
Citation: Simu, S.; Ledeţi, A.; Moacă,
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Abstract: The present study reports the results obtained after the analysis of the thermal stability
and decomposition kinetics of widely used synthetic derivative of estradiol, ethinylestradiol (EE),
as a pure active pharmaceutical ingredient. As investigational tools, Fourier transformed infrared
spectroscopy (FTIR), thermal analysis, and decomposition kinetics modeling of EE were employed.
The kinetic study was realized using three kinetic methods, namely Kissinger, Friedman, and Flynn-
Wall-Ozawa. The results of the kinetic study are in good agreement, suggesting that the main
decomposition process of EE that takes place in the 175–375 ◦C temperature range is a single-step
process, invariable during the modification of heating rate of the sample.
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1. Introduction

Ethinylestradiol (17 alpha-ethinylestradiol, abbreviated EE) is a synthetic derivative of
estradiol [1] and is an estrogen receptor agonist that binds to both forms of the receptor
(ERα and ERβ) and to the G protein coupled estrogen receptor (GPER) [2]. If compared
to estradiol, EE is characterized by a higher bioavailability when administered orally,
increased resistance to metabolism, and stronger effects in certain parts of the body [1]. EE is
commonly used in combination with progestin as a contraceptive, in the treatment of certain
gynecological disorders, hormone-dependent cancers (such as prostate and breast cancer),
and menopausal symptoms [1]. As a contraceptive, EE is usually available in low doses, in
combination with progestin, to reduce the risk of side effects. The intensity of these side
effects depends on the dose and route of administration and include weight gain, headaches,
nausea, bloating, breast tenderness, and overall feminization (in males) [3]. Long-term
administration may lead to an increased risk of blood clots, cardiovascular issues, liver
damage, and high doses of EE have been associated with an increased risk of endometrial
cancer [1]. More recently, a pilot clinical trial study was carried out by Cortés-Algara et al.
regarding the use of EE along with norelgestromin as immunoregulators incorporated in
transdermal patches, as an option for the treatment of COVID-19 disease [4]. Moreover, the
role of several estrogens, including EE, in menstrual migraine was also studied [5]. The
structural formula of EE is presented in Figure 1.
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In the pharmaceutical market, worldwide, there are numerous dosage forms contain-
ing EE as the solitary active pharmaceutical ingredient (API), or alongside with other API
(such as dienogest, levonorgestrel, chlormadinone, norethisterone, norelgestromin and
desogestrel), designed for oral (tablets and coated tablets), vaginal (rings), or transdermal
(patches with extended release) administration. Dependent of the administration route,
the content of EE in each formulation varies commonly between 20 and 50 micrograms
per tablet, up to 600 micrograms per patch and 2.7 mg per ring [6]. Since the amount of
EE (micrograms) in each formulation is considerably lower than the amount of excipients
(milligrams), the development of stable formulations is an imperious demand.

Kinetic analysis—as a direct implementation of thermal analysis—is an important
investigational tool for characterization of drugs, including their behavior in pharmaceu-
tical formulations, leading to crucial data regarding lifetime, shelf-life, and degradation
mechanism of investigated compounds [7–12]. Taking into account the fact that the mecha-
nism of thermolysis is not known for the majority of organic molecules lead to the main
advantage of implementing isoconversional methods, since they allow the estimation of
activation energy without knowing or assuming an explicit model for the differential or
integral conversion functions [13]. Heterogeneous kinetics has developed over the years
and during this period of time, a series of recommendations was elaborated by the Interna-
tional Confederation for Thermal Analysis and Calorimetry (ICTAC) Kinetics Committee,
in order to improve the quality of these studies [14]. Numerous papers presents, also, the
advantages and disadvantages of each type of kinetic modeling approaches, including
model-fitting, model-free (isoconversional), and deconvolution analyses [15–19].

The kinetic method proposed by Kissinger and published initially in 1956 [20] and
later in 1957 [21] is one of the most popular kinetic protocol that allows the estimation of the
activation energy by using differential scanning calorimetry (DSC) data, differential thermal
analysis (DTA) data, or derivative thermogravimetry (DTG) data. The simplicity of its use—
however, it is tricky for non-expert users since the method can lead to false conclusions
mainly for complex degradative processes—reveals a solitary activation energy value,
based on the hypothesis of single-step kinetics. For this reason, methods such as Kissinger,
classic Ozawa or ASTM E698 are always preliminary to isoconversional studies, which
offer by far a more complete and objective perspective over the investigated processes [18].

Regarding the state-of-art for stability and degradation of EE, the literature data reveal
several studies carried out between 1993 and 2022, but none of them refer to heterogeneous
degradation of this API in solid state. Recent contributions were reported regarding the
degradation of EE by different bacterial strains during wastewater treatment, including
Enterobacter tabaci [22] and Acinetobacter [23], and as well the evaluation of kinetics of
natural degradation and identification of the resulted products during photodegradation
and oxidation were carried out [24]. Moreover, several studies were published regarding
the risks and pollution characteristics of contaminants for aquatic ecosystems, including
the endocrine disruptors such as EE [25–28]. Adsorption of EE from different aqueous
environments was also studied [29–32], and as well of the effect over cellular and molecular
variations of microalgae such as Chlorella pyrenoidosa [33].
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Since the literature data reveal no information regarding the processes of heteroge-
neous decomposition of this API, we set our goal into carrying out an isoconversional
kinetic study according to ICTAC 2000 protocol for this API, under thermal stress [34–37],
using the derivative thermogravimetric (DTG) data collected for five different heating rates
β = 2, 4, 6, 8, and 10 ◦C/min. The obtained results were processed according to Kissinger
method, the differential method of Friedman, and the integral method of Flynn–Wall–Ozawa.

2. Materials and Methods
2.1. Samples and Preparation

Ethinylestradiol (EE), a commercial product of Sigma-Aldrich (St. Louise, MO, USA)
was used without further purification. The purity of EE was according to European
Pharmacopoeia (EP) Reference Standard. Up to the use, the sample was stored according
to recommendations made by the supplier.

2.2. FTIR Investigations

Fourier-transform infrared spectroscopy studies (FT-IR), were performed using a Shi-
madzu Prestige-21 spectrometer (Duisburg, Germany), at 24 ◦C. The operating parameters
set were: resolution of 4 cm−1 within the spectral range of 400–4000 cm−1, using KBr pellets.
In the spectroscopic description of bands, the following abbreviations are used for different
types of vibration: ν for stretching vibration, δ for internal deformation (bending).

2.3. Thermo-Analytical Investigations

The stability of the samples was performed by thermal behavior assess, using a
Netzsch STA 449 C instrument (Netzsch-Gerätebau GmbH, Selb, Germany), in the range
of 20–500 ◦C, air atmosphere, at 2, 4, 6, 8, and 10 ◦C/min heating rates. Each sample was
exactly weighed in aluminum crucibles and the analysis was performed under artificial air
at a flow rate of 20 mL/min. Air atmosphere was chosen since most of APIs are processed
and stored under usual ambient atmosphere. The analysis was carried out in duplicate and
the results are practically identical.

2.4. Kinetic Study

The kinetic processing of the data (Friedman and Flynn-Wall-Ozawa methods) was
carried out on the main decomposition process of EE, using the AKTS—Thermokinetics
Software (AKTS AG TechnoArk, Siders, Switzerland). The classical Kissinger method
was employed using a template file created by our research team. All the aspects regard-
ing the theoretical foundation and advantages of isoconversional kinetics are presented
exhaustively in numerous papers [38–40].

3. Results and Discussion
3.1. FTIR Investigations

FTIR spectroscopy was used as an investigational technique for characterization of EE.
The FTIR spectrum of EE on spectral range 4000–400 cm−1 is shown in Figure 2. Literature
data present several characteristic bands for infrared spectral investigation of EE, especially
for the compound adsorbed from aqueous medium [41]. However, a complete description
of FTIR bands is not presented in the literature regarding the spectroscopic analysis of EE.

The stretching vibrations ν(O–H) for both OH moieties from the EE structure are
observed in the spectral range 3650−3100 cm−1 as a broad band, suggesting the intense
H-bonding between the molecules in solid state, overlapped with the sharp band of su-
perficially adsorbed water: the bands are evidenced at 3606.89, 3500.80, and 3292.49 cm−1,
respectively. The strong band at 3321.42 cm−1 can be assigned to ν(≡C–H) from alkyne
moiety. The symmetric and asymmetric stretching vibrations for other C–H bonds, namely
ν(C–H), including the ones from CH3 moiety and CH2 ones are represented by the bands
at 2972.31, 2935.66, and 2866.22 cm−1. The sharp, weak bands at 2357.01 and 2322.29 cm−1

are characteristic bands, well individualized in the FTIR spectrum of compounds contain-
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ing -C≡C- moieties, i.e., the ethinyl moiety of the API. The bands from 1614.42, 1585.49,
1500.62, 1471.69, 1446.61, and 1435.04 cm−1 are due to symmetric C-C stretching (νC-C
and νC=C), as well for δas(CH3) and δ(CH2). The bands from 1373.32, 1357.89, 1298.09,
and 1286.52 cm−1 are the consequence of symmetric methyl bending δs(CH3) and the latter
two for the hydroxyls, δ(COH), respectively. The bands at 1255.66 and 1056.99 cm−1 are
probably due to ν(C–O) vibration, while the other bands (recorded at 1182.36, 1134.14,
1111.00, 1020.34, 972.12, 929.69, 914.26, 879.54, 819.75, 788.89, 680.87, 644.22, 621.08, 569.00,
524.64, and 441.70 cm−1) from the fingerprint region are due to skeleton vibration and
different combination bands, that cannot be correctly attributed to a certain bond without
carrying theoretical simulations of vibrational spectra using density functional theory [42].
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3.2. Thermoanalytical Investigations

Thermal stability of EE was carried out in dynamic oxidative atmosphere at a heating
rate of 2 ◦C/min, as shown in Figure 3.

According to the thermoanalytical curves depicted in Figure 3, EE is thermally stable
up to 71 ◦C, when a mass loss process begins, taking place between 71 and 101 ◦C (mass
loss 3.18%, DTG process between 69 and 101 ◦C, DTGpeak at 87 ◦C, DSC process 61 and
101 ◦C, DSCpeak at 88 ◦C). This first process is attributed to the superficially adsorbed water
removal from the sample. Anhydrous EE is stable up to 177 ◦C, when a decomposition
process begins, overlapping the melting of the API (DSC endothermal process between
177–191 ◦C, DSCpeak at 185 ◦C), in good agreement with the melting interval mentioned on
PubChem, suggesting the existence of polymorphic form II [43], instead of polymorphic
form I, which melts at 146 ◦C [44].

The main decomposition process of EE takes place in the temperature range 187–324 ◦C
(mass loss 59.93%, DTGpeak at 293 ◦C), accompanied by an exothermic effect on the DSC
curve, with the peak at 287 ◦C. Further on, with the increase of temperature, the thermoan-
alytical profile becomes more complex, since the overlapping thermal degradation process
takes place. At 500 ◦C, the residual mass is 14.18%, suggesting an advanced degradation of
the structure under thermal stress.
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Figure 3. Simultaneous−determined TG (thermogravimetric), DTG (derivative thermogravimetric),
and DSC (differential scanning calorimetry) curves in air atmosphere at β = 2 ◦C/min for EE on
temperature range 25–500 ◦C.

3.3. Kinetic Study

The kinetic analysis was carried out over processed DTG, obtained in dynamic air
atmosphere for the following five heating rates β: 2, 4, 6, 8, and 10 ◦C/min. The main
decomposition process of EE that was subjected to kinetic analysis is the one that takes place
after the formation of anhydrous form, which takes place in the following temperature
ranges vs. heating rate: β = 2 ◦C/min (179–330 ◦C, Tmax at 293.8 ◦C), β = 4 ◦C/min
(179–348 ◦C, Tmax at 311.7 ◦C), β = 6 ◦C/min (179–355 ◦C, Tmax at 319.8 ◦C), β = 8 ◦C/min
(182–377 ◦C, Tmax at 326.9 ◦C), and β = 10 ◦C/min (187–378 ◦C, Tmax at 332.9 ◦C). A
preliminary kinetic study was realized using the Kissinger method, which is based on the
assumption that the degree of conversion is a constant and non-dependent of the heating
rate at the DTG peak (Tmax) (Equation (1)):

ln
(

β · T−2
max

)
= ln

(
A · R · E−1

a

)
+ ln

[
n · (1 − αmax)

n−1
]
− Ea · R−1 · T−1

max (1)

The estimation of the activation energy of the decomposition (Ea) can be made by
evaluating the slope of the linear plotting for experiments carried out at the five different
heating rates (Figure 4), revealing that for the main stage of EE degradation, the value for
Ea is 107.91 kJ/mol.

Even if current protocols regarding the kinetic studies highly recommend the use of
isoconversional methods, as requested by international conventions established by the
ICTAC protocols, the use of simple methods, such as Kissinger or ASTM E698 is valuable,
since it permit a classification of kinetic mechanism for decomposition of organic molecules,
and a separation of simple vs. complex processes. It is well-known that organic molecules
possess numerous pathways of thermolysis since they contain numerous covalent bonds,
and the intensity of thermal stress can determine the modification of the mechanism with
increasing of heating rate, and as a consequence, the comparison of the results obtained
by classical kinetic methods vs. isoconversional ones can lead to valuable information
regarding the complexity of the degradation. Following this hypotheses, if the result
obtained by Kissinger method is in good agreement with the ones suggested by differential
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and integral isoconversional methods, it can be said that the heating rate has no influence
over modification of degradation mechanism.
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Two isoconversional methods, namely the differential method of Friedman (Fr) and the
integral method of Flynn–Wall–Ozawa (FWO), were used in order to evaluate the values of
Ea of the decomposition vs. conversion degree α. The reaction progress vs. temperature is
presented in Figure 5. As can be shown from Figure 5, the decomposition process is shifted
to higher temperatures due to thermal inertia of the sample, as the heating rate increases.
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Figure 5. The reaction progress vs. temperature dependence for thermal decomposition of EE: curve
1 corresponds to β = 2 ◦C/min, curve 2 to β = 4 ◦C/min, curve 3 to β = 6 ◦C/min, curve 4 to
β = 8 ◦C/min and curve 5 to β = 10 ◦C/min, respectively.

The same tendency can be seen in Figure 6, where the plotting of reaction rate vs.
temperature reveals the shifting of maximum heating rate at higher temperatures, as the
hating rate increases. Moreover, it can be seen that the reaction rate is increased not only by
temperature, but also by the heating rate of the sample.



Processes 2022, 10, 1518 7 of 11

Processes 2022, 10, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 5. The reaction progress vs. temperature dependence for thermal decomposition of EE: curve 

1 corresponds to β = 2 °C/min, curve 2 to β = 4 °C/min, curve 3 to β = 6 °C/min, curve 4 to β = 8 

°C/min and curve 5 to β = 10 °C/min, respectively. 

The same tendency can be seen in Figure 6, where the plotting of reaction rate vs. 

temperature reveals the shifting of maximum heating rate at higher temperatures, as the 

hating rate increases. Moreover, it can be seen that the reaction rate is increased not only 

by temperature, but also by the heating rate of the sample. 

 

Figure 6. The reaction rate vs. temperature dependence for thermal decomposition of EE; curve 1 

corresponds to β = 2 °C/min, curve 2 to β = 4 °C/min, curve 3 to β = 6 °C/min, curve 4 to β = 8 °C/min 

and curve 5 to β = 10 °C/min, respectively. 

The theoretical background of isoconversional methods is extensively reported in lit-

erature [45–51]; however, for a facile understanding of the results, we briefly present in 

this paper the final models implemented in kinetic analysis of EE. 

The linearized mathematical equation of Friedman method (Fr) [45] is shown in 

Equation (2). 

( )   11)(lnln −− −= TREfAdTd a  (2) 

Figure 6. The reaction rate vs. temperature dependence for thermal decomposition of EE; curve
1 corresponds to β = 2 ◦C/min, curve 2 to β = 4 ◦C/min, curve 3 to β = 6 ◦C/min, curve 4 to
β = 8 ◦C/min and curve 5 to β = 10 ◦C/min, respectively.

The theoretical background of isoconversional methods is extensively reported in
literature [45–51]; however, for a facile understanding of the results, we briefly present in
this paper the final models implemented in kinetic analysis of EE.

The linearized mathematical equation of Friedman method (Fr) [45] is shown in
Equation (2).

ln (β · dα/dT) = ln [A · f (α)] − Ea · R− 1 · T− 1 (2)

For selected α at each heating rates, the plot of ln (β · dα/dT) vs. 1/T is linear. By
evaluation of the slopes of these graphical representations (Figure 7), the values of the
activation energy of the decomposition (Ea) are revealed (Table 1).
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Table 1. Evaluation of the decomposition Ea values vs. conversion degree obtained by the two
isoconversional methods and the mean value of Ea.

Conversion Degree
α

Ea (kJ/mol) vs. α for EE

Fr FWO

0.05 101.92 112.10
0.10 108.76 114.01
0.15 103.54 114.02
0.20 102.06 112.83
0.25 99.95 111.48
0.30 99.61 110.32
0.35 99.02 109.31
0.40 98.52 108.49
0.45 97.81 107.75
0.50 97.08 107.06
0.55 96.17 106.41
0.60 94.96 105.75
0.65 93.33 105.11
0.70 91.06 104.38
0.75 88.28 103.56
0.80 85.31 102.56
0.85 82.16 101.32
0.90 79.34 99.74
0.95 73.76 97.45

Ea (kJ/mol) 94.35 ± 9.00 107.03 ± 4.82

The Flynn–Wall–Ozawa (FWO) method [48,49] is represented, after Doyle lineariza-
tion, by the mathematical model presented in Equation (3), where g(α) is the integral
conversion function.

ln β = ln
[

A · Ea · R−1 · g−1(α)
]
− 5.331 − 1.052 · Ea · R−1 · T−1 (3)

Similarly, the estimation of activation energy of the decomposition values (Ea) for all
the conversion degree can be achieved by the plotting of ln β vs. T−1, as can be seen in
Figure 8 and Table 1, respectively.
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As can be seen by comparing the results from the Kissinger kinetic method and the
two isoconversional ones, the obtained values for the decomposition activation energies
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are in good agreement. Moreover, the fitting of Tmax points from the Kissinger method
suggests a very good fitted regression model (R2 = 0.9968), leading to a possible conclusion
that the degradative mechanism of EE under thermal stress is independent of the heating
rate. However, this conclusion can be sustained only by the correlation of the result with
the ones obtained by the use of the two isoconversional methods, the differential and the
integral one, since there are situations where the Kissinger plot is almost perfectly linear,
without detecting the complexity of the decomposition process(es) [18].

The necessity of estimating the value of activation energy for small variation of conver-
sion degree (5%) is based on the fact that the individual Ea values falling outside the ± 10%
interval around the medium value, clearly indicate a multi-step degradation process. Oth-
erwise, if the variation of Ea vs. α values are inside the interval Ea ± 0.1Ea, the mechanism
of degradation consists in a single-step process, invariable with the modification of heating
rate of the sample.

The isoconversional method of Friedman reveals a variation outside the ±10% limit,
outside the medium value of Ea for EE solely at conversions superior to 85%, as seen in
Table 1. This variation is not observed in the case of the integral method of Flynn–Wall–
Ozawa, even if the individual Ea values have the tendency to decrease with the advance of
the reaction.

4. Conclusions

In this paper, the results obtained after studying the process of heterogeneous degrada-
tion of the estrogen medication ethinylestradiol were reported, by means of thermal analysis
and isoconversional kinetics. The analysis was also completed by FTIR spectroscopy, in
order to prove the identity and purity of the compound.

Thermal analysis revealed that anhydrous EE has a good thermal stability (up to
177 ◦C), this fact being explained by the existence of the stable steroid moiety in the
structure of this drug. The kinetic study was realized using three kinetic methods, namely
Kissinger, Friedman and Flynn–Wall–Ozawa. The results of the kinetic study are in good
agreement, suggesting that the main decomposition process of EE that take place in the
175–375 ◦C temperature range is a single-step process, invariable with the modification of
heating rate of the sample.

However, due to differential process of the data according to Friedman method, at
higher conversion degrees (α > 0.85), a clear indication for a modification of the degradative
mechanism is revealed. This last observation can be explained by the fact that the main
degradation process is immediately followed by another process, more complex, as can be
also seen on the thermoanalytical profile of EE. Moreover, the complexity of the second
degradative process can be explained by the fact that at higher temperatures, the thermol-
ysis of steroid moiety is accentuated and also overlaps the degradation of the products
resulted from the main process, that was kinetically investigated in this study.
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