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Abstract: When a liquid flows, it has an internal resistance to flow. Viscosity is the property that
measures this resistance, which is a fundamental characteristic parameter of liquids. The monitoring
of viscosity is essential for quality control in many industrial areas, such as the pharmaceutical,
chemical, and energy-related industries. Several instruments measure the viscosity of a liquid, the
most used being the capillary viscometers. These instruments are complex, associated with high
cost and expensive prices. This represents a challenge in several industries, where accurate viscos-
ity knowledge is essential in designing various industrial equipment and processes. Using image
processing and machine learning algorithms is a promising alternative to the current measurement
methods. This work aims to extract characteristic information from videos of droplets of different
samples using image processing algorithms. An Artificial Neural Network model utilizes the ex-
tracted characteristics to classify the droplets in the correct category, which is correlated with the
viscosity of the sample. Different solutions samples were created using different ratios of Water and
PVP (Polyvinylpyrrolidone) and videos of their droplets were taken and processed. It was found
that for water-PVP solutions, the proposed ANN model was able to successfully classify the droplets
using the data extracted from the videos with high accuracy. The results imply that the ANN model
can recognize the features that affect the viscosity values.

Keywords: viscosity; image processing; droplets analysis; artificial neural network; classification;
water-PVP; Polyvinylpyrrolidone

1. Introduction

When a liquid flows, viscosity is the measure of its internal resistance to flow or shear.
Viscosity is a fundamental characteristic parameter of liquids, the monitoring of which is
essential for quality control in many industrial areas, such as the pharmaceutical, chemical,
and energy-related industries [1]. In the pharmaceutical industry, viscosity significantly
impacts the ocular drug absorption and dissolution of Indomethacin [2] and nanoparticles’
particle size, drug content, and dissolution profile [3]. Accurate viscosity knowledge is
also essential in designing various industrial equipment and chemical processes involving
molten salts [4] and in enhanced oil recovery techniques to improve recovery [5].

The measurement of liquids’ viscosity is crucial in the industry. Several instruments
can be used to measure it, such as capillary viscometers, orifice viscometers, rotational
viscometers, and vibrational and ultrasonic viscometers. The capillary viscometer is the
most used because of its low cost and simplicity. The capillary method measures the time
for a finite volume of liquid to flow through a narrow bore tube under a given pressure [6].
However, these are invasive methods, with high cost and expensive prices, making them
not suitable for measuring the viscosity in a continuous manner that allows in-process
monitoring and interventions in case of an error, and a need for a cost-effective and time-
effective method is essential. A method that seems convenient for measuring viscosity
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is the estimation of it using machine learning and image processing algorithms based on
the droplet characteristics of the liquid. Many researchers have tried to find correlations
between liquid viscosity and liquid droplets. A correlation between extensional viscosity
and spray droplet sizes of polymer spray solutions was found by H. Zhu et al., shown in
their paper [7]. Gotaas et al. studied the effect of the viscosity on droplet-droplet collision
outcomes [8]. Wang et al. showed that the droplet diameter in vertical gas-liquid annular
flows increases logarithmically with increasing liquid viscosity, first rapidly and then
slowly [9]. Some researchers also focused on applying image processing techniques for
measuring liquid viscosity. Kheloufi et al. measured the fall height of the ball in falling
ball viscometers by taking video scenes of the ball during its fall and using it to compute
viscosity [10]. Santhosh et al. showed that the viscosity could be accurately estimated by
using a camera to capture the refracted images of a laser by a tube containing liquid. The
images were then processed using thresholding, filtering, and histogram, and an artificial
neural network model was used to establish the relationship between these resulted data
and the viscosity [11].

Artificial neural networks (ANNs) are very suitable for complex and highly nonlinear
problems and have been used widely because of their advantages, such as their high
accuracy and time and cost-effectiveness. ANNs were used to estimate the dynamic
viscosity of a hybrid nano-lubricant [12], the prediction of Nigerian crude oil viscosity
using 32 datasets that include the reservoir temperature, oil and gas gravity, and the solution
gas-oil ratio [13]. Esfe et al. showed that an artificial neural network model was able to
predict the dynamic viscosity of ferromagnetic nanofluid with high accuracy [14]. Using
image processing techniques to extract information from videos of droplets of liquids with
different viscosities might provide valuable information about the liquids and, therefore,
their viscosities. Using the droplets characteristics extracted from the videos as features to
train an Artificial Neural Network model can provide a promising alternative method to
monitor the viscosity of liquids continuously.

For this paper, we created different samples of water-PVP (Polyvinylpyrrolidone),
varying the water ratio in each sample to achieve samples with different viscosity values.
Videos were then taken using a monochrome camera of the droplets dropping from a
syringe pump. Our goal was to extract features from the videos of the droplets. An
internally developed image processing application was adjusted and used. Many features
describing the droplets over time were extracted and studied, and the resulting data was
processed. The extracted features were then used as an input for an Artificial Neural
Network model in order to classify the droplets into the correct solution sample, which is
correlated with the viscosity value of the solution.

2. Materials and Methods
2.1. Materials

Povidone (PVPK30) was supplied by BASF (Ludwigshafen, Germany). A PVP solution
was prepared by adding 37.5 g of PVP to 100 mL of water. Distilled water was used,
characterized by a resistance of 20 µS/cm

2.2. Measurement Setup

In order to perform the experiment, we used 1-channel syringe pump SEP-10S
PLUS, one transparent rubber tube, laboratory dropper, Basler acA720-520um USB 3.0
monochrome camera, Pylon Viewer software, PharmaVision Videometry software, LED
white light panel, one lab beaker, and eight different laboratory bottles of 500 mL. The
materials and the softwares were provided to us by the Department of Organic Chemistry
and Technology at Budapest University of technology and Economics, Faculty of Chemical
Technology and Biotechnology.
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2.3. Methods
2.3.1. Experimental Design

Eight liquid samples were prepared for the experiment using the PVP solution and
water, with the latter being varied each time to obtain solutions with different viscosity
values, as shown in Table 1. The experiment consists of taking videos of the droplets from
these different samples in their formation process.

Table 1. The different formulations applied for the samples preparation.

Formulation Number Water (mL) PVP Solution (mL)

WaterPVP0 (Water) 300 0
WaterPVP1 300 50
WaterPVP2 125 50
WaterPVP3 66.66 50
WaterPVP4 37.5 50
WaterPVP5 20 50
WaterPVP6 8.33 50

WaterPVP7 (PVP Solution) 0 50

During the experiment, the liquid sample was dispensed at a rate of 20 mL per hour
by the automatic syringe pump through the transparent rubber tube to a pipette dropper
held by a stand in a fixed perpendicular position to the horizontal plane. A lab beaker was
positioned just under the pipette dropper to collect the dropped droplets. A monochrome
high-quality recording camera was held fixed using another stand near the dropper. Behind
the dropper, an LED panel with strong white illumination was positioned to create a
transparent, uniform background and reduce the noise in image processing. The camera
took videos of the droplet formation process from the moment it showed in the dropper
until it dropped into the lab beaker. The videos were monitored using PharmaVision
Videometry, an internally developed software. The recorded videos were in black and
white, with a width of 720 pixels and a height of 540 pixels at 150 frames per second. The
resulting videos were detailed and included the most critical steps of the droplet formation
process. The experiment can be seen during setup and test in Figures 1 and 2. The same
experiment was repeated for each of the eight samples. It is crucial to keep a few parameters
unchanged during the different experiments. The position of the dropper and the camera,
and the infusion rate should remain fixed. The syringe must be washed, and the rubber
tube must be emptied from any previous liquid to eliminate any residue that can affect
the following measurements. This ensures that the results from the image processing are
comparable. Therefore any change to the droplets’ characteristics is due exclusively to the
viscosity change without any external effect. A total of eight videos were recorded, with
each video having a length of 20 min.

Figure 1. Experimental setup.
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Figure 2. Experimental setup in test: Droplet formed and about to detach from the dropper.

2.3.2. Viscosity Measurement

Viscosity of the different samples was measured using Anton Paar DMA 4500 M
viscometer. The values were recorded as shown in Table 2. We measured the rolling time of
a steel ball of 1.5 mm diameter through the samples in the capillary tube. The temperature
during the measurement was 25.00 ◦C, and the angle of the capillary was −45◦.

Table 2. Viscosity values of the different samples.

Formulation Number Viscosity Value mPa·S
WaterPVP0 (Water) 0.891

WaterPVP1 1.825
WaterPVP2 4.306
WaterPVP3 7.601
WaterPVP4 9.347
WaterPVP5 16.51
WaterPVP6 33.13

WaterPVP7 (PVP Solution) 61.40

2.3.3. Image Processing

Image processing aims to help the computer understand the content of an image
by processing an input such as a photograph or video frame and providing an output
that can be a new image or a set of characteristics of the processed image. In this paper,
we used OpenCV, an open-source library of functions that contains a variety of image
processing functions, such as image filtering and transformation, object tracking, and
feature detection [15]. The Canny algorithm for edges detection was used to detect the
droplet edges on the videos [16]. Several characteristics of the droplets were extracted
during the image processing:



Processes 2022, 10, 1780 5 of 13

• State of the droplet: The droplets can be seen in three different states on the videos
recorded as shown in Figure 3. Developing state, from the appearance of the droplet
until it is completely formed. Before the Detachment state, the droplet is completely
formed and in the frame before it detaches from the dropper. After the detachment
state, the droplet is not attached to the dropper and falls until it disappears from the
video.

• Time per droplet: The time it takes for the droplet to finish the three different states
in seconds.

• Area of the droplet: The area of the droplet at each frame was extracted in pixels.
• Perimeter of the droplet: The perimeter of the droplet at each frame was extracted

in pixels.
• Diameter of the droplet: The diameter of the droplet at each frame was extracted

in pixels.
• Length of the droplet: The length of the droplet at each frame was extracted in pixels.
• Length/Width ratio: The Length/Width ratio was calculated as independent to the

camera distance from the droplet.
• Y max coordinate: Before detachment, this feature reflects the maximum length the

droplet reached.
• X and Y coordinates of Center of mass: Center of mass coordinates of the droplet

in pixels.
• Deltoid Fitting: A deltoid was fitted inside the droplet in a way that its vertices are

the lowest and highest point of the droplet and the two sides of the widest part of
the droplet.

Figure 3. A droplet with its edges detected in yellow during its different states: the four droplets
from the left show the development phase. Fifth droplet from the left: completely formed droplet in
the frame just before the detachment. Last droplet: after detachment.

2.3.4. Data Analysis

The data collected during the image processing was extracted in eight different excel
files. Excel and matplotlib were used to visualize and analyze the data to detect and fix
missed and wrong values: the first droplet from each file behaved differently from the other
droplets. This is clearly due to the time in which the recording started. The first droplet
was removed from all the files to eliminate the noise. Another issue was that some of the
droplets did not match the normal chronological states: developing, before detachment,
after detachment. The rows that are related to such droplets were deleted. The remaining
clean data are represented in Table 3.
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Table 3. The data after cleaning.

Matrix Number of
Rows (n)

Number of
Columns (i)

Number of
Droplets Runtime (s)

WaterPVP0 (Water) 111,001 14 181 740.26
WaterPVP1 134,844 14 233 901.04
WaterPVP2 104,748 14 182 700.22
WaterPVP3 179,127 14 269 1197.95
WaterPVP4 185,722 14 283 1246.84
WaterPVP5 133,016 14 200 889.53
WaterPVP6 116,148 14 184 777.44

WaterPVP7 (PVP solution) 184,686 14 295 1233.07

All the rows from the different files with a droplet state "Before detachment" have
been concatenated to form a new matrix Dn

m, where m = 14 (characteristics of the droplets)
and n is the sum of the "Before detachment" rows n = 181 + 233 + 182 + 269 + 283 + 200 +
184 + 295 = 1827. Matrix Dn

m has been standardized using the scikit-learn preprocessing
method: StandardScaler. StandardScaler fits the data by computing the mean and standard
deviation and then centers the data following the equation:

Stdr(NS) = (NS− u)/s (1)

where NS is the non-standardized data, u is the mean of the data to be standardized, and s
is the standard deviation [17]. Principal Component Analysis (PCA) was then applied to
the standardized matrix Dn

m to further investigate the data and check if reducing it can be
helpful while maintaining the most important information in the data. Taking Dn

m as an
example, PCA work by constructing a symmetric m*m dimensional covariance matrix Σ
that stores the pairwise covariances between the different features is calculated as follow:

σj,k =
1
n

n

∑
i=1

(x(i)j − µj)(x(i)k − µk) (2)

With µj and µk, the sample means of features are j and k. The eigenvectors of Σ
represent the principal components, while the corresponding eigenvalues define their
magnitude. The eigenvalues were sorted by decreasing magnitude to find the eigenpairs
that contain most of the variances. Variance explained ratios represent the variances
explained by every principal component (eigenvector); it is the fraction of an eigenvalue λj
and the sum of all the eigenvalues. The plot in Figure 4 shows the variance explained ratios
and the cumulative sum of explained variances. The plot indicates that the first principal
component alone explains 35.82% of the variance in matrix D. Two principal components
explain 61.26%. The first five components combined have a cumulative variance of 89.67%.
A total of 99.99% of the variance can be explained using 12 principal components. These
components are used to create a projection matrix W, which we can use to map D to a
lower dimensional PCA subspace D′ consisting of less features if needed:

D = [d1, d2, d3, . . . dm], d ∈ Rm → D′ = DW, W ∈ Rm∗v (3)

D′ = [d1, d2, d3, . . . dm], d ∈ Rm (4)
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Figure 4. PCA Explained and Cumulative variances (x: Principle Components).

2.3.5. Artificial Neural Network

Our goal was to classify the droplets from matrix D into the correct categories where
they belong between the eight different files based on the features extracted. An Artificial
Neural Network (ANN) model was created for this purpose. The model was created using
the Python open-source library Keras, a compact, high-level library for deep learning that
can run on top of TensorFlow [18]. The models used the rectified linear unit activation func-
tion ReLU on the hidden layers and the softmax activation function on the output layer. The
weights on the models were optimized using the Adam optimizer. Since the prediction tar-
get is the eight different categories of samples with different viscosities, One-Hot Encoding
was used to represent the target categories, as shown in Table 4. CategoricalCrossentropy
was the loss function Categorical Crossentropy, which computed the crossentropy loss
between the labels and predictions. The number of layers and the number of neurons were
optimized based on the prediction accuracy. Regularization term has been varied in order
to avoid overfitting. The dataset size was 1827, from which 1018 samples were used for
the training (55%), 441 samples were used for validation (25%), and 368 samples were kept
for testing (20%). The data used for the training, validating, and testing the model was
uniformly selected from the different samples.

Table 4. One-Hot encoding of the target categories.

Category Number Encoding

WaterPVP0 (Water) (1, 0, 0, 0, 0, 0, 0, 0)
WaterPVP1 (0, 1, 0, 0, 0, 0, 0, 0)
WaterPVP2 (0, 0, 1, 0, 0, 0, 0, 0)
WaterPVP3 (0, 0, 0, 1, 0, 0, 0, 0)
WaterPVP4 (0, 0, 0, 0, 1, 0, 0, 0)
WaterPVP5 (0, 0, 0, 0, 0, 1, 0, 0)
WaterPVP6 (0, 0, 0, 0, 0, 0, 1, 0)

WaterPVP7 (PVP Solution) (0, 0, 0, 0, 0, 0, 0, 1)

3. Results and Discussion
3.1. Results of Data Analysis

PCA was applied to matrix D to see the effect of data reduction on the data. The first
PCA model used two principal components (PCs), explaining 35.82% and 25.44% of the
total variance in the matrix D. Observing the plot of the first two PCs, it is clear that the
two PCs do not separate the data well, especially if the difference between their viscosity
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is not very big. (Figure 5a). However, we can see that the data is well separated using
two components for the sample with only Water and the sample with the PVP Solution
(Figure 5b).

Figure 5. Two Components PCA model: (a) PCA applied to all samples. (b) PCA applied only to
sample WaterPvP0 and WaterPvP7.

The second PCA model used three principal components, explaining 35.82%, 25.44%,
and 11.44% of the total variance in the matrix D as shown in Figure 6. This PCA model
improved the separation between the data compared to the previous one. However, more
components explaining more variance in the data are needed in order to better separate
the data.

Figure 6. Three Components PCA model: (a) PCA applied to all samples. (b) PCA applied only to
four samples WaterPvP0, WaterPvP3, WaterPvP5 and WaterPvP7.

In this paper, the actual values of the characteristics extracted during the image
processing will be used to train the Artificial Neural network models.
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3.2. Predicting the Droplet Categories Using ANN

The number of neurons, layers, and epochs were varied in order to find the parameters
of the model with the best prediction accuracy. The ANN model with one layer was first
tried with a different number of neurons and epochs in order to detect the effect of increas-
ing the number of neurons and epochs on the performance of the ANN model. Results
in Figure 7 show that increasing the number of epochs improved the prediction accuracy.
Models with a higher number of neurons on the hidden layer perform significantly better
than others: With 200 epochs, a model with one neuron accuracy was 37.77%, four neurons
reached an accuracy of 85.59%, and 10 neurons had the best results with a prediction
accuracy of 92.06% on the testing data. Additional neurons were beneficial until the tenth
neuron. Increasing the epochs number improved the prediction accuracy until epoch 200,
then the results were almost the same except for the model with one neuron, and we could
see an increase until epoch 250. The results showed that, in order to have a prediction
accuracy above 73%, a minimum of two neurons is required. ANN models with only one
hidden layer with one neuron performed poorly in all the studied cases.

Figure 7. The effect of increasing Neurons/Epochs on the ANN prediction accuracy (%).

To check if increasing the number of hidden layers of the ANN model would increase
the prediction accuracy, further layers were tested with the same number of neurons each
time as the previous layer (e.g., if the first hidden layer has four neurons, then the second
was tested with four neurons and the third with four neurons as well). The epochs number
remained the same at 200 epochs. The results showed that adding a second hidden layer,
with one neuron, to the model decreased the prediction accuracy from 37.77% to 16.03%.
Adding a third layer with one neuron did not improve the results. However, adding further
layers to the models with neurons 6, 8, and 10 slightly improved the results, as shown in
Figure 8. Adding a second hidden layer with 10 neurons improved the results of the model
from 92.06% to 93.2%. A third layer further improved the results to 93.75%, which was the
best result achieved compared to other models tested. Adding more layers after the third
layer did not improve the results in any of the cases.
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Figure 8. The effect of adding further hidden Layers on the ANN prediction accuracy (%).

The ANN model with three hidden layers each having 10 neurons was chosen as the
optimal model for predicting the droplet categories. The evolution of the accuracy and loss
over the training are shown in Figures 9 and 10, respectively.

At the end of the training, the accuracy of the model was 96.07% on the training data,
93.19% on the validation data, and 93.75% on the testing data. The model was able to
accurately predict the category of 345 droplets out of 368. The confusion matrix in Figure 11
shows that even the wrong predictions were classified in the neighboring categories: Five
droplets were classified in the waterPvP4 while they belonged to waterPvP3. Five droplets
were classified in the waterPvP5 while they belonged to waterPvP4. Six droplets were
classified in the waterPvP4 while they belonged to waterPvP5. All the droplets from the
samples waterPvP1, waterPvP2, and waterPvP7 were classified with 100% accuracy.

Figure 9. Model ANN(10, 10, 10) Prediction Accuracy.
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Figure 10. Model ANN(10, 10, 10) Loss curve.

Figure 11. Model ANN(10, 10, 10) Confusion Matrix.

4. Conclusions

The current work utilized videos of droplets from samples formulated using different
ratios of water and PVP, resulting in samples with different viscosity values. The work
aimed to extract the features of the droplets using image processing and to classify these
droplets into the right category and thus to the correct viscosity value. A total of eight
samples were produced, and videos were taken of their droplets. Characteristics of the
droplets were extracted using OpenCV and Canny Algorithm. Artificial neural network
models were trained using the extracted features to classify the droplets based on their
categories, which were correlated with their viscosity values. It was found that in the case
of the water-PVP solutions, the ANN models could successfully classify the droplets using



Processes 2022, 10, 1780 12 of 13

the data extracted from the videos with high accuracy of 93.75%. The results imply that the
ANN model can recognize the differences in the features that affect the viscosity values.
Thus, for water PVP solutions, the most cumbersome viscosity measurement methods can
be replaced with this technique, which is faster and requires minimal human labor. With
these promising results, further research could be carried out to construct a regression
model that predicts the actual viscosity values.
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