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Abstract: The combined heating and power (CHP) plants are considered one of the promising
methods to support the goal of “Carbon Peak and Carbon Neutrality”. It is an important means to
take heat and power load optimal dispatch (LOD) to further reduce the energy consumption of CHP
plants. To achieve a better load dispatch scheme, this paper employs a potent algorithm by integrating
the grey wolf optimization (GWO) algorithm and the Levy flight (i.e., Levy–GWO algorithm) to
overcome premature convergence. Moreover, the constraint condition processing method is also
proposed to handle the system constraints for ensuring the results within feasible zones. To confirm
the effectiveness of this algorithm, it is tested on two widely used test systems (Test system I and
Test system II). The accuracy of the used algorithm is proved by comparing the obtained results
and reported data in other literature. Results show that the Levy–GWO algorithm can be used to
obtain relatively lower power generation costs, with the values of 9231.41 $/h (Test system I) and
10,111.79 $/h (Test system II). The proposed constraint processing method effectively solves the
problem that load optimal dispatch scheduling is difficult to solve due to the existence of multiple
constraints. In addition, the comparison results indicate that the Levy–GWO algorithm owns a better
robustness and convergence effect and has a promising application for solving LOD problems.

Keywords: CHP plants; grey wolf algorithm; Levy flight; load dispatch; economic operation

1. Introduction

Recently, “carbon peak and carbon neutrality” has become one of the hot topics with
the increasing concern about global warming [1]. Accordingly, the energy industry is
affected greatly, owing to its biggest carbon emission [2,3]. To reduce carbon emissions,
many efforts have been denoted to achieve it, such as low-grade heat recovery [4,5],
utilization of clean energy [6,7], energy storage [8,9], and the development of advanced
power cycles [10,11]. It is also a possible scheme to develop a combined heating and power
plant, owing to its higher energy conversion efficiency [12,13]. According to the reported
literature, the energy efficiency of CHP units can achieve 70% and above [14], and the costs
will reduce by 20%~30% compared to those of conventional plants [15].

Moreover, to pursue a lower cost and reduce fuel consumption, the CHP plants have
to deal with the load optimal dispatch (LOD) problem, providing an economic allocation
of heating and power load instructions during the actual operation. A good load optimal
dispatch (LOD) contributes to energy saving and consumption reduction well, which is
reported to save 0.5% ~ 1.5% fuel in practical production [16,17]. The practical production
load of the CHP system has real-time characteristics, which will significantly influence
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the performance of the high-temperature thermodynamic system. Thus, reasonable load
distribution is also of great significance to the safe and stable operation of the CHP plants.

Unlike the condensing power plants with obvious thermal characteristics, the CHP
plants have more complex thermodynamic characteristics because of the strong coupling
relationship of the heating and power loads. Accordingly, the LOD problem of CHP plants
is more complex than that of condensing power plants. Generally, it is a non-convex and
non-linear optimization problem with multiple constraints [18]. In the past, conventional
mathematical algorithms have been used to address the LOD problems for CHP plants,
which can preliminarily provide the LOD solutions [19,20]. However, due to the limitations
of these algorithms, they cannot solve the nonlinear non-convexity optimization problem
caused by the operation characteristics of CHP plants, resulting in a general optimization
effect and a long solution time.

In this context, much attention is attracted by swarm intelligence optimization algo-
rithms, which have the advantages of easy programming and parallel searchability. In
other words, the swarm intelligence optimization algorithms can quickly find the optimal
solution under multiple constraint conditions. Several classic intelligent optimization
algorithms have been employed to solve the LOD problem. Song et al. [19] introduced the
genetic algorithm (GA) to obtain the optimal LOD solutions. Their results demonstrated
its effectiveness. Basu [21] compared the optimal costs obtained from the differential
evolution (DE) algorithm, particle swarm optimization algorithm (PSO) and evolutionary
programming (EP). According to his study, the DE-based method achieved the lowest
cost. Then, the LOD solutions provided by bee colony optimization and artificial immune
system were discussed in another similar research work by Basu [22,23]. However, if using
a poor constraint processing approach, the location of the ideal results may be outside the
practicable operation range of the involved CHP plant. Thus, the researchers also focus on
the constraint processing approach to deal with complex constraints, especially the feasible
operation region of the cogeneration unit. Narang et al. [24] proposed a hybrid algorithm
that integrates civilized swarm optimization and Powell’s pattern search. They reported
that the obtained results were found to be satisfactory. Moradi-Dalvand et al. [25] presented
a two-stage model to handle the nonconvex feasible operation regions. In their study,
the linear approximation method was used to split nonconvex feasible operation regions
into convex regions. Moreover, Chen et al. [26] introduced a novel constraint processing
approach named the “repair technique” to guide the solutions toward feasible operation
regions. Additionally, the external penalty parameters were proved as a good method for
handling constraints [27].

Based on the above studies, it could be concluded that, compared to conventional
algorithms, the accuracy of optimization is strengthened by using intelligence optimization
algorithms. It is also of great importance to combine a good constraint processing approach
with the algorithms. Meanwhile, it is worth noting that no one intelligence optimization
algorithm can efficiently solve all types of optimization problems with the best perfor-
mance [28,29]. Therefore, it is still necessary to improve relevant algorithms and explore
better intelligent optimization algorithms based on swarm intelligence algorithms to solve
practical problems.

The grey wolf optimizer (GWO) algorithm is a powerful algorithm proposed by Mir-
jalili et al. in 2014 [30]. Their study suggests that the GWO algorithm performs well in
the global optimization of complex functions. Accordingly, it is more adaptable to com-
plex constraints and unknown space search in practical engineering optimization [31,32].
Theoretically, it is also suitable for obtaining an optimal LOD solution for the CHP plants.
However, the GWO algorithm is easy to jump out of the local optimal when facing high-
dimensional problems, such as LOD problems. Introducing the Levy flights to the GWO
algorithm is a good choice to avoid these problems [33]. However, the performance of the
potential combinations of the above two algorithms is not explored in solving LOD prob-
lems.
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To fill this research gap, this paper improved the GWO algorithm by the combined
Levy–GWO algorithm at first. What is more, both the optimization algorithms and con-
straint processing methods have obvious impacts on providing the LOD solutions based
on the above discussions. Additionally, the constraint condition processing methods are
also proposed according to the characteristics of the total power and heat loads. Then, the
constraint condition processing methods are combined with the Levy–GWO algorithm to
provide a better solution to the LOD problem. To test the performance of the algorithm,
two test systems consisting of different units are selected to optimize the load distribution.
Finally, a comprehensive comparative study is performed to study the performance of
GWO and Levy–GWO algorithms.

The main contributions and novelty of this work can be summarized below:

(1) To solve the LOD problems better, an improved Levy–GWO algorithm is proposed to
boost the ability of global and local searches in solution space.

(2) To deal with the complex constraints, a new constraint handling method is devised to
achieve strictly feasible solutions.

(3) The effectiveness of the proposed approach is proved by two test plants, from simple
to complex.

2. Mathematical Model of LOD Problem
2.1. Description of the Objective Function

A CHP plant typically is composed of three different kinds of power or heating units,
i.e., the pure condensed unit (producing power), the cogeneration unit (producing heating
and power), and the pure heating unit (producing heating). Generally, solving a LOD
problem requires achieving the lowest operating cost (f cost) for the CHP plant under the
total load requirements, and the objective function is expressed as [20]

min fcost =
l

∑
i=1

Ci(Pj) +
m

∑
j=1

Cj
(

Pj, Hj
)
+

n

∑
k=1

Ck(Hk) (1)

P and H stand for the production of power and heating, respectively, while C stands
for the operating cost function, which can be written as follows [20]:

Ci(Pi) = ai + biPi + ciPi
2+
∣∣di sin(ei(Pi

min − Pi))
∣∣

Cj(Pj, Hj) = aj + bjPj + cjPj
2 + dj Hj + ej Hj

2 + f jPj Hj

Ck(Hk) = ak + bk Hk + ck Hk
2

(2)

The following constraints also should be adhered to:{
Pi,min ≤ Pi ≤ Pi,max

Hi,min ≤ Hi ≤ Hi,max
(3)


m
∑

j=1
Hcon,j+

n
∑

k=1
Hh,k = Hd

l
∑

i=1
Pcon,i+

m
∑

j=1
Qcog,j = Pd

(4)

The unit of pure condensing, cogeneration and heating is represented by the subscripts
con, cog, and h, respectively. The production limitations of each unit are indicated by the
subscripts min and max, while the total load of heat and power are indicated by the
subscripts Hd (MWth) and Pd (MW), respectively.
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In particular, if the active network loss (PL) is taken into account, then Equation (4)
will be changed as follows [29]:

m
∑

j=1
Hcon,j+

n
∑

k=1
Hh,k = Hd

l
∑

i=1
Pcon,i+

m
∑

j=1
Qcog,j = Pd + PL

PL =
l+m
∑

i=1

l+m
∑

j=1
PiBi,jPj

(5)

PL is the system active power loss, and B is the coefficient matrix.

2.2. Method for Processing Constraint

It can be found that there are many constraint conditions when dispatching the load
distribution of a CHP plant. Therefore, to prevent the occurrence of the local optimal
solution, the treatment of constraint conditions is also very important. In detail, these
constraints can be divided into two types: one is the global constraints and the other the
individual constraints. The following methods are used in this paper to handle those
constraints.

(1) Cogeneration unit load constraints (individual constraints)

The typical load feasible region of cogeneration units is displayed in Figure 1, which is
an irregular polygonal shape. The following measures are taken in this paper to satisfy the
inequality constraints of cogeneration units: To satisfy the inequality constraints, during
the optimization process, for the case where the individual location is out of the feasible
range (regions 1–3), it is necessary to randomly generate a new value Pnew on the boundary,
then the Hnew value is obtained by the boundary curve formula so as to obtain the new
individual position. Conversely, the individual value does not need any adjustment when
it is within the feasible range.
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(2) Total load constraints of the heating and power networks (global constraints)

Intelligent algorithms usually encounter situations where some individuals do not
satisfy the global constraints because intelligent algorithms have the characteristics of the
random updates of individuals. In this paper, Equation (1) is transformed into a new
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fitness function, which adds the global constraints of total demands (heating and power) as
penalty terms, as follows:

F = fcost + R1(
l

∑
i=1

Pi +
m

∑
j=1

Pj − PD − PL)

2

+ R2(
m

∑
j=1

Hj +
n

∑
k=1

Hk − HD)
2

(6)

R1 and R2 are penalty factors. Therefore, the solution of the LOD problem is to meet
the constraints (i.e., Equations (3) and (5)) while maintaining the minimal value of Equation
(6). The heat and power provided by each unit are the independent variables.

3. Solution Methods
3.1. Classic Grey Wolf Algorithm

The hierarchy and foraging behavior of the grey wolves—a classed social hierarchy
made up of α, β, δ, and ω—are the roots of the traditional GWO algorithm. As shown in
Figure 2, the α wolves are regarded as the leader of the wolf groups, which means that
the group follows their instructions. The β and δ wolves help the alphas make choices,
while the ω is the lowest ranked grey wolf. Generally, the wolves α, β and δ own the
greatest information on the prey, while the other wolves (ω) are updated using their current
locations. In addition, the GWO approach consists of three basic steps: encircling, hunting,
and attacking the prey [30]. When solving optimization problems, the best fitness solution
is regarded as the α wolfs, and the followed solutions are β, δ, and ω, respectively. Then,
here are more details about the three steps.
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(1) Encircling prey.

In the process of predation, the behavior of grey wolves encircling prey is calculated
by using the following equations [30]:

→
D =

∣∣∣∣→C ·→XP(t)−
→
X(t)

∣∣∣∣ (7)

→
X(t + 1) =

→
XP(t)−

→
A ·
→
D (8)

→
D,
→
X and

→
XP represent the direction, position vector for grey wolf, and the position

vector of prey, while
→
C and

→
A are the oscillation and convergence factors, which are

calculated by [30]
→
C = 2

→
r1 (9)

→
A = 2a

→
r2 −

→
a (10)

a reduces from 2 to 0 during the iterations.
→
r1 and

→
r2 are the random vectors which are

from 0 to 1.

(2) Hunting.
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When the grey wolf finds its prey, the α wolf leads the β and δ packs to progressively
encircle the prey. Assuming the α, β and δ wolves have all the prey information, the
information they have is used to update the location of ω wolves. According to the

decreasing order of fitness of the three optimal solutions, the distance between any wolf
→
X

and the three optimal wolves is as follows [30]:

→
Dα =

∣∣∣∣→C1 ·
→
Xα(t)−

→
X(t)

∣∣∣∣
→
Dβ =

∣∣∣∣→C2 ·
→
Xβ(t)−

→
X(t)

∣∣∣∣
→
Dδ =

∣∣∣∣→C3 ·
→
Xδ(t)−

→
X(t)

∣∣∣∣
(11)

Utilizing the subsequent formulae, one can utilize these distances to determine the
wolf’s new location. Thus, by repeatedly using the two operators of encircling and hunting,
the prey or the optimal solution is located [30].

→
X1 =

→
Xα −

→
A1 ·

→
Dα

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ

(12)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(13)

3.2. Levy-GWO Algorithm

As said before, based on the improvement of swarm intelligence algorithms and
exploring better intelligent optimization algorithms, practical problems can be better solved.
In contrast, the traditional location update method weakens the global searchability, while
the traditional GWO algorithm has limited local optimization capabilities. Thus, to deal
with that issue, the following steps are used in this study.

(1) Nonlinear convergence of control factor a.

In this work, rather than using the a, which converges linearly from 2 to 0, the nonlinear
convergence approach is applied.

a = 2 ·
(

1− e
i

max _iter − 1
e− 1

)
(14)

(2) Individual position update strategy

As mentioned before, the GWO algorithm is vulnerable to settling into a local optimum.
Thus, the method of position update is improved by adopting the Levy flight here [33],
which can be expressed as

Xi(t + 1) = Xi(t) + γ⊕ L(λ), 1 < i ≤ n (15)

λ is the step control variable. ⊕ is a point-to-point product. L(λ) is a column-
dimensional distribution function.

Based on the above discussion, Figure 3 illustrates the computation procedure to solve
a LOD problem.
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4. Results and Discussions

Two different test systems with differing levels of computing difficulty are solved to
evaluate the viability and efficacy of the involved algorithm. The simulation is built in
MATLAB software and implemented on the same PC. The best outcome is used as the final
result after each system has been performed independently 50 times.

4.1. Test System I

Test system I consist of four units, namely two cogeneration units (unit 2 and 3) and
one power-only (unit 1), and one heat-only unit (unit 4), which was proposed by Guo
et al. in 1996 [20]. For the sake of simplicity, test system I neglects the valve-point effects
and transmission loss. Table 1 lists the relevant parameters for various unit operating cost
functions, and Figure 4 displays the feasible operation region of cogeneration units 2 and 3.
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cogeneration unit 3.

Table 2 summarizes the optimal results obtained from the proposed algorithm. It is
noted that the PD and HD are 200 MW and 115 MWth, respectively, which are kept the same
as in the literature [19]. The optimization algorithm used in this paper is the reliability of
the comparison with the results of the literature [19]. The results from Table 2 show that
the generation costs obtained from the Levy–GWO algorithm are close to the reported data.
Moreover, the optimization results of the GWO algorithm and the Levy–GWO algorithm
are better than those of the GA and PSO algorithms. In general, the Levy–GWO algorithm
can be used to obtain the minimum cost, owning 9231.41 $/h. What is more, the penalty
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factor does strengthen the constraint of the equation because the GWO and Levy–GWO
algorithms can better satisfy the constraint of the equation.

Table 1. Characteristic parameters of test system I.

Unit
Cost Function Coefficient

Load Limitation (Unit)
a b c d e f

1 / 50 / / / / [0, 150] (MW)
2 2650 14.5 0.0345 4.2 0.030 0.0311 Shown as Figure 4a
3 1250 36.0 0.0435 0.6 0.027 0.011 Shown as Figure 4b
4 / 23.4 / / / / [0, 2695.2] (MWt/h)

Table 2. Calculation results of different optimization algorithms for test system I.

Items PSO [19] GA [19] GWO Levy–GWO

P1 (MW) 0.05 0 0.05 0
P2 (MW) 195.43 159.23 159.97 159.74
P3 (MW) 40.57 40.77 40 40.25

H2 (MWt/h) 39.97 39.94 40.00 40.00
H3 (MWt/h) 75.03 75.06 75.00 75.00
H4 (MWt/h) 0 0 0 0
Ptotal (MW) 200.05 200 200.02 199.99

Htotal (MWt/h) 115 115.83 115.00 115.00
Cost ($/h) 9265.1 9267.21 9250.92 9231.41

4.2. Test System II

Moreover, this paper chooses another system consisting of seven units as test system
II, which includes two cogeneration units (units 5 and 6) and four power-only (units 1–4),
and one heat-only unit (unit 7). However, in test system II, the valve-point effects and
transmission losses are considered. Accordingly, Table 3 lists the relevant parameters for
various unit operating cost functions. Figure 4 also displays the feasible operation region
of the two cogeneration.

Table 3. Characteristic parameters of test system II [21].

Unit
Cost Function Coefficient

Load Limitation (Unit) Active Power Loss Coefficient Matrix
a b c d e f

1 25 2.0 0.008 100 0.042 / [0, 75] (MW)

B =



49, 14, 15, 15, 20, 25
14, 45, 16, 20, 18, 19
15, 16, 39, 10, 12, 15
15, 20, 10, 40, 14, 11
20, 18, 12, 14, 35, 17
25, 19, 15, 11, 17, 39


× 10−6

2 60 1.8 0.003 140 0.040 / [20, 150] (MW)
3 100 2.1 0.0012 160 0.038 / [30, 175] (MW)
4 120 2.0 0.001 180 0.037 / [40, 250] (MW)
5 2650 14.5 0.0345 4.2 0.030 0.0311 Shown Figure 4a
6 1250 36.0 0.0435 0.6 0.027 0.011 Shown Figure 4b
7 950 2.0109 0.038 / / / [0,2695.2] (MWth)

According to Ref. [21], test system II has a power load (PD) of 600 MW and a heat load
(HD) of 150 MWth. The lowest cost ($ 10,117.79) may be obtained with the Levy–GWO
method, as shown in Table 4. When compared to the lowest figure of $ 10,317 in the
literature, which provided data [21], there is a reduction of $ 205.21. The Ptotal and Htotal
values of the Levy–GWO algorithm are found to be quite near the provided power and
heating demand when compared to the outcomes produced by other algorithms. In other
words, it further supports the penalty factor method’s significant impact on meeting the
equation’s restriction.
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Table 4. Calculation results of different optimization algorithms for test system II.

Items PSO [21] EP [21] DE [21] GWO Levy–GWO

P1 (kW) 18.46 61.36 44.21 55.82 51.78
P2 (kW) 124.26 95.12 98.54 97.42 98.73
P3 (kW) 112.78 99.94 112.69 122.04 113.05
P4 (kW) 209.82 208.73 209.77 209.67 210.05
P5 (kW) 98.81 98.8 98.82 92.56 93.50
P6 (kW) 44.01 44.00 44.00 40.12 40.00

H5 (MWt/h) 57.92 18.07 12.54 36.75 31.39
H6 (MWt/h) 32.76 77.55 78.35 73.15 74.99
H7 (MWt/h) 59.32 54.37 59.11 40.95 43.63

Ptotal (MWt/h) 600.00 600.01 599.99 600.08 599.99
Htotal (MWt/h) 150.00 150.00 149.99 149.95 150.01

PL (MWt/h) 8.14 7.96 8.04 7.55 7.54
Cost ($/h) 10,613 10,390 10,317 10,174.49 10,111.79

4.3. Performance Comparison between GWO Algorithm and Levy–GWO Algorithm

The results of the above two test systems confirm that the Levy–GWO algorithm
has a reliable performance in solving the LOD problem. In other words, the necessity of
improving the intelligent algorithm is confirmed as well. Therefore, based on the results of
test system II, this section carried out a further comparison of the performance of GWO
and Levy–GWO algorithms.

Figures 5 and 6 display the trace of the individual optimization of cogeneration unit 5
with GWO and Levy–GWO algorithms, respectively. For the GWO algorithm, the entire
feasible region is almost filled with individual particles, but for the Levy–GWO algorithm,
the feasible region is only covered by a few individual particles. This phenomenon indicates,
owing to the Levy flight, the approximate range in which the optimal individual can be
found by the Levy–GWO algorithm. Then the Levy–GWO algorithm starts fine-tuning in
this range. In addition, it is clear from the two figures that no single particle exceeds the
unit’s power or thermal load limits, demonstrating that the constraint processing approach
suggested has a very positive impact on the way inequality constraints are handled.
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Figure 7 shows the results of the repeatability of the two algorithms. The figure shows
that the Levy–GWO algorithm can achieve greater economic benefits because its minimum
value is lower than the GWO algorithm. Moreover, the Levy–GWO algorithm has better
robustness because the distribution interval of the optimization results is narrower.
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In addition, it is also necessary to compare the convergence of the GWO and Levy–
GWO algorithms. Figure 8 indicates the convergence curves of involved optimization
algorithms. The figure shows that in the initial stage of the optimization, the GWO algo-
rithm converges faster than the Levy–GWO algorithm. However, due to the Levy flight
location updates method, the Levy–GWO algorithm converges stronger and shows the ran-
domness of the individuals. In the later optimization process, the convergence speed of the
Levy–GWO algorithm began to accelerate because the optimal region was clearly defined
and finally achieved a better convergence effect with a lower optimal value. Moreover, the
results indicate that the next necessary step is to achieve a better convergence speed of the
algorithm.
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5. Conclusions

Aiming at solving the LOD problems of CHP plants to lower energy consumption,
this paper used a new hybrid intelligence algorithm called the Levy–GWO algorithm. The
Levy–GWO algorithm as well as the constraint processing approach based on the actual
load optimal distribution were utilized to obtain an optimal dispatch of the load for CHP
plants. The algorithm performance was tested and compared based on two different test
plants with 3 and 7 units. Finally, the GWO algorithm and Levy–GWO algorithm were
used to optimize and compare the performances of the CHP plants. The main conclusions
are as follows.

(1) The optimization results of Test systems 1 and 2 show that the two GWO algorithms
used in this article can be used to solve the power plant LOD problem. It is proved
that the improved strategy of the algorithm strengthens the ability of the search
performance.

(2) By comparing with the literature results, the optimized operating cost of the Levy–
GWO algorithm is lower, showing better performance than the GWO algorithm. The
proposed Levy–GWO algorithm can effectively reduce the cost from $ 9265.1 to CNY
9231.41 in the 3-unit CHP plants, and the cost of the 7-unit plants decreases from $
10,317 to $ 10,111.79 with respect to the reported data.

(3) The tested results also show that the constraint processing method also brings advan-
tages to solving the LOD problem, ensuring that the obtained solution is within the
practicable operation range.
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