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Abstract: This study discusses the calculation of entropy of discrete-time stochastic biological systems.
First, measurement methods of the system entropy of discrete-time linear stochastic networks are
introduced. The system entropy is found to be characterized by system matrices of the discrete-time
biological systems. Secondly, the system entropy of nonlinear discrete-time stochastic biological
systems is discussed and is calculated based on a global linearization method. The approximation of
the values of system entropy of nonlinear stochastic systems needs to solve an optimization problem
that is constrained by a kind of linear matrix inequality (LMI). Finally, a practical biochemical system
is provided to verify the effectiveness of the proposed calculation method.

Keywords: system entropy; system randomness; biological network; discrete-time nonlinear stochas-
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1. Introduction

In general, entropy is considered as a measure of the randomness or disorder of
a physical or biological system under intrinsic random fluctuations and environmental
disturbances [1–5]. According to the second law of thermodynamics, entropy is used to
describe the dispersion of energy in a thermally isolated system, in which energy has a
natural tendency to spontaneously change toward states with higher entropy [6–8]. In
order to maintain life, biological systems need to exchange material and energy with their
environment in a continual process, so they are open systems [9].

In this exchange process, the entropy of biological systems can maintain a dynamic
balance [10]. Under such a background, the calculation of biological system entropy is
particularly important. In the past few decades, the system entropy in biological networks
has been extensively studied [11–13]. The discrete-time model plays an important role in
numerical calculation, stochastic simulation and numerical analysis [14–18]. For continuous-
time stochastic systems, the authors of [16] calculated the system entropy of biological
systems from their system matrices by the global linearization technique. In this way, the
measurement of the system entropy of nonlinear biological networks could be transformed
to solve an optimization problem constrained by a set of LMIs. In this paper, we follow the
line of [16] and extend the LMI method to the calculation of the discrete-time system entropy
of stochastic biological networks. With the aid of the Matlab software package, we solve
the corresponding LMI-constrained optimization problem to measure the discrete-time
system entropy of a nonlinear biological network.

This paper is organized as follows. In Section 2, we discuss how to calculate the entropy
of the discrete-time linear network. Section 3 gives the system entropy measurement of the
discrete-time nonlinear random biological network. Section 4 presents how to calculate
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the system entropy in discrete-time nonlinear stochastic biological networks, which is
approximated by the global linearization method. Lastly, in Section 5, an example is given
to illustrate the measurement procedure and to validate the feasibility of the proposed
system entropy measurement method.

2. System Entropy in Discrete-Time Linear Biological Networks

In this section, we consider a discrete-time linear network, which is described as follows:{
xt+1 = Axt + Bvt,
yt = Cxt, t = 0, 1, 2, · · · Tf

(1)

where x0 = 0, xt ∈ Rn, vt ∈ Rm, yt ∈ Rl denotes the biological network’s state vector,
random input and output, respectively. Tf is the finite terminal time. A, B and C are
matrices with proper dimensions with the following formats:

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

, B =

 b11 · · · b1m
...

. . .
...

bn1 · · · bnm

, C =

 c11 · · · c1n
...

. . .
...

cl1 · · · cln

.

The randomness of this system’s output yt can be measured by

ro = E[ 1
Tf

Tf

∑
t=0

yT
t yt]

while the randomness of input signals vt is denoted as

ri = E[ 1
Tf

Tf

∑
t=0

vT
t vt]

where E[·] denotes the expectation. Similar to the definitions of entropy in [16], the entropy
of the input signal or output signal for a discrete-time system is also defined by

si = − logE[ 1
Tf

Tf

∑
t=0

vT
t vt]

and the entropy of yt is defined by

so = − logE[ 1
Tf

Tf

∑
t=0

yT
t yt].

Thus, it is natural to define the net signal entropy of a biological system as the discrete-
time system entropy, i.e.,

s = si − so = logE[ 1
Tf

Tf

∑
t=0

yT
t yt]− logE[ 1

Tf

Tf

∑
t=0

vT
t vt]

s = log
E[

Tf

∑
t=0

yT
t yt]

E[
Tf

∑
t=0

vT
t vt]

(2)
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Thus, if the system randomness r of System (1) is defined as the following

r =
E[

Tf

∑
t=0

yT
t yt]

E[
Tf

∑
t=0

vT
t vt]

the system entropy is represented as

s = log r.

In order to calculate the system entropy s in (1), we have to calculate or approximate
the system randomness first. Of course, it is not easy to approximate such randomness
directly. Therefore, we need to estimate the system randomness indirectly as follows:

r =
E[

Tf

∑
t=0

yT
t yt]

E[
Tf

∑
t=0

vT
t vt]

≤ r̄

which is equivalent to

E[
Tf

∑
t=0

yT
t yt] ≤ r̄E[

Tf

∑
t=0

vT
t vt] (3)

Here, r̄ denotes the upper bound of r.
We will decrease the upper bound r̄ to be as small as possible, to approach the

randomness r of the discrete-time biological network (1), which is suggested in [16].

Proposition 1. Suppose that a positive definite matrix p > 0 and a positive real number r̄ > 0
satisfy the following inequality:{

AT PA + CTC− P + AT PB(r̄ I − BT PB)−1BT PA < 0
r̄ I − BT PB > 0

(4)

Then, r̄ is an upper bound of the system randomness of network (1).

Proof. Choose the Lyapunov function V(x) = xT Px, then

V(xt+1)−V(xt) = (xT
t AT + vT

t BT)P(Axt + Bvt)
= xT

t (AT PA− P)xt + 2xT
t AT PBvt + vT

t BT PBvt

Taking summation, and then taking expectation on both sides, we have

E[V(xTf +1)]−E[V(x0)] = E
{ Tf

∑
t=0

[xT
t (AT PA− P)xt + 2xT

t AT PBvt + vT
t BT PBvt]

}
.

Recalling that V(x) ≥ 0, x0 = 0 and V(0) = 0, we have

0 ≤ E
{ Tf

∑
t=0

[xT
t (AT PA− P)xt + 2xT

t AT PBvt + vT
t BT PBvt]

}
.
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Thus,

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ E

{ Tf

∑
t=0

[xT
t (AT PA + CTC− P)xt

+2xT
t AT PBvt − vT

t (r̄ I − BT PB)vt]

}
.

Completing the square on the right side, we obtain

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ E

{ Tf

∑
t=0

[
xT

t

(
AT PA + CTC− P + AT PB

×(r̄ I − BT PB)−1BT PA
)

xt

−‖vt − (r̄ I − BT PB)−1BT PAxt‖2
r̄ I−BT PB

]}
.

where the notation ‖ · ‖2
A denotes ‖y‖2

A = yT Ay with A > 0. By inequality (4), there exists

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ 0.

Thus, we have

E[
Tf

∑
t=0

yT
t yt] ≤ r̄E[

Tf

∑
t=0

vT
t vt]

This shows that the randomness r of System (1) has an upper bound r̄.

By the Schur lemma, we know that the matrix inequality (4) equals the following LMI:[
CTC + AT PA− P AT PB

BT PA BT PB− r̄ I

]
< 0. (5)

Thus, we can obtain the following corollary described by LMI (5).

Corollary 1. Suppose that there exists a positive definite matrix p > 0 and a positive real number
r̄ > 0 that satisfy the inequality (5); then, r̄ is an upper bound of the system randomness of
network (1).

Remark 1. Compared with the results of Reference [16], the matrix inequality (4) that is obtained
by the completing square method is different to the results of Proposition 2 of [16]. Moreover, the
structure of LMI (5) for a discrete-time network is different to that of (12) for the continuous-time
system discussed in [16].

From Equation (3), we can see that the upper bound of the discrete-time system
randomness r is r̄, i.e., r ≤ r̄. Thus, the calculation of the system randomness of network (1)
can be estimated by the following problem:

r = min r̄ (6)

with the constraint of LMI (5), where p > 0.
Based on (6), with the aid of Matlab’s LMI toolbox, we can decrease r̄ by the constraint

of LMI in (5) until there is no positive matrix P appearing; then, the above LMI-constrained
optimization problem can be solved, and the system randomness r can be estimated. Thus,
the discrete-time system entropy of the linear stochastic System (1) can be obtained as
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s = log r. Moreover, the measurement of the system randomness r or system entropy s is
dependent on matrices A, B and C in System (1) to some extent.

3. System Entropy in Discrete-Time Nonlinear Network

Nonlinear dynamic systems play an important role in biological networks, which
causes the difficulty of estimating the entropy of such systems. Under this situation, the
global linearized method is suggested [19–27], which is an interpolation method of local
linearized systems of a nonlinear biological network. Suppose that the biological systems
are described by the following discrete-time nonlinear stochastic biological network:{

xt+1 = f (xt) + g(xt)vt,
yt = h(xt), t = 0, 1, 2, · · · Tf

(7)

where x0 = 0, f is a function, vt denotes m external input signal and g(xt) denotes m
nonlinear couplings between the biological network and environment. h(xt) denotes l
nonlinear outputs.

Based on the ideas of the discrete-time system randomness of (3), we obtain the
following proposition.

Proposition 2. Suppose that there exists a positive definite matrix p > 0 and a positive real number
r̄ > 0 that satisfy the following HJI:

f T(x)P f (x)− xT Px + hT(x)h(x)
+ f T(x)Pg(x)(r̄ I − gT(x)Pg(x))−1gT(x)P f (x) ≤ 0

r̄ I − gT(x)Pg(x) > 0, ∀x ∈ Rn
(8)

Then, r̄ is an upper bound of the system randomness of network (7).

Proof. Let V(x) = xT Px, then

V(xt+1)−V(xt) = f T(xt)P f (xt)− xT
t PxT

t + 2 f T(xt)Pg(xt)vt + vT
t gT(xt)Pg(xt)vt.

Taking summation, and then taking expectation on both sides, we obtain

E[V(xTf +1)]−E[V(x0)] = E
{ Tf

∑
t=0

[
f T(xt)P f (xt)− xT

t PxT
t

+2 f T(xt)Pg(xt)vt + vT
t gT(xt)Pg(xt)vt

]}
.

Recalling that V(x) ≥ 0, x0 = 0 and V(0) = 0, we have

0 ≤ E
{ Tf

∑
t=0

[
f T(xt)P f (xt)− xT

t PxT
t + 2 f T(xt)Pg(xt)vt + vT

t gT(xt)Pg(xt)vt

]}
.

Thus,

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ E

{ Tf

∑
t=0

[
f T(xt)P f (xt)− xT

t PxT
t + hT(x)h(x)

+2 f T(xt)Pg(xt)vt − vT
t (r̄ I − gT(xt)Pg(xt))vt

]}
.
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Completing the square on the right side, we obtain

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ E

{ Tf

∑
t=0

[
f T(xt)P f (xt)− xT

t PxT
t + hT(x)h(x)

+ f T(x)Pg(x)(r̄ I − gT(x)Pg(x))−1gT(x)P f (x)

−‖vt − (r̄ I − gT(x)Pg(x))−1gT(x)P f (x)‖2
r̄ I−gT(x)Pg(x)

]}
.

where the notation ‖ · ‖2
A denotes ‖y‖2

A = yT Ay with A > 0. By inequality (8), there exists

E[
Tf

∑
t=0

yT
t yt]− r̄E[

Tf

∑
t=0

vT
t vt] ≤ 0.

Thus, we have

E[
Tf

∑
t=0

yT
t yt] ≤ r̄E[

Tf

∑
t=0

vT
t vt] (9)

This ends the proof.

Remark 2. Compared with the results of Proposition 4 in Reference [16], the HJI (8) in this paper
does not depend on the input variables v(t), but the HJIs in Proposition 4 of [16] include v(t). Thus,
the system randomness of network (7) can be obtained only by the coefficients f (x), g(x) and h(x),
which is defined on the state space.

By Proposition 2, the system randomness r of network (7) can be approximated to
solve the following optimization constrained by HJI:

r = min r̄ (10)

It is constrained by HJI in (8), where p > 0. Denote

V =
{

V(x)|V(x) = xT Px, x ∈ Rn, P > 0
}

.

The system randomness r of network (7) could be estimated by solving the following
optimization:

r = min
V(x)∈V

r̄ (11)

with the constraint of HJI in (8).
Based on the above results, it is easy to obtain the system entropy as

s = log r.

We can obtain the system randomness r from the HJI-constrained optimization problem
in (10) or (11). However, at present, there exists no efficient method to solve the HJI in (10) or
(11) analytically or numerically. In this study, the global linearization method in [21,27] will
be employed to interpolate several local linearized systems at the M matrices of the convex
hull of the globalization systems to approach the nonlinear discrete-time biological systems
in (7), to transform the difficult HJI-constrained optimization problem in (10) or (11) to an
equivalent LMIs-constrained optimization problem for the calculation of system randomness
in the following section.
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4. The Global Linearization Method to Estimate System Entropy for
Nonlinear Networks

In this section, the global linearization technique is suggested to help in estimating
the system entropy of nonlinear stochastic systems in (7). The main idea of this method
is described as follows: we convert the nonlinear system into a set of interpolated lo-
cally linearized networks in which the linear system’s entropy is easy to calculate and
approximate [16,21,27]. Therefore, the estimation of system randomness and entropy can
be transformed to solve the HJI-constrained optimization problems (10) efficiently.

We prefer the detailed theory of the global linearization method to Reference [21].
According to this method, the global linearized systems are constructed by the convex hull
of M vertices defined in Equation (12) as follows:

∂ f (x)
∂x

∂g(x)
∂x

∂h(x)
∂x

 ∈ C0

 A1
B1
C1

 · · ·
 Ai

Bi
Ci

 · · ·
 AM

BM
CM

, ∀xt (12)

Then, the state xt in the discrete-time nonlinear System (7) can be represented by those
states of local linearized biological networks with (12) as follows:{

xt+1 = Aixt + Bivt,
yt = Cixt, t = 0, 1, 2, · · · T (13)

Thus, the combination of linearized systems in (13) can be represented as:
xt+1 =

M
∑

i=1
αi(xt)(Aixt + Bivt),

yt =
M
∑

i=1
αi(x)Cixt, t = 0, 1, 2, · · · T

(14)

where the interpolation function (for xt 6= xi)

αi(xt) =

1
‖xi−xt‖2

2
M
∑

1=1

1
‖xi−xt‖2

2

(15)

and αi(xt) = 1 for some xt = xi satisfy 0 ≤ αi(x) ≤ 1 and
M
∑

i=1
αi(xt) = 1, while xi denotes

the ith local operation point with local linearization [27], i.e., the trajectory of the nonlinear
System (7) can be represented by the trajectories of the interpolated biological network
in (14).

If the nonlinear biological network in Equation (7) could be approximated by the
global linearization system in Equation (14), then we obtain the following result.

Proposition 3. Suppose that a positive definite matrix p > 0 and a real number r̄ > 0 satisfy the
following LIMs:[

AT
i PAi + CT

i Ci − P AT
i PBi

BT
i PAi BT

i PBi − r̄ I

]
≤ 0, for i = 1, · · · , M (16)

Then, r̄ is an upper bound of the system randomness of network (7).

Proof. Let Lyapunov function V(x) = xT
t Pxt, and the approximation of f (xt) and g(xt) are

f (xt) =
M

∑
i=1

αi(xt)Aixt



Processes 2022, 10, 1736 8 of 12

and

g(xt) =
M

∑
i=1

αi(xt)Bi.

Then, we have

E[V(x0)]−E[V(xt)] +E[
Tf

∑
t=0

(yT
t yt − r̄vT

t vt + ∆V(xt))] ≤ 0

where

∆V(xt) =
M

∑
i=1

αi(xt)[xT
t AT

i + vT
t BT

i P(Aixt + Bivt)]− xT
t PxT

t

Thus, we obtain the following result:

E
{

M

∑
i=1

αi(xt)
[

xT
t vT

t
][ Π AT

i PBi
BT

i PAi Ξ

][
xt
vt

]}
≤ 0 (17)

where Π = AT
i PAi + CT

i Ci − P, Ξ = BT
i PBi − r̄ I,i = 1, · · · , M.

This ends the proof.

Based on this technique, the system randomness r of network (7) or (14) can be
approximated by solving the following optimization problem:

r = min
P>0

r̄ (18)

with the constraint of LMIs in (16) and p > 0. The system randomness r in (18) could be
obtained by decreasing its upper bound r̄ until there exists no p > 0.

5. Example and Simulation

In this section, we consider a phosphorelay system in yeast, discussed in [16,23]; see
Figure 1. This signal transduction pathway includes seven state variables: Sln1, Sln1H-
P, Sln1D-P, Ypd1, Yod1-P, Ssk1, Ssk1-P. We prefer to References [16,23,25], for detailed
information.

Figure 1. Schematic representation of phosphorelay system.
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The state xt is denoted by the following vector:

xt =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)


=



Sln1(t)
Sln1H − P(t)
Sln1D− P(t)

Ypd1(t)
Ypd1− P(t)

Ssk1(t)
Ssk− P(t)


(19)

Suppose that the dynamic behavior of this system can be represented by discrete-time
difference equations, which are seen as the discrete-time type of phosphorelay system
discussed in [25]: 

x1(t + 1) = (1− k1)x1(t) + k3x3(t)x4(t) + k0vt
x2(t + 1) = k1x1(t) + (1− k2)x2(t)
x3(t + 1) = k2x2(t) + (1− k3x4(t))x3(t)
x4(t + 1) = k4x5(t)x6(t) + (1− k3x3(t))x4(t)
x5(t + 1) = (1− k4x6(t))x5(t) + k3x3(t)x4(t)
x6(t + 1) = k5x7(t) + (1− x4(t)x5(t))x6(t)
x7(t + 1) = (1− k5)x7(t) + x4(t)x5(t)x6(t)
y = x6(t)

(20)

where k0, k1, k2, k3, k4 and k5 are the systematic characteristics, and vt is the random
fluctuation. Figure 2 shows the trajectories of x with the systematic characteristics
k0 = 0.5, k1 = 0.4, k2 = 0.1, k3 = 50, k4 = 50, k5 = 0.5 and vt, which is the standard
Gaussian white noise with zero mean.

0 5 10 15 20 25

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p
o
p
u
la

ti
o
n

10
-3

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

x
5
(t)

x
6
(t)

x
7
(t)

Figure 2. Temporal profiles of the state variables of Sln-1-phosphorelay system in (20) at the systematic
characteristic case: k0 = 0.5, k1 = 0.4, k2 = 0.1, k3 = 50, k4 = 50, k5 = 0.5 with vt ∼ N(0, 0.012).

In order to show the effects of systematic characteristics on system entropy, we take
the three different systematic characteristics given in Table 1.
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Table 1. Systematic characteristics in three cases.

Characteristics k0 k1 k2 k3 k4 k5

Case 1 0.5 0.4 0.1 50 50 0.5
Case 2 0.3 0.1 0.2 1 1 0.6
Case 3 0.01 0.02 0.03 10 10 0.04

Due to the global linearization in (14), the approximation of discrete-time nonlinear
network (20) can be presented by:

Xt+1 =
M

∑
t=1

αi(xt)(AiXt + Bivt) (21)

where α(xt) denotes the the interpolation functions. Xt denotes the M states of local
linearization systems [26].

By solving the LMI-constrained optimization problem in Equation (18) for the above
three system characteristic cases in Table 1, the positive definite matrices P1, P2 and P3 are
obtained as follows:

P1 =



2.7010 0.4458 −0.0177 −0.1448 0.0034 0 0
0.4458 2.8184 −0.0063 −0.0032 −0.0006 0 0
−0.0177 −0.0063 3.0983 −0.0006 −0.0249 0 0
−0.1448 −0.0032 −0.0006 3.0790 0.0352 0 0

0.0034 −0.0006 −0.0249 0.0352 3.0920 0 0
0 0 0 0 0 3.9651 −0.0001
0 0 0 0 0 −0.0001 5.2752


,

P2 =



16.2540 −0.1773 −0.0102 −0.0034 0.0000 0 0
−0.1773 17.5868 −0.0025 0.0001 −0.0000 0 0
−0.0102 −0.0025 16.2441 0.0000 −0.0001 0 0
−0.0034 0.0001 0.0000 16.2445 0.0001 0 0

0.0000 −0.0000 −0.0001 0.0001 16.2445 0 0
0 0 0 0 0 17.2443 −0.0006
0 0 0 0 0 −0.0006 35.0822


,

P3 =



119.4032 −0.0239 −0.0001 −0.0005 −0.0000 0 0
−0.0239 119.6182 −0.0007 −0.0000 −0.0000 0 0

0.0001 −0.0007 119.4032 −0.0000 −0.0240 0 0
−0.0005 0.0000 0.0000 119.4032 0.00000 0 0

0.0000 −0.0000 −0.0000 0.0000 119.4032 0 0
0 0 0 0 0 120.40 −0.00
0 0 0 0 0 −0.0000 119.78


.

Corresponding system entropy is calculated, and the result is shown in following
Table 2.

Table 2. System entropy of systems with three different systematic characteristics.

Characteristics P r s = log r

Case 1 P1 3.6404 1.2921
Case 2 P2 20.3077 3.0110
Case 3 P3 149.2539 5.0056

By the estimation results of Table 2, we see that the different systematic characteristics
in (20) can affect the system entropy of the biological network.
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6. Conclusions

In this paper, the system entropy measurement of discrete-time nonlinear biological
system is discussed. In order to overcome the nonlinear Hamilton-Jacobi inequality(HJI)
in the measurement precedure, we extend the global linearization method in continuous-
time system to the discrete-time system, so that the HJI-constrained optimization for
the measurement of system entropy of discrete-time nonlinear biological system can be
transformed to LMIs-constrained optimization problem to efficiently calculate the system
entropy easily with the help of LMI Toobox in MATLAB. Moreover, the calculation methods
of system entropy of more complex systems such as the nonlinear system with intrinsic
randomness, stochastic systems driven by Markov processes are worth further study.
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