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Abstract: Aiming at the problem that the vibration signals of rolling bearings working in a harsh
environment are mixed with many harmonic components and noise signals, while the traditional
sparse representation algorithm takes a long time to calculate and has a limited accuracy, a bearing
fault feature extraction method based on the ensemble empirical mode decomposition (EEMD)
algorithm and improved sparse representation is proposed. Firstly, an improved orthogonal matching
pursuit (adapOMP) algorithm is used to separate the harmonic components in the signal to obtain
the filtered signal. The processed signal is decomposed by EEMD, and the signal with a kurtosis
greater than three is reconstructed. Then, Hankel matrix transformation is carried out to construct
the learning dictionary. The K-singular value decomposition (K-SVD) algorithm using the improved
termination criterion makes the algorithm have a certain adaptability, and the reconstructed signal is
constructed by processing the EEMD results. Through the comparative analysis of the three methods
under strong noise, although the K-SVD algorithm can produce good results after being processed
by the adapOMP algorithm, the effect of the algorithm is not obvious in the low-frequency range.
The method proposed in this paper can effectively extract the impact component from the signal.
This will have a positive effect on the extraction of rotating machinery impact features in complex
noise environments.

Keywords: improved sparse representation algorithm; EEMD; feature extraction; the fault feature

1. Introduction

In modern manufacturing, complex equipment that can perform different actions
has become the cornerstone of the manufacturing industry, and the actions in complex
equipment cannot be realized without the function of bearings. As an important part of
machine components, the state of bearings deeply affects the service life of the machine
system. Some studies have found that a large part of the fault sources of rotating machinery
are related to bearings [1]. Therefore, the extraction of bearing fault features in complex
environments has become an important aspect of rotating equipment health management.

Because of low manufacturing accuracy, inaccurate installation and positioning, or
failure, load misalignment and harmonic components will result in the running process
of rolling bearings, and harmonic components will modulate the impact components,
resulting in many harmonic components and modulation components in the collected
signals [2]. However, the working environment of most bearings is complex, and the
collected signals contain a lot of noise and harmonic components, which cause obstacles for
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the accurate extraction of bearing faults [3]. Many methods have been applied to improve
the accuracy of fault diagnosis and remaining life prediction in complex environments,
such as dynamic model analysis based on the physical characteristics of the bearing it-
self [4–6], signal analysis methods in the time–frequency domain [7–9], methods based
on entropy of the information contained in the signal [10,11], end-to-end methods of the
neural network [1,12,13], and the method of model data fusion [14,15].

Time–frequency analysis methods such as wavelet transform (WT), empirical mode
decomposition (EMD), variational mode decomposition (VMD), EEMD, and their com-
bination with other methods diagnose faults based on physical information as well as
expert experience [16], and have been proven in many studies in rotating machinery fault
diagnosis [17–19]. The EMD algorithm has received a lot of attention in recent years. The
algorithm decomposes the signal into multiple branches called intrinsic mode functions
(IMFs). The signal analysis in these branches can obtain the features contained in the signal.
However, the modal mixing phenomenon and the decomposition effect affected by the
end effect always limit the applicability of the algorithm [20,21]. The emergence of EEMD
solves this problem, but new problems such as the indistinguishability of signal noise and
the difficulty of determining the denoising threshold in use are also born [22]. Therefore,
preprocessing the signal to denoise is one of the ways to further expand the applicability of
EMD or EEMD [23–25].

Combining different algorithms to expand the applicability of the algorithm has be-
come a trend of research in this area [26,27]. For example, Wang et al. [28] proposed an
improved EEMD algorithm to solve the problem of strong background noise in locomotive
operation. Through the introduction of adaptive amplitude selection and noise screening
number, the applicability of the EEMD algorithm under strong noise is improved. In the
theoretical analysis and experimental verification, the algorithm has a good applicability in
the noise environment. This is a very important reference significance in the field of fault
diagnosis of locomotive bearings. To detect localized faults in the planet bearings, ring gear,
planet gear, and sun gear of planetary gearboxes, Liu et al. [29] presented an improved en-
circled energy EEMD method (EE-EEMD) combined with the EEMD algorithm, the mirror
extending method, the teager energy operator demodulation method, and the EE index
selection method. The mirror extending technique is used to overcome the EEMD method’s
end extending issue. The experiment proves that the EE-EEMD has a high accuracy in the
fault diagnosis of planetary gearboxes. Zvokelj et al. [9] proposed a multivariate multi-scale
statistical process monitoring method. The benefits of EEMD and independent component
analysis (ICA) are combined in this technique. Signals can be adaptively divided into
several time scales to assess the dynamics of multi-scale systems, which benefits big rotary
bearings while having a minimal subjective impact. With the improvement of computer
power, the preprocessing of noise by combining with other algorithms has become more
and more selective. For example, the synthetic modal parameters identification (SMPI),
which combines the advantages of empirical mode decomposition (EMD), stochastic sub-
space identification (SSI), and the Prony algorithm assisted by parameter matching, is
applied to solve the problem of low frequency damped oscillation mode identification
accuracy and insufficient parameters. After the simulation signal of known parameters and
the real-time signal verification of the power system, this method has a good pertinence to
the low-frequency signal [30].

In view of the harsh working environment of rotating machinery and the problem of a
lot of noise in the signal, we have improved the OMP algorithm to have better performance
in filtering noise, using the EEMD algorithm for hard threshold denoising and the K-SVD
algorithm with automatic threshold processing. We have improved the OMP algorithm so
that it has the ability of adaptive harmonic removal and uses the K-SVD algorithm with
automatic termination to analyze the signal. Although this method has good performance,
it is still in the removal of low-frequency harmonics. The effect is not obvious, so we
introduce the EEMD algorithm with hard threshold denoising after the adapOMP algorithm
processing, and further process the signal. In order to reduce the difficulty of signal
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processing and improve the processing speed, we use the Hankel matrix to fold the signal.
The signal is further processed, and after experimental verification, the method has the
advantages of fast filtering and high fault diagnosis accuracy.

The outline of this article is as follows. Section 2 introduces the basic theory of the
improved sparse representation algorithm and the EEMD algorithm combined with hard
threshold denoising. Section 3 shows the signal processing flow of this paper. Section 4
is the signal simulation and the setting process of some parameters. Section 5 applies the
method to a real signal and compares it with previous results. Section 6 is the conclusion of
this paper.

2. Theoretical Derivation

The key to sparse representation is to find an overcomplete dictionary that best matches
the original signal [31]. Different signals have different vibration waveforms. In order
to match the waveforms of each part of the signal, it is necessary to construct a suitable
dictionary according to the characteristics of the signal. Over-complete dictionary D is
the key factor to make the original signal more concise and accurate. In order to better
decompose the original signal, the choice of dictionary is particularly important [32]. If a
signal can be linearly represented by a small number of atoms in an overcomplete dictionary,
then the energy of the signal is concentrated on a small number of atoms. Therefore,
it is particularly important to construct an overcomplete dictionary that can sparsely
represent the original signal. Usually, two dictionaries are used for analysis: pre-constructed
dictionary and learning dictionary. For complex signals, learning dictionary has a stronger
processing ability [33]. Learning dictionary is constructed by training observation examples
of nonparametric signals, in which atoms are not generated by explicit mathematical
expressions, but by training real signals. Therefore, learning dictionary can get rid of
the shackles of pre-constructed dictionaries and express the characteristic structure of
complex signals more accurately. Therefore, this paper chooses OMP algorithm and K-
SVD algorithm to solve sparse representation and build the learning dictionary and make
different improvements to get a better performance. Simultaneously, the EEMD method is
merged, and the fault signal can be diagnosed fast and precisely thanks to the combination
of enhanced algorithms.

2.1. Improved Sparse Representation Algorithm

(1) The adaptive orthogonal matching pursuit (adapOMP) algorithm

The collected signal consists of transient impact component si(t), harmonic component
sh(t) and noise sn(t), which can be expressed as:

s =si(t) + sh(t) + sn(t) (1)

In view of the consistency of the Fourier dictionary with the actual signal, we use the
Fourier dictionary to construct an overcomplete dictionary. Set Fourier dictionary as D1,
and its sparse matrix is α1. By introducing overcomplete dictionary, the original vibration
signal can be expressed as:

s =si(t)+D1α1 + sn(t) (2)

OMP algorithm has been proved to have good effect in signal processing, but it
is difficult to be widely used due to the problem of processing speed. In this study,
the harmonic signals are first extracted to improve the efficiency of the OMP algorithm.
Harmonic components in vibration signals can be expressed by the result of multiplication
of D1 and α1. Set the columns in D1 as di, i ∈ {1 ≤ i ≤ m, N+}, where m is the number
of columns in the dictionary. For the sparse coefficient matrix α1, γi is the row, and
i ∈ {1 ≤ i ≤ m, N+}, where m is the number of rows in the coefficient matrix.
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The error value of the product of current dictionary atoms and sparse coefficient and
the original signal could be obtained during the orthogonal matching pursuit traversal
process as follows:

ε(j) = min
γj
‖ djγj − rk−1 ‖ 2

2 =‖ rk−1 ‖ 2
2 −

(dT
j rk−1)

2

‖ dj ‖ 2
2

(3)

If the matrix composed of the columns in dictionary D1 that make up the support set
Ak is denoted as DAk ∈ Rn×|Ak|, then:

DT
Ak

(
DAk αAk − s

)
= −DT

Ak rk = 0 (4)

The inner product of any two atoms in the Fourier dictionary is zero since they are
sine wave unit functions of particular frequency and orthogonal to each other. From an
energy standpoint, interpreting the vibration signal is as follows:

‖ s ‖2
2=‖ DAk αAk + rk ‖ 2

2 =
k

∑
i=1

a2
Ak+ ‖ rk ‖2

2 (5)

To separate harmonic components, an adaptive orthogonal matching pursuit method
(adapOMP) is utilized. Because harmonic and modulation components are scattered on sine
waves of specified frequencies, we may compute using the sparse coefficients of these atoms,
as shown in Formula (5). Assuming that the maximum value of sparse coefficients obtained
after k iterations is a and the minimum value is b, when a > ρb, iteration stops outputting
sparse coefficients. In order to better recover signals, ρ = 5 can be set through experiments.
The final residual signal is the composite signal of impact component and noise.

The harmonic signal can be separated quickly and efficiently by using adaptive or-
thogonal matching pursuit algorithm. We performed a comparative analysis of different
algorithms on signals with specific harmonics and noise added and evaluated the results
as Table 1 [34].

Table 1. Performance of different methods to extract harmonic components.

adapOMP Wavelet EEMD

Accuracy 0.9899 0.7218 0.9684
Time/s 2.29311 0.60673 62.10588

The adapOMP has the strongest harmonic extraction ability and less time when it is
used alone.

(2) The improved K-SVD algorithm

A feature extraction approach of learning vocabulary is presented to address the issue
that the pre-built lexicon has low flexibility when faced with various forms of failure signals.
Dictionary learning may improve the feature information extraction for various fault signal
kinds, reducing the interference of extraneous information and enabling the identification
of the fault types. The sparse representation solution and dictionary learning are the two
crucial elements in the sparse feature extraction approach [35]. To better detect the defect
information, we enhance the K-SVD algorithm to optimize the halting criterion of the
dictionary learning feature extraction approach.

In order to lessen the sparsity of the sparse coefficient matrix corresponding to the
dictionary, the over-complete dictionary learning method K-SVD is suggested. The atoms
learnt by K-SVD may then be utilized to reflect the original signal more accurately. The
issue can be summarized as follow:

min
D,α
‖ s−Dα ‖2

2 < ε s.t. ‖ αi ‖0 ≤ T (6)



Processes 2022, 10, 1734 5 of 25

In the formula, s ∈ Rm×n represents the original signal, D ∈ Rm×K represents the dic-
tionary matrix containing K atoms dk, and α ∈ RK×n represents the sparse coefficient matrix,
where m represents the number of samples and n represents the properties of samples.

The sparse coding and dictionary learning phases of the K-SVD technique are sepa-
rated. The orthogonal matching pursuit method with enhanced error threshold (OMPerr)
is employed in place of the orthogonal matching pursuit algorithm in the sparse represen-
tation solution step, and the objective function and constraint conditions of Equation (6)
are modified:

min
D,α
‖ αi ‖0 s.t. ‖ si −Dαi ‖2

2 ≤ ε (7)

The biggest benefit of changing the constraint condition is that the program no longer
needs to be stopped by setting the sparsity. It also avoids issues where the original signal
cannot be accurately restored due to the sparsity of the sparse coefficient matrix not
meeting the precision requirement due to insufficient iterations, as well as issues where the
calculation takes too long due to excessive iterations. When the error of the original signal
and sparse approximation is less than a predetermined amount, the iteration is halted
thanks to the objective function’s error Goal setting, allowing for the accurate form of the
signal to be retrieved and a more accurate reconstruction to be produced.

D ∈ Rm×K, si ∈ Rm×1, αi ∈ RK×1

s = {si}n
i=1, α = {αi}n

i=1
(8)

The meaning of each symbol in Formula (8) is the same as that of the symbol in the
Formula (6), where α is the set of solution vectors of s. By resolving the optimization issue
in Formula (7) using sparse representation, you may obtain the sparse coefficient vector
that corresponds to the initialization dictionary. The dictionary is then updated column by
column during the dictionary learning stage using the sparse vectors produced from the
sparse coding method. Consider updating the kth atom of the dictionary (designated as dk)
and the kth coefficient of the sparse coefficient matrix (designated as αk

T).

‖ s−Dα ‖2
F=‖ s−

K
∑

j=1
djα

j
T ‖2

F

=‖
(

s−
K
∑

j 6=k
djα

j
T

)
− dkαk

T ‖2
F

=‖ Ek − dkαk
T ‖2

F

(9)

where Ek = s− ∑K
j 6=k djα

j
T represents the calculation of residual error. In this case, the

optimization problem is transformed into:

min
dk ,αk

T

‖ Ek − dkαk
T ‖2

F (10)

To obtain the least amount of error, the best dk, αk
T solution must be found. This is

a least squares issue that can be resolved using the singular value decomposition or the
least squares approach (SVD). The SVD approach is employed in this study to find the best
possible combination of two variables. Further reducing the computation dimension, the
elements in Ek and αk

T that correspond to zero elements y(t) are removed to create a new
residual matrix E′k.

Using mathematical expressions to describe this step is the sparse coefficient vector
is not zero position in 1, the location of the zero element as 0, that is to set up a set
of Ak =

{
i|1 < i < K, αk

T(i) 6= 0
}

to represent the index value when αk
T 6= 0. Define a
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N×l(Ak) matrix, Bk. The element at position (Ak(i), i) is 1, and elements at other positions
are 0, that is:

E′k = EkBk
α′kT = αk

TBk
s′k = skBk

(11)

At this point, the target equation can be described as:

min
dk ,αk

T

‖ E′k − dkα′kT ‖2
F (12)

Therefore, to find the best dk, α′kT , we need to perform singular value decomposition
of E′k.

E′k = U∆VT (13)

The first column u1 = U(·, 1) of the left singular matrix U is taken as dk, that is,
dk = u1. Take the product of the first row of the right singular matrix and the first singular
value as α′kT , that is, α′kT = ∆(1, 1)VT(1, ·).

Using this technique, one may create a new learning dictionary by replacing each of
the columns in the original dictionary. Through this repeated process, the dictionary matrix
and coefficient matrix corresponding to the original signal s can be found again and again.
The iteration ends if ‖ s−Dα ‖2

2< ε.
By improving sparse representation method, harmonic components and part of noise

can be well removed, which plays an active role in bearing fault extraction.

2.2. Fault Feature Extraction Based on EEMD

Empirical mode decomposition (EMD) is an adaptive time–frequency localization
method, which can be used to analyze and process nonlinear and non-stationary signals [36].
However, EMD also has some shortcomings in the decomposition process. For example,
the eigenmode function is easy to produce mode mixing phenomena in the decomposition
process, and the signal end effect will also affect the decomposition effect of EMD [37].
EEMD is proposed to improve EMD decomposition, which mainly uses the feature that
the mean value of white noise is zero, adding evenly distributed white noise for many
times in the decomposition process, covering up the noise of the signal itself by artificially
adding white noise, filling up the missing frequency space in the original signal completely,
making it continuous in the time-domain, changing the size of extreme points, obtaining
a more accurate upper envelope and lower envelope, thus affecting the effect of signal
decomposition and further reducing the occurrence of modal aliasing. After many times of
average calculation, the influence of noise on the signal is minimized. The more times of
calculation, the smaller the influence of noise on the signal.

(1) EEMD decomposition method

EEMD decomposition is performed on the signal y(t), and N groups of different white
noises n = [n1(t), n2(t), n3(t), . . . , nN(t)] are added to the original signal for decomposition.
The decomposition process is shown in Table 2:
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Table 2. EEMD decomposition process.

EEMD algorithm

Input: Original signal y(t), number of original signal processing times N, number of iterations
i = 0;
Step 1: Adding white noise to the original signal y(t) to obtain y1(t);
y1(t) = y(t) + n1(t)
Step 2: EMD decomposition of the noised signal was performed to obtain K IMF components and
residual components.

1. Let r0(t) = y1(t); a = 0;

2. Calculate the ath IMF component;

1© Initialize h0(t) = ra−1(t), j = 1;

2© Find out the local extreme point of hj−1(t);

3© The maximum and minimum points of hj−1(t) are interpolated by cubic spline function to
form the upper envelope and the lower envelope;

4© Calculate the average of the upper and lower envelopes mj−1(t);

5© hj(t) = hj−1(t)−mj−1(t);

6© Judge whether hj(t) meets the conditions of IMF, if so, IMFj(t) = hj(t); If not, j = j + 1 and
continue the steps 2©– 6©;

3. Separate IMF component IMFa from signal ra−1(t) to obtain residual signal ra(t),
ra(t) = ra−1(t)− IMFa(t);

4. Judging whether the residual signal is less than a given threshold, if it is less than the given
threshold, stopping iteration and outputting IMF components; if no, a = a + 1, repeat
2–4 steps until the residual signal is less than the given threshold. Finally, the following can
be acquired:

y1(t) =
K
∑

k=1
IMFik + rik

Step 3: Let i = i + 1, repeat steps 2 to 3 until i = N;
Step 4: Calculate the IMF component obtained by EEMD decomposition dk.

dk = 1
N

N
∑

i=1
IMFik

EEMD decomposes into multiple IMF components, and we need to determine which
IMF components are the true components of the signal and which IMF components are
the false and meaningless components of the signal. We need to choose the real IMF
component to reconstruct the signal, and the remaining IMF components are discarded as
meaningless components in the process of reconstructing the signal. However, in order to
avoid wrong selection or omission of some real IMF components, we use the correlation
coefficient between the original signal and IMF components and the kurtosis value of IMF
components as indicators to select real IMF components for signal reconstruction.

The cross-correlation coefficient Rc between the real signal y(i) and the IMF component
x(i) is defined as:

ρj =
Cov(x,y)

std(x)std(y)

=
∑N

i=1(y(i)−y(i))(x(i)−x(i))√
∑N

i=1(y(i)−y(i))
2

∑N
i=1(x(i)−x(i))

2

(14)

where, ρj is the correlation coefficient between the real signal and the IMF component, j
represents the jth IMF component, i is the data point, N is the signal length, Cov(x, y) is
the covariance between the real signal and IMF component, and std(x) and std(y) are the
standard deviations between the real signal and the IMF component.
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In order to select IMF components that are closely related to the original signal
for signal reconstruction, a threshold is introduced to limit the selection of IMF com-
ponents, namely:

TH =

√
1

n− 1 ∑n
j=1

(
ρj − ρ

)2 (15)

where: n is the number of layers of the original signal decomposed by the EEMD method.
In this way, the whole formula becomes the standard deviation of the correlation coefficient
between the total IMF component and the original signal. The IMF component larger than
TH can be regarded as a real component, otherwise it is regarded as a false component.
The real IMF components are selected to extract the transient impact components of each
IMF component. After the selected IMF components that are correlated with the original
signal, it is also necessary to determine whether the modified components contain obvious
impact components. At this time, it is determined whether the component contains an
impact component by using the kurtosis value of the calculated signal.

Kurtosis is a dimensionless parameter describing the x distribution characteristics of
a signal, which is particularly sensitive to the impact components, and its expression is
as follows:

K =
1
n

N

∑
i=1

(
x(i)− x(i)

)4

std(x)
(16)

where n is the number of data points of the signal, x(i) is the average of IMF components,
and std(x) is the standard deviation of the signal.

Generally, it is considered that when the kurtosis value is greater than 3, the shock
characteristics of the signal are more obvious. When the kurtosis value is less than 3, the
shock characteristic of the signal is not obvious [38]. In order to extract the transient impulse
components from IMF components and reconstruct the signals, the IMF components whose
cross-correlation coefficient is greater than 0.3 and the kurtosis value is greater than 3, which
are correlated with the original signals, are selected for subsequent sparse representation.
After sparse denoising, the IMF components are reconstructed to obtain reconstructed
signals with rich transient impulse components, and it is easier to judge the fault frequency
and fault types of rolling bearings.

(2) One-dimensional signal folding and hard threshold reconstruction

Through the cross-correlation coefficient and kurtosis value, the IMF component,
which contains the impact component and has great correlation with the original signal,
is selected for further sparse denoising. Then, the processed IMF components are recon-
structed, and then the fault frequency is calculated by the envelope spectrum to judge the
fault type.

We need to combine the EEMD algorithm with the K-SVD algorithm to extract fault
features. The requirement of K-SVD calculation is that the number of columns of the matrix
must be greater than the number of rows of the matrix, that is, the dictionary needs to be
an over-complete dictionary. When K-SVD is used to process one-dimensional signals, the
signals to be processed can be converted into the Hankel matrix for calculation [39]. The
Hankel matrix is a matrix with equal elements on every diagonal line, but the number
of columns of the matrix is larger than the number of rows in K-SVD processing, so the
Hankel matrix is deformed, that is, the number of elements in each row is larger than that
in each column, forming a flat matrix. The IMF component I = [i1 i2 i3 . . . in] is arranged in
the Hankel matrix. Namely:

H = Hankel(I) =


i1 i2 i3 . . . iK
i2 i3 i4 . . . iK+1
...

...
...

. . .
...

id id+1 id+2 . . . in


d×K

(17)
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Dictionary learning requires K to be much greater than d. Sparse representation is
carried out with the Hankel matrix containing K signals and each signal dimension of d as
input. Each signal contains the information in the original signal, and the latter signal is
obtained by the shift of the previous signal, so K signals contain all the information in the
original signal. In addition, in the calculation process, each signal needs to be calculated
by K-SVD to obtain the learning dictionary and sparse coefficient matrix. The learning
dictionary and sparse matrix are multiplied to restore to the form of the Hankel matrix,
and the inverse Hankel function is used to restore to the form of one-dimensional signal.

A learning dictionary and the related sparse representation coefficient matrix are
generated for each segment of the original signal throughout the signal reconstruction
process. The reconstruction signal is then created by multiplying the learning dictionary by
the sparse coefficient vector. However, a tiny amount of noise will still perturb the atoms
in the learning dictionary. To partially filter out the low-frequency harmonics and noise
components, a hard threshold can be implemented. The following optimization issues can
be resolved with hard thresholds:

argmin
X
‖ X− B ‖2

2 +λ ‖ X ‖0 (18)

where X = [x1, x2, . . . , xn]
t, B = [b1, b2, . . . , bn]

t. ‖ X ‖0 is the zero norm of vector X, and
the terms of vector in Equation (18) can be disassembled as:

F(x) =‖ X− B ‖2
2 +λ ‖ X ‖0

=
[
(x1 − b1)

2 − λ|x1|0
]
+
[
(x2 − b2)

2 − λ|x2|0
]
+ · · ·+

[
(xn − bn)

2 − λ|xn|0
]

= ∑n
i=1[(xi − bi)

2 − λ|xi|0]
(19)

where |xi|0 =

{
1 , xi 6= 0
0 , xi = 0

, each term in Equation (19) can be written as:

f (x) =
{
(x− b)2 + λ , x 6= 0
b2 , x = 0

(20)

when x 6= 0, the minimum value of function f (x) is obtained at x = b, and the minimum
value is λ; when x = 0, the value of function f (x) is b2. In order to get the minimum
value, it is necessary to compare the sizes of b2 and λ. If b2 > λ, the minimum value of the
function is obtained at x = b; If b2 < λ the minimum value of the function is obtained at
x = 0. That is:

argmin f (x) =

{
0 |b| <

√
λ

b |b| >
√

λ
(21)

b is regarded as a variable, is regarded as a threshold, and Formula (21) is a hard threshold.
The optimization problem of Formula (18) can be written as follows:

X = hard
(

B,
√

λ
)
=

{
0 |B| <

√
λ

B |B| >
√

λ
(22)

Use all the elements in vector B, compare with the threshold, discard the elements
less than the threshold, and keep the elements greater than the threshold. When B is a
matrix, this formula can still be used, and each element in the formula is compared with the
threshold to make a choice. A more intuitive function image is used to represent the hard
threshold function. Let the function y = x, x ∈ [−3, 3] and the threshold value be 1. The
image is shown in Figure 1. All the function values whose absolute value is less than the
threshold value are discarded, and the function values whose absolute value is greater than
the threshold value are retained.
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After the original signal is divided and converted into the Hankel matrix, the learning
dictionary matrix and sparse coefficient vector are obtained by K-SVD calculation. However,
due to the influence of noise, the atoms of learning dictionary will still be affected by some
noise. Using the hard threshold denoising method to remove smaller elements in dictionary
atoms and further eliminate noise interference, the learning dictionary optimization model
can be obtained as follow:

argmin
D1
‖ D1 −D ‖2

2 +λ ‖ D1 ‖0 (23)

By setting a hard threshold to further eliminate noise interference, the optimized
dictionary D1 is obtained. Usually, there are two ways to set the threshold. One is to debug
through conventional artificial experiments, check the output results, and select the optimal
threshold value. The second is to look for an index of the signal to choose, such as the
signal-to-noise ratio of the noise-reduced signal as an index, and then set the corresponding
threshold to the optimal value when the signal-to-noise ratio is the maximum. Through
a series of tests, the threshold is set to 0.2 in this paper to further optimize the learning
dictionary. Use the optimized dictionary to reconstruct the signal, that is:

H′ = D1x =


i′1 i′2 i′3 . . . i′K
i′2 i′3 i′4 . . . i′K+1
...

...
...

. . .
...

i′d i′d+1 i′d+2 . . . i′n


d×K

(24)

The reconstructed Hankel matrix is transformed into a one-dimensional signal, and
several pieces of signals are merged together to restore the original signal. At this time, the
signal with K-SVD denoising is obtained. The envelope spectrum analysis is carried out to
determine the fault frequency of rolling bearing and judge the fault type of rolling bearing.

Combined with the hard threshold denoising EEMD and sparse representation method,
the capability of fault feature extraction is further improved.

3. Bearing Fault Feature Extraction Method Based on Improved Sparse Representation
and EEMD Algorithm

The process of the bearing fault feature extraction method based on improved sparse
representation and EEMD algorithm can be divided into three stages:

Stage 1: Preprocess and separate the mixed harmonic signals in the original signal by
using the adapOMP algorithm combined with the Fourier dictionary.
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Stage 2: Combined with hard threshold denoising, the signals of the previous stage are
decomposed by the EEMD algorithm, and the selected IMF components are transformed
by the Hankel matrix to build the initial learning dictionary.

Stage 3: Finally, the signal is processed by the K-SVD algorithm with improved
termination criterion.

Finally, the signal with obvious fault characteristics can be obtained through signal
reconstruction.

Details are shown in Figure 2.
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4. Signal Simulation Analysis

Construct a composite signal composed of harmonics and their modulation compo-
nents, transient impact components, and noise, and its mathematical expression is:

y(t) = ∑
k

h(t− T0 − kT) + s(t) + n(t)

h(t) = e−αt sin(2π fzt)(sin(2π frt) + C)
s(t) = cos(2π × 3.5t) + (2 + cos(2π × 2.5t)) cos(2π × 35t)

(25)

The transient impact component is h(t), the harmonic and its modulation component
is s(t), and the noise component is n(t). The initial fault location is 0.026 s, the fault period
is 0.1 s, and the fault frequency is 10 Hz. The attenuation index is α = 1200, the natural
frequency fz is 2000 Hz, the sampling frequency fr is 2000 Hz, the sampling time is 1 s, and
the number of sampling points is 2000. Add Gaussian white noise with a mean value of 0, a
variance of 1, and an amplitude of 0.25. The time-domain waveform is shown in Figure 3.
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Figure 3. Synthetic signal time-domain waveform. (a) Harmonic components; (b) Impact compo-
nent; (c) Noise; and (d) Synthetic signal. 

First, randomly build a 2000 × 4000 Fourier frequency dictionary, and use the adap-
tive orthogonal matching pursuit algorithm to eliminate harmonics and their modulation 
components in the coincidence signal, and get the sparsity of five, which appears at the 
atomic position and the sparsity coefficient as shown in Table 3. Comparing the extracted 

Figure 3. Synthetic signal time-domain waveform. (a) Harmonic components; (b) Impact component;
(c) Noise; and (d) Synthetic signal.

First, randomly build a 2000× 4000 Fourier frequency dictionary, and use the adaptive
orthogonal matching pursuit algorithm to eliminate harmonics and their modulation
components in the coincidence signal, and get the sparsity of five, which appears at the
atomic position and the sparsity coefficient as shown in Table 3. Comparing the extracted
harmonic components with the original harmonic components, as shown in Figure 4,
red represents the harmonic components, and blue represents the harmonic components
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removed from the composite signal, with a cross-correlation coefficient of 0.9992. The
harmonic and its modulation components can basically be removed from the original
signal, that is, only transient pulse components and noise are left in the original signal. As
shown in Figure 5.

Table 3. Sparse representation coefficients of different atoms.

Number of Atoms The number of columns of atoms Sparse Coefficient

NO. 1 8 32.1725
NO. 2 66 15.9327
NO. 3 71 63.0780
NO. 4 76 16.0119
NO. 5 2521 3.1795
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The adaptive orthogonal matching pursuit algorithm is used to eliminate harmonics
and their modulation components, and the coincidence signal of transient impact com-
ponents and noise is obtained. Then, the obtained one-dimensional signal is converted
into the Hankel matrix. When using the K-SVD algorithm, the number of columns of the
matrix is much larger than the number of rows of the matrix. If the matrix is too large, the
calculation speed of K-SVD will be affected. If the matrix is too large, the algorithm will not
converge, and the desired result will not be obtained. Therefore, how to design the ratio of
rows to columns in the Hankel matrix and how to segment long signals are discussed to
find the best signal conversion and segmentation results. Take the simulation signal in this
section as an example: the signal length is 2000, and the number of rows and columns of the
Hankel matrix is equal to the signal length plus 1, because the K-SVD algorithm requires
that the number of rows of signals is less than the number of columns. By changing the ratio
of rows to columns, the size of the Hankel matrix is changed, and the representative rows
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of 100 and integer multiples of 100 are selected for display until 1000 rows. The kurtosis
and signal-to-noise ratio of K-SVD denoised signal are calculated to determine the optimal
ratio of rows and columns for Hankel. It is determined that the number of training atoms
is 1000 without changing, and the number of iterations is 10 times. The initial dictionary
is obtained by processing the original signal. Based on the statistical calculation time of
Intel(R) Core(TM) i5-6300HQ CPU @ 2.30 GHz 2.30 GHz laptop, the obtained denoising
effect is shown in Figure 6. And Figure 6a–e are time-domain waveforms of Hankel matrix
after denoising by K-SVD algorithm when the number of rows is respectively 200, 400, 600,
800 and 1000. The time-domain waveform of the Hankel matrix after denoising by the
K-SVD algorithm can be calculated by many experiments, and the fitting curve between
the ratio of rows and columns of the Hankel matrix and the kurtosis value can be obtained
as shown in Figure 7. The data of some points are shown in Table 4, and the best denoising
effect can be obtained when the ratio of rows and columns of the Hankel matrix is one
quarter, and the calculation time changes with the increase in rows.
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Figure 6. Hankel matrix transformation test. (a) 200 lines; (b) 400 lines; (c) 600 lines; (d) 800 lines; 
and (e) 1000 lines. 

Figure 6. Hankel matrix transformation test. (a) 200 lines; (b) 400 lines; (c) 600 lines; (d) 800 lines;
and (e) 1000 lines.
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Table 4. Running results of K-SVD denoising with different row and column numbers of Hankel matrix.

Number of Rows of
Hankel Matrix Kurtosis Value SNR/dB Computation Time/s

100 15.3153 4.0148 50.4658
200 17.8791 4.3391 53.2103
300 18.5167 4.1707 63.8960
400 21.8418 4.7661 71.1505
500 19.2848 3.6185 80.7429
600 18.6705 4.0331 89.7161
700 16.4795 3.0793 97.4496
800 15.5061 1.7097 115.3987
900 14.8428 1.9012 123.7318

1000 10.9689 0.2762 131.8154

In actual signals, the number of sampling points is often large and the signal length is
long. If it is directly converted into the Hankel matrix, the matrix will be too large, which
will lead to too long a calculation time and even lead to non-convergence of the algorithm.
Next, consider the influence of subsection calculation on the algorithm. According to the
simulation signal, 2000 data points are divided into four groups of control experiments,
including one segment, two segments, four segments, and five segments. It is determined
that the ratio of rows and columns of the Hankel matrix in each segment is 1 to 4. When
running the K-SVD algorithm, the number of trained dictionary atoms is twice the number
of rows of the Hankel matrix, and the time-domain waveform of its de-noising signal is
shown in Figure 8a–d. The specific data of the time-domain waveforms of the denoised
signals in segments four and five are shown in Table 5. By calculating the kurtosis value
and the signal-to-noise ratio, it can be seen that when the original signal is divided into
four segments, that is, 500 data points in each segment are calculated, a better denoising
effect can be obtained, and the calculation time can be greatly shortened. In the long signal
processing, we can divide the original signal into 500 data points and transform it into a
Hankel matrix of 100 × 401 size for K-SVD denoising, which can improve the accuracy of
signal reconstruction, shorten the calculation time, and better identify the fault type.
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Table 5. Running results of K-SVD denoising with different number of segments of Hankel matrix.

Number of Rows of Segments Kurtosis Value SNR/dB Computation Time/s

1 24.8418 4.7661 63.8960
2 14.2476 3.0434 16.6846
4 23.2620 4.9459 6.3514
5 21.3881 4.7473 6.4313
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After many experiments, the signal decomposition scheme is determined as 500 data
points per segment, which is transformed into a 100 × 401 Hankel matrix for K-SVD
decomposition, and the segmented orthogonal matching pursuit algorithm and hard
threshold algorithm are used to further denoise the signal. EEMD pre-denoise the signal
excluding harmonic components, setting the added noise amplitude to be 0.25 and the
lumped average times to be 1000 times. The IMF components after EEMD decomposition
are shown in Figure 9, showing only the first eight layers. The kurtosis values of IMF1-IMF8
components and the correlation coefficients with the original signals are shown in Table 6.

Processes 2022, 10, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 9. EEMD decomposition results of simulated signals. Figure 9. EEMD decomposition results of simulated signals.



Processes 2022, 10, 1734 17 of 25

Table 6. Correlation coefficients of IMF components of simulated signals and their kurtosis indexes.

Correlation Coefficient Kurtosis Value

IMF1 0.7973 6.6059
IMF2 0.4127 4.1886
IMF3 0.2239 3.3812
IMF4 0.1840 3.2547
IMF5 0.1500 3.0936
IMF6 0.1038 2.7075
IMF7 0.0786 3.0126
IMF8 0.0550 2.3138

By calculating the standard deviation of the correlation coefficient of the IMF compo-
nent, the threshold value is 0.2478, only the correlation coefficients of the IMF1 component
and the IMF2 component with the original signal are greater than this threshold value,
and the kurtosis values of the IMF1 component and the IMF2 component are both greater
than 3.0, which indicates that the IMF1 component and the IMF2 component have great
correlation with the filtered signal and contain rich impact components, so the IMF1 com-
ponent and the IMF2 component are selected for sparse denoising. The hard threshold
coefficient is determined to be 0.2 through many artificial experiments. The time-domain
waveforms of the IMF1 component and the IMF2 component before and after denoising are
shown in Figures 10 and 11. All the transient impact components in the original signal have
been preserved, and most of the noise components have been eliminated. The signals after
sparse denoising of the IMF1 component and the IMF2 component are reconstructed to
obtain the reconstructed signal, as shown in Figure 12, and the envelope spectrum analysis
of the reconstructed signal is shown in Figure 13.

There is almost no clutter in the envelope spectrum of the reconstructed signal; which
shows that its noise and harmonic components are clear and clean, and the 15th harmonic
or even more of the fault frequency can be clearly observed, which is enough to show
that this method has a good suppression effect on harmonic components and noise when
extracting transient impact components.
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5. Experimental Verification and Analysis 
The gearbox dynamics simulator (GDS) produced by Spectra Quest of the United 

States was employed to build the experimental platform and simulate the data. After the 
data is collected, it would be analyzed by the algorithm in this paper in order to further 
confirm the efficacy of the approach suggested in this study in isolating transient impact 
components against a significant noise background. The signal acquisition device, motor, 
gear box, and load device are the four components that make up the testbed. The signal 
acquisition instrument and a piezoelectric sensor make up the acquisition equipment. A 
power unit is made up of the motor, a 3 HP three-phase asynchronous motor with a max-
imum speed of 5000 rpm, a rotary speed controller, and various display devices. In Figure 
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Using a HG-8916 data acquisition system, the maximum sampling number of the sig-
nal acquisition card is 32,768, and the maximum sampling frequency is 50 kHz, which is 
saved in .txt format and imported into MATLAB for analysis. During the experiment, due 
to the limitation of conditions, acceleration sensors can only be installed outside the gear 
box to collect vibration data. Sensors are installed at seven positions in total, and their 
installation positions and measuring points are shown in Figure 15. Among them, piezo-
electric acceleration sensors are installed at measuring points P1 to P6 to collect vibration 
data, and laser speed sensors are installed at measuring point P7 to measure motor speed. 
The experimental bearing is a ER-16K deep groove ball bearing, which supports the input 
shaft at the driving end. The bearing parameters are shown in Table 7. 
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5. Experimental Verification and Analysis

The gearbox dynamics simulator (GDS) produced by Spectra Quest of the United
States was employed to build the experimental platform and simulate the data. After the
data is collected, it would be analyzed by the algorithm in this paper in order to further
confirm the efficacy of the approach suggested in this study in isolating transient impact
components against a significant noise background. The signal acquisition device, motor,
gear box, and load device are the four components that make up the testbed. The signal
acquisition instrument and a piezoelectric sensor make up the acquisition equipment.
A power unit is made up of the motor, a 3 HP three-phase asynchronous motor with a
maximum speed of 5000 rpm, a rotary speed controller, and various display devices. In
Figure 14, the test bench is seen.
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Using a HG-8916 data acquisition system, the maximum sampling number of the
signal acquisition card is 32,768, and the maximum sampling frequency is 50 kHz, which
is saved in .txt format and imported into MATLAB for analysis. During the experiment,
due to the limitation of conditions, acceleration sensors can only be installed outside the
gear box to collect vibration data. Sensors are installed at seven positions in total, and
their installation positions and measuring points are shown in Figure 15. Among them,
piezoelectric acceleration sensors are installed at measuring points P1 to P6 to collect
vibration data, and laser speed sensors are installed at measuring point P7 to measure
motor speed. The experimental bearing is a ER-16K deep groove ball bearing, which
supports the input shaft at the driving end. The bearing parameters are shown in Table 7.
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Table 7. Test bearing specific parameters.

Projects Parameters

Bearing Designation ER-166K
Pitch diameter D/mm 38.506

Rolling elements diameter d/mm 8.006
Number of rolling bodies 9

Contact angle β/◦ 0
Fault type Pitting of bearing outer ring

In this experiment, the sampling frequency is 20 kHz, the motor frequency is 23.5 Hz,
the acquisition time is 1 s, and there are 20,000 data points in total. According to the bearing
data, 83.94 Hz is the outer ring fault frequency. A total of 10,000 data points within 0.5 s
are intercepted for analysis in this part, and Figure 16 displays the time-domain waveform
and its envelope spectrum. The transient impact component is completely masked by the
strong background noise and harmonic components, as can be seen from the time-domain
waveform, and only the fault characteristic frequency of its second harmonic frequency
can be seen in the envelope spectrum. As a result, it is challenging to determine the type
of bearing fault because all other harmonic frequencies are completely masked by the
high-frequency harmonic components and noise. In this paper, a method is presented for
separating the transient pulse components from the original signal and determining the
various rolling bearing fault types.
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First, the harmonic and modulation components are separated using the adaptive
orthogonal matching pursuit technique, and a 10,000 × 20,000 entry over-complete Fourier
dictionary is created. The sparsity is six, and it could be found at the atoms of the six Fourier
dictionaries, which are, in order, the 39th, 77th, 6998th, 7036th, 16,323rd, and 16,361st. The
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original signal is filtered to remove harmonics and low-frequency noise, and Figure 17
displays the resulting signal. The adaptive orthogonal matching pursuit technique has
removed most of the harmonic signals from the original signal, progressively revealing
the transient impact component. Then, two approaches are compared. One is to use the
K-SVD algorithm with an improved termination criterion for noise reduction, the other is
to combine the EEMD algorithm with the K-SVD algorithm for noise reduction, and the
results are compared.
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The filtered signal is decomposed by EEMD, and the amplitude of added white noise is
set at 0.25, and the lumped average times are 1000 times. The results of the IMF components
in the first eight layers are shown in Figure 18, and the results of cross-correlation coefficient
and kurtosis between each IMF component and the original signal are shown in Table 8.

Table 8. Correlation coefficients of IMF components of simulated signals and their kurtosis indexes.

Correlation Coefficient Kurtosis Value

IMF1 0.7900 3.3974
IMF2 0.5004 4.5938
IMF3 0.3566 4.0362
IMF4 0.2115 2.9451
IMF5 0.1502 3.1064
IMF6 0.1045 2.7361
IMF7 0.0998 5.2383
IMF8 0.1374 3.4804

By calculating the standard deviation of the first eight decomposed IMF components,
the threshold value is set at 0.2444; that is, IMF components with correlation coefficients
greater than this threshold value are regarded as real components. In Table 8, the correlation
coefficients of the three components of IMF1, IMF2, and IMF3 with filtered signals are
all greater than the set threshold value, indicating that these three components have
a strong correlation with filtered signals, and their kurtosis is greater than 3.0, which
contains obvious impact components. Therefore, IMF1, IMF2, IMF3 are selected. Each
IMF component contains 10,000 data points, which are divided into 20 segments with
500 data points in each segment and converted into a Hankel matrix of 100 × 401 for
K-SVD denoising. The number of atoms trained in each segment is 200, and finally the
hard threshold is set at 0.2. The result is shown in Figure 18.
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Figure 18. EEMD decomposition results. Figure 18. EEMD decomposition results.

Sparse denoising is performed on the IMF1, IMF2, and IMF3 components, and the time-
domain waveforms before and after denoising are shown in Figures 19–21, respectively.
In the time-domain waveform diagram of the IMF component denoising, we can see that
most of the noise has been removed, and the periods of each transient impact component
are obvious, and there is basically no noise interference between every two periods. The
signals after sparse denoising of IMF1, IMF2, and IMF3 are reconstructed to obtain the
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reconstructed signal as shown in Figure 22e, and the envelope spectrum of the reconstructed
signal is shown in Figure 22f. From the envelope spectrum of the reconstructed signal, it
can be seen that the fault frequency and its frequency doubling of the rolling bearing are
obvious, and the interference of harmonics and their modulation components and noise
components is small.
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Figure 22. Signal processing results of different methods. (a) Direct time-domain analysis of signals;
(b) Direct frequency domain analysis of signals; (c) Time-domain analysis of signals using improved
sparse representation algorithm; (d) Frequency-domain analysis of signals using improved sparse
representation algorithm; (e) Time-domain analysis of the signal using the algorithm in this paper;
and (f) Frequency domain analysis of the signal using the algorithm in this paper.
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Three methods are used to analyze the same signal and the results are compared.
Through direct time-domain analysis and frequency-domain analysis, the fault components
in bearing operations can be preliminarily found, but it is only sensitive to the step signal
of one frequency (Figure 22a,b). Further, the adapOMP algorithm is used to filter the
signal, and the K-SVD algorithm with improved termination criteria is used to analyze the
filtered signal shown in Figure 22c. It can be seen that the fault characteristics of the bearing
can be clearly displayed, but the processing ability for low-frequency signals is still weak
(Figure 22d). Furthermore, this paper purposely selects hard threshold denoising to process
low-frequency harmonics and noise in the signal. The reconstructed signal is shown in
Figure 22e and further analyzed by the EEMD algorithm. The final frequency-domain
envelope spectrum is shown in Figure 22f. Compared with the first two methods, this
method expands the available range of fault identification

6. Conclusions

In this paper, aiming at the problem that it is difficult to extract rolling bearing
faults online, a bearing fault feature extraction method based on the EEMD algorithm
and improved spare representation is proposed, Firstly, an adaptive OMP (adapOMP)
algorithm and K-SVD algorithm with improved termination criteria are proposed, thus
forming an improved sparse representation method. In some cases, the improved sparse
representation method can already extract some fault features, but the effect is not good in
a low-frequency range. Therefore, combining the improved sparse representation method
with the EEMD method of hard threshold denoising can well separate the fault features in
simulation and experimental verification. The main features of this algorithm are:

(1) By constructing a Fourier dictionary, the OMP algorithm is improved to make it more
adaptive to harmonic signals.

(2) The decomposition results of EEMD are processed by hard threshold denoising, which
solves the problem that the IMF component is not obvious.

(3) The K-SVD algorithm is improved with OMPerr. After the improvement, the algo-
rithm automatically selects the sparsity with the best performance without manual
selection, which improves the efficiency and accuracy of algorithm processing.

This method improves the shortcomings of the previous methods that are insensitive
to low-frequency signals and broadens the scope of application of the algorithm. However,
although we strive to improve the algorithm to make it as adaptive as possible to reduce
the number of its parameter settings, thereby reducing the influence of the operator’s
knowledge level on the applicability of the algorithm, there are still some parameter
settings that depend on experience. In the future, the end-to-end data-driven approach or
the model-data-fusion driven approach may further address this issue.
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