boxes drawn detection image; only the first two are actually used in this research.
The bounding box matrix contains the data of multiple bounding boxes. YOLO may
simultaneously detect one or more targets and integrate the data of multiple bounding
boxes into the topic to enable other systems to obtain the prediction data easily. The data
structure is shown in Figure 7. Data provided by bounding box is different from the original
bounding box drawn by YOLOv4-Tiny, which directly provides the centre point, width and
height of the box. Instead, it provides the upper left corner (xmin, ymin) and lower right
corner (xmax, ymax) coordinates of the bounding box in the image.

Processes 2022, 10, x FOR PEER REVIEW 9 of 19

Figure 7. Data structure for bounding boxes and bounding box.

3.3. Detecting Distance of Obstacles Ahead

A drawback of using 3D LiDAR to detect an object’s distance is that a single object

may correspond to multiple points. The distance of each point may be different owing to

changes in the object’s surface profile or environmental interference. To find the corre-

sponding points of the object, this research uses the bounding box information obtained

in the previous section as the basis. Points within the bounding box are selected as the

corresponding points of the object, and the distance of the object can be determined by

checking these points.

(1) Minimum point in box: We check for all points within the bounding box and find

the one with the minimum value as the distance, as shown in Equation (13),

� = ���
�����

(���
) (13)

where � is the distance to the object, �� is the matrix of all points within the bounding

box, � indicates the index of a point and � is the total number of points within the bound-

ing box.

In an obstacle anti-collision system, if the point with the minimum value in the

bounding box is used as the object distance, the surface protrusion of the obstacle need

not be considered because the possible first impact point (the closest point) of the obstacle

is detected. However, this method is also more susceptible to environmental interference.

YOLOv4-Tiny can detect objects as normal even when the background or the object is

slightly obscured. However, these slight environmental interferences could result in

LiDAR detecting an incorrect point within the bounding box. This means that the detected

point is not the actual distance to the object. The area more susceptible to interference is

the periphery of the bounding box. To solve this problem, this research uses the centre

point and boundaries of the bounding box as the basis and shrinks the detection range of

the bounding box towards the centre. This greatly reduces the background and peripheral

interference and minimises the effects of distortion, thus yielding more accurate distances.

(2) Medium point in box: Environmental interferences can usually be solved by shrink-

ing the detection range of the bounding box, but interferences in the centre of the box

remain unsolved. Another problem is that smaller objects and objects further away may

be undetectable once the detection range shrinks. This research uses a second method,

sorting all points within the bounding box and choosing the medium point as the object

distance. We use the bubble sort algorithm, as shown in Equation (14),

��
� = ����(��) (14)

where �� is the matrix of all points within the bounding box, ����() is the ascending

bubble sort algorithm that sorts values from small to big and ��
� is the ordered matrix

after sorting. The medium point is chosen using Equation (15),

� = �

��
�

� � �
�

, �� � �� ��� ������.

1

2
���

� �
�

+ ��
�

� � �
�

� , �� � �� ���� ������.
 (15)

Figure 7. Data structure for bounding boxes and bounding box.

Processes 2022, 10, 1876 9 of 19

3.3. Detecting Distance of Obstacles Ahead

A drawback of using 3D LiDAR to detect an object’s distance is that a single object
may correspond to multiple points. The distance of each point may be different owing
to changes in the object’s surface profile or environmental interference. To find the corre-
sponding points of the object, this research uses the bounding box information obtained
in the previous section as the basis. Points within the bounding box are selected as the
corresponding points of the object, and the distance of the object can be determined by
checking these points.

(1) Minimum point in box: We check for all points within the bounding box and find the
one with the minimum value as the distance, as shown in Equation (13),

D = min
0≤i≤n

(PDi) (13)

where D is the distance to the object, PD is the matrix of all points within the bounding box,
i indicates the index of a point and n is the total number of points within the bounding box.

In an obstacle anti-collision system, if the point with the minimum value in the
bounding box is used as the object distance, the surface protrusion of the obstacle need not
be considered because the possible first impact point (the closest point) of the obstacle is
detected. However, this method is also more susceptible to environmental interference.
YOLOv4-Tiny can detect objects as normal even when the background or the object is
slightly obscured. However, these slight environmental interferences could result in LiDAR
detecting an incorrect point within the bounding box. This means that the detected point
is not the actual distance to the object. The area more susceptible to interference is the
periphery of the bounding box. To solve this problem, this research uses the centre point
and boundaries of the bounding box as the basis and shrinks the detection range of the
bounding box towards the centre. This greatly reduces the background and peripheral
interference and minimises the effects of distortion, thus yielding more accurate distances.

(2) Medium point in box: Environmental interferences can usually be solved by shrinking
the detection range of the bounding box, but interferences in the centre of the box remain
unsolved. Another problem is that smaller objects and objects further away may be
undetectable once the detection range shrinks. This research uses a second method, sorting
all points within the bounding box and choosing the medium point as the object distance.
We use the bubble sort algorithm, as shown in Equation (14),

P′D = sort(PD) (14)

where PD is the matrix of all points within the bounding box, sort() is the ascending bubble
sort algorithm that sorts values from small to big and P′D is the ordered matrix after sorting.
The medium point is chosen using Equation (15),

D =

{
P′D n+1

2
, i f n is odd number.

1
2

(
P′D n

2
+ P′D n+1

2

)
, i f n is even number.

(15)

where D is the distance to the object and n is the total number of points within the bounding
box.

The advantage of using the medium point within the bounding box lies is that it
is unaffected by environmental interference and is able to find the real distance of most
objects. However, this distance might not be the shortest distance to the object. Table 1
shows the differences between using the minimum point and medium point, each with its
own advantages and best use-cases.

Processes 2022, 10, 1876 10 of 19

Table 1. Using the minimum point and the medium points within the bounding box: a comparison.

Minimum Point in Box Medium Point in Box

Computation Complexity Low High
Acquires the minimum distance? Yes Possibly

Solves Environmental Interferences? Slightly Yes

Best Use-cases Anti-collision systems Finding an object’s
real distance

4. Results
4.1. Steps and Goals of the Experiment

In this research, we use the Velodyne VLP-16 and the Logitech HD Webcam C525 as
sensors and the NVIDIA Jetson AGX Xavier as the edge computing platform. First, we find
the rigid body transformation between the two sensors through 3D–3D point matching.
Then, we project the 3D point cloud image onto the 2D image and write the programme
with the ROS Package to achieve real-time processing. We also tested the hardware resource
occupancy in each power mode when the completed system is executed on Jetson AGX.
Finally, we performed a dynamic test on the actual road. Figure 8 shows the steps of the
experiment conducted in this research and the goal of each step.

Processes 2022, 10, x FOR PEER REVIEW 10 of 19

where � is the distance to the object and � is the total number of points within the

bounding box.

The advantage of using the medium point within the bounding box lies is that it is

unaffected by environmental interference and is able to find the real distance of most ob-

jects. However, this distance might not be the shortest distance to the object. Table 1 shows

the differences between using the minimum point and medium point, each with its own

advantages and best use-cases.

Table 1. Using the minimum point and the medium points within the bounding box: a comparison.

 Minimum Point in Box Medium Point in Box

Computation Complexity Low High

Acquires the minimum dis-

tance?
Yes Possibly

Solves Environmental Inter-

ferences?
Slightly Yes

Best Use-cases Anti-collision systems Finding an object’s real distance

4. Results

4.1. Steps and Goals of the Experiment

In this research, we use the Velodyne VLP-16 and the Logitech HD Webcam C525 as

sensors and the NVIDIA Jetson AGX Xavier as the edge computing platform. First, we

find the rigid body transformation between the two sensors through 3D–3D point match-

ing. Then, we project the 3D point cloud image onto the 2D image and write the pro-

gramme with the ROS Package to achieve real-time processing. We also tested the hard-

ware resource occupancy in each power mode when the completed system is executed on

Jetson AGX. Finally, we performed a dynamic test on the actual road. Figure 8 shows the

steps of the experiment conducted in this research and the goal of each step.

Figure 8. Steps and goals of the experiment.

Figure 8. Steps and goals of the experiment.

4.2. Calibration

In order to achieve the fusion of image and 3D point cloud data, it is necessary to
correct the camera and 3D LiDAR to find out the conversion relationship between the two
data. Before performing the joint calibration of LiDAR and the camera, we obtain the inter-
nal parameters and projection matrix of the C525 camera through the Camera_Calibration
toolkit in ROS. Figure 9 shows the internal parameters and projection matrix of the C525.
This maps to Equation (1) camera internal matrix and camera external matrix in preparation
for joint correction.

Processes 2022, 10, 1876 11 of 19

Processes 2022, 10, x FOR PEER REVIEW 11 of 19

4.2. Calibration

In order to achieve the fusion of image and 3D point cloud data, it is necessary to

correct the camera and 3D LiDAR to find out the conversion relationship between the two

data. Before performing the joint calibration of LiDAR and the camera, we obtain the in-

ternal parameters and projection matrix of the C525 camera through the Camera_Calibra-

tion toolkit in ROS. Figure 9 shows the internal parameters and projection matrix of the

C525. This maps to equation (1) camera internal matrix and camera external matrix in

preparation for joint correction.

Figure 9. C525 Internal parameters and projection matrix.

Next, we prepare the calibration board with the ArUco Markers and suspend it. Fig-

ure 10 shows the suspension of the calibration board and size markings. In the figure, L

and W represent the length and width of the calibration board, respectively, and BL and

BW represent the distance between the ArUco Markers and the edge of the calibration

board, respectively. Finally, M represents the side length of the ArUco Markers. Table 2

shows the detailed specifications of the three calibration plates used in this research.

Figure 10. Suspension of the calibration boards and size markings.

Table 2. Specifications of the three calibration boards.

 ArUco Markers
ID 51, ID 461, ID 718

Board Size

L 30

W 30

BL 2.3

BW 2.3

M 13.5

Unit: cm.

We start the joint calibration after obtaining the camera internal parameters and pro-

jection matrix and preparing the calibration plate. This research focuses on using two and

three calibration plates to calibrate and compare the results. Figure 11 shows the four win-

dows during joint calibration: (a) shows the raw image of the camera; (b) is the ArUco

Markers detection window; (c) is the point cloud image filtered by reflection intensity and

initially aligned with the camera coordinate system; and (d) is the point cloud image

Figure 9. C525 Internal parameters and projection matrix.

Next, we prepare the calibration board with the ArUco Markers and suspend it.
Figure 10 shows the suspension of the calibration board and size markings. In the figure, L
and W represent the length and width of the calibration board, respectively, and BL and
BW represent the distance between the ArUco Markers and the edge of the calibration
board, respectively. Finally, M represents the side length of the ArUco Markers. Table 2
shows the detailed specifications of the three calibration plates used in this research.

Processes 2022, 10, x FOR PEER REVIEW 11 of 19

4.2. Calibration

In order to achieve the fusion of image and 3D point cloud data, it is necessary to

correct the camera and 3D LiDAR to find out the conversion relationship between the two

data. Before performing the joint calibration of LiDAR and the camera, we obtain the in-

ternal parameters and projection matrix of the C525 camera through the Camera_Calibra-

tion toolkit in ROS. Figure 9 shows the internal parameters and projection matrix of the

C525. This maps to equation (1) camera internal matrix and camera external matrix in

preparation for joint correction.

Figure 9. C525 Internal parameters and projection matrix.

Next, we prepare the calibration board with the ArUco Markers and suspend it. Fig-

ure 10 shows the suspension of the calibration board and size markings. In the figure, L

and W represent the length and width of the calibration board, respectively, and BL and

BW represent the distance between the ArUco Markers and the edge of the calibration

board, respectively. Finally, M represents the side length of the ArUco Markers. Table 2

shows the detailed specifications of the three calibration plates used in this research.

Figure 10. Suspension of the calibration boards and size markings.

Table 2. Specifications of the three calibration boards.

 ArUco Markers
ID 51, ID 461, ID 718

Board Size

L 30

W 30

BL 2.3

BW 2.3

M 13.5

Unit: cm.

We start the joint calibration after obtaining the camera internal parameters and pro-

jection matrix and preparing the calibration plate. This research focuses on using two and

three calibration plates to calibrate and compare the results. Figure 11 shows the four win-

dows during joint calibration: (a) shows the raw image of the camera; (b) is the ArUco

Markers detection window; (c) is the point cloud image filtered by reflection intensity and

initially aligned with the camera coordinate system; and (d) is the point cloud image

Figure 10. Suspension of the calibration boards and size markings.

Table 2. Specifications of the three calibration boards.

Board Size
ArUco Markers ID 51, ID 461, ID 718

L 30
W 30
BL 2.3
BW 2.3
M 13.5

Unit: cm.

We start the joint calibration after obtaining the camera internal parameters and
projection matrix and preparing the calibration plate. This research focuses on using two
and three calibration plates to calibrate and compare the results. Figure 11 shows the four
windows during joint calibration: (a) shows the raw image of the camera; (b) is the ArUco
Markers detection window; (c) is the point cloud image filtered by reflection intensity and
initially aligned with the camera coordinate system; and (d) is the point cloud image where
the edge is manually selected. The green frame is the manual boundary, and points within
the selected boundary will turn red while the rest will remain blue. When calibrating, we
start from the calibration board on the left, starting from the upper left edge and finishing
selecting the four edges in clockwise order. Then, we select the next calibration board.

Processes 2022, 10, 1876 12 of 19

Processes 2022, 10, x FOR PEER REVIEW 12 of 19

by reflection intensity and initially aligned with the camera coordinate system; and (d) is

the point cloud image where the edge is manually selected. The green frame is the manual

boundary, and points within the selected boundary will turn red while the rest will remain

blue. When calibrating, we start from the calibration board on the left, starting from the

upper left edge and finishing selecting the four edges in clockwise order. Then, we select

the next calibration board.

(a) Raw image of the camera (b) ArUco Markers detection window

(c) The point cloud image initially aligned with

the camera coordinate system

(d) Point cloud image (the edge is

manually selected)

Figure 11. Four windows during joint calibration.

Using the LiDAR-Camera Calibration method proposed in A. Dhall etc. [13], a cali-

bration plate with Augmented Reality (AR) graphics is used to make the 2D image also

provide 3D information and mark the four edges of the plate on the 3D point cloud map

through the manual box selection method. The iterative closest point is used to find the

correspondence between the two point clouds. The transformation matrix will align the

two point clouds by minimizing the Euclidean distance between the corresponding

points. After the conversion relationship is obtained, in order to project the 3D point cloud

onto the image, in addition to the relationship between the two, the internal parameters

of the camera and its projection matrix are required.

Error! Reference source not found. is the result of using two calibration plates. Av-

erage transformation is the transformation matrix that converts LiDAR coordinates to

camera coordinates. During calibration, the distance between the sensor and the calibra-

tion plate is approximately 110 cm, and the calibration plate should occupy as much space

as possible in the camera’s field of view.

Figure 11. Four windows during joint calibration.

Using the LiDAR-Camera Calibration method proposed in A. Dhall etc. [13], a cali-
bration plate with Augmented Reality (AR) graphics is used to make the 2D image also
provide 3D information and mark the four edges of the plate on the 3D point cloud map
through the manual box selection method. The iterative closest point is used to find the
correspondence between the two point clouds. The transformation matrix will align the
two point clouds by minimizing the Euclidean distance between the corresponding points.
After the conversion relationship is obtained, in order to project the 3D point cloud onto
the image, in addition to the relationship between the two, the internal parameters of the
camera and its projection matrix are required.

Figure 12 is the result of using two calibration plates. Average transformation is the
transformation matrix that converts LiDAR coordinates to camera coordinates. During
calibration, the distance between the sensor and the calibration plate is approximately
110 cm, and the calibration plate should occupy as much space as possible in the camera’s
field of view.

Processes 2022, 10, x FOR PEER REVIEW 13 of 19

Figure 12. Results of using two calibration plates.

When using three calibration plates, for the camera’s and LiDAR’s fields of view to

accommodate three calibration plates simultaneously, the distance between the sensor

and calibration plate must be increased to 134 cm, and fewer VLP-16 laser rays scan each

calibration plate. This reduces the number of point clouds on the edges. Figure 13 shows

the calibration results of using three calibration plates. The Root Mean Square Error

(RMSE) of the final conversion is approximately thrice than that when using two calibra-

tion plates, and the deviation in the actual final projection is also more obvious.

Figure 13. Results of using three calibration plates.

4.3. Combining the Instant Point Cloud and Image

After the LiDAR and the camera are jointly calibrated, the transformation matrix be-

tween the two can be obtained. The 3D point cloud of the LiDAR can be instantly projected

onto the 2D image of the camera using the ROS Package designed in our research. Figures

14 and 15 show the projection results using the transformation matrix obtained via the

joint calibration. The color of the points in the figures represents the distances. The nearer

a point, the redder it becomes, and the further away, the greener it becomes. In Figure 15,

three calibration plates are used to obtain the transformation matrix. Compared with Fig-

ure 14, the deviation of the projection of Figure 15 is more obvious. Therefore, points can-

not be accurately projected onto the correct position.

Figure 14. Projection result of using two calibration boards.

Figure 12. Results of using two calibration plates.

When using three calibration plates, for the camera’s and LiDAR’s fields of view to
accommodate three calibration plates simultaneously, the distance between the sensor
and calibration plate must be increased to 134 cm, and fewer VLP-16 laser rays scan each

Processes 2022, 10, 1876 13 of 19

calibration plate. This reduces the number of point clouds on the edges. Figure 13 shows
the calibration results of using three calibration plates. The Root Mean Square Error (RMSE)
of the final conversion is approximately thrice than that when using two calibration plates,
and the deviation in the actual final projection is also more obvious.

Processes 2022, 10, x FOR PEER REVIEW 13 of 19

Figure 12. Results of using two calibration plates.

When using three calibration plates, for the camera’s and LiDAR’s fields of view to

accommodate three calibration plates simultaneously, the distance between the sensor

and calibration plate must be increased to 134 cm, and fewer VLP-16 laser rays scan each

calibration plate. This reduces the number of point clouds on the edges. Figure 13 shows

the calibration results of using three calibration plates. The Root Mean Square Error

(RMSE) of the final conversion is approximately thrice than that when using two calibra-

tion plates, and the deviation in the actual final projection is also more obvious.

Figure 13. Results of using three calibration plates.

4.3. Combining the Instant Point Cloud and Image

After the LiDAR and the camera are jointly calibrated, the transformation matrix be-

tween the two can be obtained. The 3D point cloud of the LiDAR can be instantly projected

onto the 2D image of the camera using the ROS Package designed in our research. Figures

14 and 15 show the projection results using the transformation matrix obtained via the

joint calibration. The color of the points in the figures represents the distances. The nearer

a point, the redder it becomes, and the further away, the greener it becomes. In Figure 15,

three calibration plates are used to obtain the transformation matrix. Compared with Fig-

ure 14, the deviation of the projection of Figure 15 is more obvious. Therefore, points can-

not be accurately projected onto the correct position.

Figure 14. Projection result of using two calibration boards.

Figure 13. Results of using three calibration plates.

4.3. Combining the Instant Point Cloud and Image

After the LiDAR and the camera are jointly calibrated, the transformation matrix
between the two can be obtained. The 3D point cloud of the LiDAR can be instantly
projected onto the 2D image of the camera using the ROS Package designed in our research.
Figures 14 and 15 show the projection results using the transformation matrix obtained via
the joint calibration. The color of the points in the figures represents the distances. The
nearer a point, the redder it becomes, and the further away, the greener it becomes. In
Figure 15, three calibration plates are used to obtain the transformation matrix. Compared
with Figure 14, the deviation of the projection of Figure 15 is more obvious. Therefore,
points cannot be accurately projected onto the correct position.

Processes 2022, 10, x FOR PEER REVIEW 13 of 19

Figure 12. Results of using two calibration plates.

When using three calibration plates, for the camera’s and LiDAR’s fields of view to

accommodate three calibration plates simultaneously, the distance between the sensor

and calibration plate must be increased to 134 cm, and fewer VLP-16 laser rays scan each

calibration plate. This reduces the number of point clouds on the edges. Figure 13 shows

the calibration results of using three calibration plates. The Root Mean Square Error

(RMSE) of the final conversion is approximately thrice than that when using two calibra-

tion plates, and the deviation in the actual final projection is also more obvious.

Figure 13. Results of using three calibration plates.

4.3. Combining the Instant Point Cloud and Image

After the LiDAR and the camera are jointly calibrated, the transformation matrix be-

tween the two can be obtained. The 3D point cloud of the LiDAR can be instantly projected

onto the 2D image of the camera using the ROS Package designed in our research. Figures

14 and 15 show the projection results using the transformation matrix obtained via the

joint calibration. The color of the points in the figures represents the distances. The nearer

a point, the redder it becomes, and the further away, the greener it becomes. In Figure 15,

three calibration plates are used to obtain the transformation matrix. Compared with Fig-

ure 14, the deviation of the projection of Figure 15 is more obvious. Therefore, points can-

not be accurately projected onto the correct position.

Figure 14. Projection result of using two calibration boards. Figure 14. Projection result of using two calibration boards.

Processes 2022, 10, x FOR PEER REVIEW 14 of 19

Figure 15. Projection result of using three calibration boards.

4.4. Recognition and Measuring the Distance of Obstacles Present Ahead

For recognising obstacles present ahead, the image input size is 640 × 480 pixels and

the total number of YOLOv4-Tiny categories is 80. In our experiment, we use the weights

provided by the official weight file. Then, we find the distance to the object using the in-

formation given by the bounding box. Figure 15 uses the minimum point in 100% of the

bounding box. This method ensures that we find the shortest distance between the sensor

and the object but is more susceptible to environmental interferences. In the obstacle anti-

collision system, the point with the smallest distance within the bounding box is used as

the target distance. This system avoids bulges and the unevenness of the obstacle to detect

the first point of collision of the obstacle, and it has the most straightforward and fastest

computations. However, this method affects distance detection when two objects overlap.

For example, in Figure 16, the chair interfered with the human body, resulting in an inac-

curate distance.

Figure 16. Measuring distance using the minimum point within the bounding box.

Figure 17 uses the medium point within the bounding box to measure distance. Com-

pared with using the minimum point within the bounding box, which is easily affected

by overlapping objects, the size of the bounding box can be ignored when using the me-

dian points within the bounding box to ensure that the measured distance is focused on

the correct object. In other words, interferences within the bounding box can be avoided,

but the result could be wrong if the object is smaller or further away or too few points are

present within the bounding box.

Figure 17. Measuring distance using the medium point within the bounding box.

Figure 15. Projection result of using three calibration boards.

4.4. Recognition and Measuring the Distance of Obstacles Present Ahead

For recognising obstacles present ahead, the image input size is 640 × 480 pixels and
the total number of YOLOv4-Tiny categories is 80. In our experiment, we use the weights
provided by the official weight file. Then, we find the distance to the object using the
information given by the bounding box. Figure 15 uses the minimum point in 100% of
the bounding box. This method ensures that we find the shortest distance between the
sensor and the object but is more susceptible to environmental interferences. In the obstacle

Processes 2022, 10, 1876 14 of 19

anti-collision system, the point with the smallest distance within the bounding box is used
as the target distance. This system avoids bulges and the unevenness of the obstacle to
detect the first point of collision of the obstacle, and it has the most straightforward and
fastest computations. However, this method affects distance detection when two objects
overlap. For example, in Figure 16, the chair interfered with the human body, resulting in
an inaccurate distance.

Processes 2022, 10, x FOR PEER REVIEW 14 of 19

Figure 15. Projection result of using three calibration boards.

4.4. Recognition and Measuring the Distance of Obstacles Present Ahead

For recognising obstacles present ahead, the image input size is 640 × 480 pixels and

the total number of YOLOv4-Tiny categories is 80. In our experiment, we use the weights

provided by the official weight file. Then, we find the distance to the object using the in-

formation given by the bounding box. Figure 15 uses the minimum point in 100% of the

bounding box. This method ensures that we find the shortest distance between the sensor

and the object but is more susceptible to environmental interferences. In the obstacle anti-

collision system, the point with the smallest distance within the bounding box is used as

the target distance. This system avoids bulges and the unevenness of the obstacle to detect

the first point of collision of the obstacle, and it has the most straightforward and fastest

computations. However, this method affects distance detection when two objects overlap.

For example, in Figure 16, the chair interfered with the human body, resulting in an inac-

curate distance.

Figure 16. Measuring distance using the minimum point within the bounding box.

Figure 17 uses the medium point within the bounding box to measure distance. Com-

pared with using the minimum point within the bounding box, which is easily affected

by overlapping objects, the size of the bounding box can be ignored when using the me-

dian points within the bounding box to ensure that the measured distance is focused on

the correct object. In other words, interferences within the bounding box can be avoided,

but the result could be wrong if the object is smaller or further away or too few points are

present within the bounding box.

Figure 17. Measuring distance using the medium point within the bounding box.

Figure 16. Measuring distance using the minimum point within the bounding box.

Figure 17 uses the medium point within the bounding box to measure distance.
Compared with using the minimum point within the bounding box, which is easily affected
by overlapping objects, the size of the bounding box can be ignored when using the median
points within the bounding box to ensure that the measured distance is focused on the
correct object. In other words, interferences within the bounding box can be avoided, but
the result could be wrong if the object is smaller or further away or too few points are
present within the bounding box.

Processes 2022, 10, x FOR PEER REVIEW 14 of 19

Figure 15. Projection result of using three calibration boards.

4.4. Recognition and Measuring the Distance of Obstacles Present Ahead

For recognising obstacles present ahead, the image input size is 640 × 480 pixels and

the total number of YOLOv4-Tiny categories is 80. In our experiment, we use the weights

provided by the official weight file. Then, we find the distance to the object using the in-

formation given by the bounding box. Figure 15 uses the minimum point in 100% of the

bounding box. This method ensures that we find the shortest distance between the sensor

and the object but is more susceptible to environmental interferences. In the obstacle anti-

collision system, the point with the smallest distance within the bounding box is used as

the target distance. This system avoids bulges and the unevenness of the obstacle to detect

the first point of collision of the obstacle, and it has the most straightforward and fastest

computations. However, this method affects distance detection when two objects overlap.

For example, in Figure 16, the chair interfered with the human body, resulting in an inac-

curate distance.

Figure 16. Measuring distance using the minimum point within the bounding box.

Figure 17 uses the medium point within the bounding box to measure distance. Com-

pared with using the minimum point within the bounding box, which is easily affected

by overlapping objects, the size of the bounding box can be ignored when using the me-

dian points within the bounding box to ensure that the measured distance is focused on

the correct object. In other words, interferences within the bounding box can be avoided,

but the result could be wrong if the object is smaller or further away or too few points are

present within the bounding box.

Figure 17. Measuring distance using the medium point within the bounding box. Figure 17. Measuring distance using the medium point within the bounding box.

Figure 18 shows the same use of the middle point in the bounding box to measure the
distance in the indoor multi-person environment can also be a good way to find the object
to identify the bounding box and distance.

Processes 2022, 10, x FOR PEER REVIEW 15 of 19

Figure 18 shows the same use of the middle point in the bounding box to measure

the distance in the indoor multi-person environment can also be a good way to find the

object to identify the bounding box and distance.

Figure 18. Distance measurement for multi-person environments.

Figure 19 shows the results of the actual dynamic test on the road. The effective de-

tection distance of LiDAR is 100 m, and the detection error is less than 3 cm. Within 10 m,

the average obstacle detection accuracy of YOLOv4-Tiny dynamic detection can surpass

70%. Through this experiment, it can be concluded that the system proposed in this article

can be applied to the ever-changing environment on the road.

Figure 19. Road test results.

Figure 20 shows the identification of people and vehicles in road tests. Figure 21

shows the real-time recognition effect for dynamic objects and the frame rate is up to 56.3.

Through this experiment, it can be concluded that the system proposed in this article can

be applied to the ever-changing environment on the road.

Figure 20. Road testing of people and vehicles.

Figure 18. Distance measurement for multi-person environments.

Figure 19 shows the results of the actual dynamic test on the road. The effective
detection distance of LiDAR is 100 m, and the detection error is less than 3 cm. Within 10 m,
the average obstacle detection accuracy of YOLOv4-Tiny dynamic detection can surpass

Processes 2022, 10, 1876 15 of 19

70%. Through this experiment, it can be concluded that the system proposed in this article
can be applied to the ever-changing environment on the road.

Processes 2022, 10, x FOR PEER REVIEW 15 of 19

Figure 18 shows the same use of the middle point in the bounding box to measure

the distance in the indoor multi-person environment can also be a good way to find the

object to identify the bounding box and distance.

Figure 18. Distance measurement for multi-person environments.

Figure 19 shows the results of the actual dynamic test on the road. The effective de-

tection distance of LiDAR is 100 m, and the detection error is less than 3 cm. Within 10 m,

the average obstacle detection accuracy of YOLOv4-Tiny dynamic detection can surpass

70%. Through this experiment, it can be concluded that the system proposed in this article

can be applied to the ever-changing environment on the road.

Figure 19. Road test results.

Figure 20 shows the identification of people and vehicles in road tests. Figure 21

shows the real-time recognition effect for dynamic objects and the frame rate is up to 56.3.

Through this experiment, it can be concluded that the system proposed in this article can

be applied to the ever-changing environment on the road.

Figure 20. Road testing of people and vehicles.

Figure 19. Road test results.

Figure 20 shows the identification of people and vehicles in road tests. Figure 21
shows the real-time recognition effect for dynamic objects and the frame rate is up to 56.3.
Through this experiment, it can be concluded that the system proposed in this article can
be applied to the ever-changing environment on the road.

Processes 2022, 10, x FOR PEER REVIEW 15 of 19

Figure 18 shows the same use of the middle point in the bounding box to measure

the distance in the indoor multi-person environment can also be a good way to find the

object to identify the bounding box and distance.

Figure 18. Distance measurement for multi-person environments.

Figure 19 shows the results of the actual dynamic test on the road. The effective de-

tection distance of LiDAR is 100 m, and the detection error is less than 3 cm. Within 10 m,

the average obstacle detection accuracy of YOLOv4-Tiny dynamic detection can surpass

70%. Through this experiment, it can be concluded that the system proposed in this article

can be applied to the ever-changing environment on the road.

Figure 19. Road test results.

Figure 20 shows the identification of people and vehicles in road tests. Figure 21

shows the real-time recognition effect for dynamic objects and the frame rate is up to 56.3.

Through this experiment, it can be concluded that the system proposed in this article can

be applied to the ever-changing environment on the road.

Figure 20. Road testing of people and vehicles. Figure 20. Road testing of people and vehicles.

Processes 2022, 10, x FOR PEER REVIEW 16 of 19

Figure 21. Instant dynamic vehicle environment testing.

4.5. Edge Computing Platform Performance Test

In this paper, in order to simulate the posture state of the vehicle, a remote-controla-

ble mobile vehicle is composed of a European aluminum extrusion type as the skeleton,

and all the sensors, edge computing platforms, displays and power supplies are installed

here, and the parts that cannot be directly installed, this paper uses 3D printing technology

to print suitable fixed parts to complete the assembly, and the assembled mobile vehicle

is shown in Figure 22. Remotely controlled mobile carrier.

Figure 22. Remotely controlled mobile carrier.

NVIDIA Jetson AGX Xavier provides seven power modes. The mode with the best

performance is MAXN. Our research uses GPU computing with YOLOv4-Tiny, and the

rest uses CPU computing with Jetson AGX. We also utilize Jetson stats tools to monitor

the usage of resources. Table 3 shows the CPU and GPU usage status during the execution

of the system and the operating speed of YOLOv4-Tiny in each power mode.

Table 3. Jetson AGX tests for each power mode.

Power Mode
CPU Average

Usage

The Number of

CPU Working

Cores

GPU Aver-

age Usage

YOLOv4-Tiny

FPS

0 (MAXN)
53.3% (2.3

GHz)
8

>77% (1.4

GHz)
60

1 (10 W) × × × ×

2 (15 W) 100% (1.2 GHz) 4
>95% (675

MHz)
22

3 (30 W ALL)
72.5% (1.2

GHz)
8

>80% (905

MHz)
40

Figure 21. Instant dynamic vehicle environment testing.

4.5. Edge Computing Platform Performance Test

In this paper, in order to simulate the posture state of the vehicle, a remote-controlable
mobile vehicle is composed of a European aluminum extrusion type as the skeleton, and
all the sensors, edge computing platforms, displays and power supplies are installed here,
and the parts that cannot be directly installed, this paper uses 3D printing technology to
print suitable fixed parts to complete the assembly, and the assembled mobile vehicle is
shown in Figure 22. Remotely controlled mobile carrier.

NVIDIA Jetson AGX Xavier provides seven power modes. The mode with the best
performance is MAXN. Our research uses GPU computing with YOLOv4-Tiny, and the
rest uses CPU computing with Jetson AGX. We also utilize Jetson stats tools to monitor the
usage of resources. Table 3 shows the CPU and GPU usage status during the execution of
the system and the operating speed of YOLOv4-Tiny in each power mode.

Processes 2022, 10, 1876 16 of 19

Processes 2022, 10, x FOR PEER REVIEW 16 of 19

Figure 21. Instant dynamic vehicle environment testing.

4.5. Edge Computing Platform Performance Test

In this paper, in order to simulate the posture state of the vehicle, a remote-controla-

ble mobile vehicle is composed of a European aluminum extrusion type as the skeleton,

and all the sensors, edge computing platforms, displays and power supplies are installed

here, and the parts that cannot be directly installed, this paper uses 3D printing technology

to print suitable fixed parts to complete the assembly, and the assembled mobile vehicle

is shown in Figure 22. Remotely controlled mobile carrier.

Figure 22. Remotely controlled mobile carrier.

NVIDIA Jetson AGX Xavier provides seven power modes. The mode with the best

performance is MAXN. Our research uses GPU computing with YOLOv4-Tiny, and the

rest uses CPU computing with Jetson AGX. We also utilize Jetson stats tools to monitor

the usage of resources. Table 3 shows the CPU and GPU usage status during the execution

of the system and the operating speed of YOLOv4-Tiny in each power mode.

Table 3. Jetson AGX tests for each power mode.

Power Mode
CPU Average

Usage

The Number of

CPU Working

Cores

GPU Aver-

age Usage

YOLOv4-Tiny

FPS

0 (MAXN)
53.3% (2.3

GHz)
8

>77% (1.4

GHz)
60

1 (10 W) × × × ×

2 (15 W) 100% (1.2 GHz) 4
>95% (675

MHz)
22

3 (30 W ALL)
72.5% (1.2

GHz)
8

>80% (905

MHz)
40

Figure 22. Remotely controlled mobile carrier.

Table 3. Jetson AGX tests for each power mode.

Power Mode CPU Average
Usage

The Number of
CPU Working

Cores

GPU Average
Usage

YOLOv4-Tiny
FPS

0 (MAXN) 53.3% (2.3 GHz) 8 >77% (1.4 GHz) 60
1 (10 W) × × × ×
2 (15 W) 100% (1.2 GHz) 4 >95% (675 MHz) 22

3 (30 W ALL) 72.5% (1.2 GHz) 8 >80% (905 MHz) 40
4 (30 W 6core) 82% (1.4 GHz) 6 >80% (905 MHz) 35
5 (30 W 4core) 95.8% (1.8 GHz) 4 >88% (905 MHz) 32
6 (30 W 2core) 100% (2.1 GHz) 2 >50% (905 MHz) 20

7 (15 W
DESKTOP) 98% (2.2 GHz) 4 >95% (675 MHz) 24

In modes 0, 3 and 4, the system is in a relatively stable state. In other modes, the
resource occupancy fluctuates between close to full load and close to idle. During this
fluctuation, the system is slower and lags. Taking mode 6 as an example: the GPU usage
is much lower than that of other modes, but other systems are on the edge of collapsing
and cannot perform the tasks they are supposed perform. Mode 1 is completely unable to
run the system. Only mode 0 (MAXN), mode 3 (30 W ALL) and mode 4 (30 W 6core) can
efficiently run the system. Mode 0 and mode 3 use all eight cores for computation, and the
main difference lies in the difference in computing performance caused by different core
clocks. Mode 4 uses six cores and is slightly inferior to the first two in terms of smoothness.
With respect to the speed to YOLOv4-Tiny, mode 0 (MAXN) performs the best, with an
average of 60 fps and a maximum of approximately 80 fps.

5. Discussion and Perspective

This research aims to use heterogeneous sensor fusion using 3D Light Detection and
Ranging (LiDAR) and cameras, combined with an object recognition system and a ranging
system. However, many different sensors need to be used in autonomous vehicles. It is
expected that more sensors of different properties can be added in the future, so as to
realize a more perfect self-driving sensing system.

This paper only identifies the obstacles in front of the vehicle, but the self-driving
vehicle needs to grasp the surrounding environmental conditions at the same time, and
the VLP-16 used in this system has a 360◦ field of view. Therefore, in the future, we can
use a large field of view of the ring lens, or use the image stitching technology to integrate
the field of view of multiple cameras, so that the sensing range of the system is no longer
confined to the front of the vehicle, but can grasp the environmental information 360◦ in all

Processes 2022, 10, 1876 17 of 19

directions. In addition to expanding the original field of view, sensors of other properties
can also be added, such as infrared, ultrasonic and millimeter wave radar, so that the
system can be more adapted to different environments.

6. Conclusions

Our research uses edge computing as a basis to design an obstacle recognition system
that can also measure the distance between the sensor and the obstacle. Our research
has two main parts: heterogeneous sensor fusion and obstacle recognition and ranging.
We use 3D–3D point matching for heterogeneous sensor fusion to find the rigid body
transformation between the 3D LiDAR and the camera. First, we use the camera to detect
the calibration plate attached with ArUco Markers to obtain the 3D points in the camera
coordinates. Then, we compare those points with the point cloud in the LiDAR coordinates
and select the four edges of the calibration plate. The, we iteratively use the closest point to
find the transformation matrix between the two sensors. Finally, we use the transformation
matrix, camera internal parameters and projection matrix to project the point cloud onto
the 2D image. YOLOv4-Tiny is used as the obstacle recognition network. Its lightweight
architecture and high computing speed are suitable for hardware with limited performance
such as edge computing platforms. For measuring distances, once the object is detected
and a boundary box is drawn, we use the ‘minimum point within the bounding box’ and
the ‘median point within the bounding box’ to determine the distance of the object.

Our research constructed this system on an edge computing platform, making it an
offline, independent and instant computing system. We put this system on a moving
vehicle and conducted a final test on the road. Experiment results show that even with an
edge computing platform with limited computational capacity, the system reaches 60 fps,
above 70% accuracy and a margin of error less than 3 cm using the YOLOv4-Tiny network.
This proves that the system proposed in this study can be applied to the ever-changing
environment on the road. However, this system is currently imperfect; more sensors of
different properties can be added in future work to increase the sensing field of view and
the robustness of the overall system.

Author Contributions: Conceptualization, P.-Y.C. and H.-Y.L.; methodology, N.-S.P.; software, J.-B.H.;
validation, P.-Y.C., H.-Y.L., N.-S.P. and J.-B.H.; formal analysis, J.-B.H.; resources, N.-S.P.; data cu-
ration, H.-Y.L.; writing—original draft preparation, P.-Y.C.; writing—review and editing, H.-Y.L.;
visualization, N.-S.P.; supervision, J.-B.H.; All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology, Taiwan, under
contract number MOST 110-2221-E-167- 034-, from 1 August 2021–31 July 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ADAS Advanced Driver Assistance Systems
AEB Autonomous Emergency Braking
AI Artificial Intelligence
CNN Convolutional Neural Networks
FCW Forward Collision Warning
FIR Far Infrared
HPC High-Performance Computing
IoT Internet of Things
LiDAR Light Detection and Ranging

Processes 2022, 10, 1876 18 of 19

RANSAC Random Sample Consensus
RMSE Root Mean Square Error
ROS Robot Operating System
SAE Society of Automotive Engineers
SLAM Simultaneous Localization And Mapping
SSD Single Shot MultiBox Detector
YOLO You Only Look Once

References
1. How Self-Driving Cars Work: Sensor Systems. UDACITY. 2021. Available online: https://www.udacity.com/blog/2021/03/

how-self-driving-cars-work-sensor-systems.html (accessed on 2 January 2022).
2. Safety-Relevant Guidance for On-Road Testing of SAE Level 3, 4, and 5 Prototype Automated Driving System (ADS)-Operated

Vehicles. SAE International. 2019. Available online: https://www.sae.org/standards/content/j3018_201909/ (accessed on
5 January 2022).

3. Fildes, B.; Keall, M.; Bos, N.; Lie, A.; Page, Y.; Pastor, C.; Pennisi, L.; Rizzi, M.; Thomas, P.; Tingvall, C. Effectiveness of Low Speed
Automous Emergency Braking Realworld Rear-end Crashes. Accid. Anal. Prev. 2015, 81, 24–29. [CrossRef] [PubMed]

4. Artificial Intelligence: A killer App for Edge Computing. STL Partners. 2019. Available online: https://stlpartners.com/edge_
computing/artificial-intelligence-a-killer-app-for-edge-computing/ (accessed on 1 October 2021).

5. ROS-Robot Operating System. ROS. 2013. Available online: https://www.ros.org (accessed on 15 April 2020).
6. What Is Simultaneous Localization and Mapping. Nvidia. 2019. Available online: https://blogs.nvidia.com/blog/2019/07/25

/what-is-simultaneous-localization-and-mapping-nvidia-jetson-isaac-sdk/ (accessed on 23 May 2021).
7. YOLO ROS: Real-Time Object Detection for ROS. Github. 2018. Available online: https://github.com/leggedrobotics/darknet_ros

(accessed on 14 August 2022).
8. Kallhammer, J.-E.; Eniksson, D.; Granlund, G.; Felsberg, M.; Moe, A.; Johansson, B.; Wiklund, J.; Forssen, P.-E. Near Zone

Pedestrian Detection using a Low-Resolution FIR Sensor. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium,
Istanbul, Turkey, 13–15 June 2007; pp. 339–345.

9. Yi, D.; Joo, J.; Piao, Z.; Jin, H.; Kim, S.C. Ultrasound-based Obstacle Detection System for Vehicles under Interference Environment.
In Proceedings of the IEEE 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8
November 2019; pp. 95–98.

10. Autopilot. Tesla. 2016. Available online: https://www.tesla.com/autopilot (accessed on 16 August 2021).
11. Google’s Autonomous Car Takes To The Streets. IEEE SPECTRUM. 2010. Available online: https://spectrum.ieee.org/automaton/

robotics/artificial-intelligence/googles-autonomous-car-takes-to-the-streets (accessed on 9 July 2020).
12. The Different Types of Sensor Fusion: Complementary, Competitive, and Cooperative. Networking Embedded Systems.

2011. Available online: https://netwerkt.wordpress.com/2011/03/30/the-different-types-of-sensor-fusion-complementary-
competitive-and-cooperative/ (accessed on 7 January 2022).

13. Dhall, A.; Chelani, K.; Radhakrishnan, V.; Krishna, K.M. LiDAR-Camera Calibration using 3D-3D Point correspondences. arXiv
2017, arXiv:1705.09785.

14. Nowicki, M.R. Spatiotemporal Calibration of Camera and 3D Laser Scanner. IEEE Robot. Autom. Lett. 2020, 5, 6451–6458. [CrossRef]
15. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

16. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

18. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

19. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision
and Pattern Recognition; Springer: Berlin, Germany, 2016.

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

21. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

22. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
23. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
24. Camera Resectioning. Wikipedia. 2020. Available online: https://en.wikipedia.org/wiki/Camera_resectioning. (accessed on

3 January 2022).

https://www.udacity.com/blog/2021/03/how-self-driving-cars-work-sensor-systems.html
https://www.udacity.com/blog/2021/03/how-self-driving-cars-work-sensor-systems.html
https://www.sae.org/standards/content/j3018_201909/
http://doi.org/10.1016/j.aap.2015.03.029
http://www.ncbi.nlm.nih.gov/pubmed/25935427
https://stlpartners.com/edge_computing/artificial-intelligence-a-killer-app-for-edge-computing/
https://stlpartners.com/edge_computing/artificial-intelligence-a-killer-app-for-edge-computing/
https://www.ros.org
https://blogs.nvidia.com/blog/2019/07/25/what-is-simultaneous-localization-and-mapping-nvidia-jetson-isaac-sdk/
https://blogs.nvidia.com/blog/2019/07/25/what-is-simultaneous-localization-and-mapping-nvidia-jetson-isaac-sdk/
https://github.com/leggedrobotics/darknet_ros
https://www.tesla.com/autopilot
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/googles-autonomous-car-takes-to-the-streets
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/googles-autonomous-car-takes-to-the-streets
https://netwerkt.wordpress.com/2011/03/30/the-different-types-of-sensor-fusion-complementary-competitive-and-cooperative/
https://netwerkt.wordpress.com/2011/03/30/the-different-types-of-sensor-fusion-complementary-competitive-and-cooperative/
http://doi.org/10.1109/LRA.2020.3014639
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://en.wikipedia.org/wiki/Camera_resectioning.

Processes 2022, 10, 1876 19 of 19

25. Camera Calibration and 3D Reconstruction. OpenCV. 2020. Available online: https://docs.opencv.org/2.4/modules/calib3d/
doc/camera_calibration_and_3d_reconstruction.html. (accessed on 1 February 2022).

26. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis.
Comput. 2018, 76, 38–47. [CrossRef]

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.
http://doi.org/10.1016/j.imavis.2018.05.004

	Introduction
	Literature Review
	Robot Operating Systems
	Sensors
	Heterogeneous Sensor Fusion
	Object Detection

	Materials and Methods
	Heterogeneous Sensor Fusion
	YOLOv4-Tiny Network
	Detecting Distance of Obstacles Ahead

	Results
	Steps and Goals of the Experiment
	Calibration
	Combining the Instant Point Cloud and Image
	Recognition and Measuring the Distance of Obstacles Present Ahead
	Edge Computing Platform Performance Test

	Discussion and Perspective
	Conclusions
	References

