
Citation: Yang, J.; Xu, H. Hybrid

Memetic Algorithm to Solve

Multiobjective Distributed Fuzzy

Flexible Job Shop Scheduling

Problem with Transfer. Processes 2022,

10, 1517. https://doi.org/10.3390/

pr10081517

Academic Editor: Fabricio

Napoles-Rivera

Received: 13 July 2022

Accepted: 29 July 2022

Published: 1 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Hybrid Memetic Algorithm to Solve Multiobjective
Distributed Fuzzy Flexible Job Shop Scheduling Problem
with Transfer
Jinfeng Yang and Hua Xu *

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;
6213114028@stu.jiangnan.edu.cn
* Correspondence: xuhua@jiangnan.edu.cn

Abstract: Most studies on distributed flexible job shop scheduling problem (DFJSP) assume that
both processing time and transmission time are crisp values. However, due to the complexity of the
factory processing environment, the processing information is uncertain. Therefore, we consider the
uncertainty of processing environment, and for the first time propose a multiobjective distributed
fuzzy flexible job shop scheduling problem with transfer (MO-DFFJSPT). To solve the MO-DFFJSPT,
a hybrid decomposition variable neighborhood memetic algorithm (HDVMA) is proposed with the
objectives of minimizing the makespan, maximum factory load, and total workload. In the proposed
HDVMA, the well-designed encoding/decoding method and four initialization rules are used to
generate the initial population, and several effective evolutionary operators are designed to update
populations. Additionally, a weight vector is introduced to design high quality individual selection
rules and acceptance criteria. Then, three excellent local search operators are designed for variable
neighborhood search (VNS) to enhance its exploitation capability. Finally, a Taguchi experiment is
designed to adjust the important parameters. Fifteen benchmarks are constructed, and the HDVMA
is compared with four other famous algorithms on three metrics. The experimental results show
that HDVMA is superior to the other four algorithms in terms of convergence and uniformity of
non-dominated solution set distribution.

Keywords: mutiobjective; distributed flexible job shop scheduling; fuzzy transfer time; fuzzy
processing time; memetic algorithm; weight vector; variable neighborhood search

1. Introduction

In recent years, flexible job shop scheduling problem (FJSP) has been widely studied [1–3].
The classic FJSP is to assign different workpiece processes to different machines for pro-
cessing and to generate scheduling schemes based on process constraints after sorting
the processes. All processes are completed in the same factory. However, to meet the
needs of manufacturing globalization and industry 4.0, distributed manufacturing has
attracted increasing attention. In distributed manufacturing, workpieces are assigned to
different factories for processing. This manufacturing method can make better use of the
production advantages of different factories, reduce production costs, and save production
time. Compared with the single-factory scheduling problem, the distributed workshop
scheduling problem is more complex, its environment is more changeable, and it is a more
difficult problem to solve. However, as it fits the trend of industrial development, and is of
great significance for collaborative production.

In the production process, the complex environment leads to great information uncer-
tainty, such as uncertainty in workpiece processing times caused by the variable proficiency
of workers and uncertainty in the workpiece transmission time caused by the wear degree
of transportation tools. Therefore, we fuzzify the transmission time and processing time,
replace the crisp time with triangular fuzzy numbers (TFNs), and for the first time propose

Processes 2022, 10, 1517. https://doi.org/10.3390/pr10081517 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10081517
https://doi.org/10.3390/pr10081517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4699-1383
https://doi.org/10.3390/pr10081517
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10081517?type=check_update&version=2

Processes 2022, 10, 1517 2 of 23

a multiobjective distributed fuzzy flexible job shop scheduling model, referred to as the
MO-DFFJSPT, with the objectives of minimizing the makespan, maximum factory load,
and total workload. As this model is more in line with actual production, it is conducive to
the sustainable development of factories while ensuring production benefits.

To solve the MO-DFFJSPT, we propose the HDVMA based on the framework of the
non-dominated sorting genetic algorithm II (NSGA-II) [4]; furthermore, we design encod-
ing and decoding methods and crossover and mutation operators for fuzzy numbers. The
HDVMA combines an initialization strategy and a decomposition variable neighborhood
search (DVNS) operator to achieve a balance between exploration and exploitation. Then,
we adjust the important parameters in the algorithm through a Taguchi experiment. Fi-
nally, our results when running the algorithm on fifteen benchmarks prove its excellent
performance.

The rest of the paper is organized as follows: Section 2 reviews the relevant research;
Section 3 introduces the basic knowledge of fuzzy numbers and fuzzy operations;
Section 4 describes the proposed MO-DFFJSPT model; Section 5 sketches the proposed
algorithm; and Section 6 describes the results of running the algorithm on the benchmarks.
Finally, Section 7 provides a summary and proposes future research directions.

2. Literature Review

This section consists of two subsections. Section 2.1 reviews the distributed flexible job
shop scheduling problem, and Section 2.2 reviews the fuzzy flexible job shop scheduling
problem.

2.1. Distributed Flexible Job Shop Scheduling Problem

DFJSP is becoming increasingly suitable for intelligent factory production. Naderi et al. [5]
proposed a mixed integer model with low computational complexity; a new simulated
annealing algorithm was used to solve the distributed problem, and good results were
obtained. Chang et al. [6] proposed a genetic algorithm with multiple crossover and
mutation operators to solve DFJSP. Wu et al. [7] proposed a DFJSP with assembly, and an
improved differential evolution simulated annealing algorithm was proposed to solve the
problem with the objectives of balancing earliness and tardiness and achieving a lower
total cost. The results showed this method to have good performance and robustness.
Tang et al. [8] proposed a hybrid teaching and learning algorithm with Tabu Search to solve
DFJSP, and a production example proved its effectiveness. Ziaee et al. [9] developed a fast
heuristic algorithm to solve DFJSP very quickly.

Although there are an increasing number of studies on DFJSP, most studies on DFJSP
assume that a job can only be processed in one factory. However, in the real world,
many workpieces must be processed in different factories. Luo et al. [10] proposed an
efficient memetic algorithm to solve the DFJSP with transfer (DFJSPT). Sang et al. [11]
proposed a high-dimensional multiobjective memetic algorithm to solve the DFJSPT. This
method combines the improved NSGA-III and local search method and adds a dual-mode
environment selection method, achieving a balance between diversity and convergence.

2.2. Fuzzy Flexible Job Shop Scheduling Problem

In recent years, there have been an increasing number of studies on fuzzy flexible
job shop scheduling problem (FFJSP) [12]. Zheng et al. [13] proposed a multiobjective
swarm-based neighborhood search method to solve FFJSP, with the objective of reducing
the makespan and total workload. Lin et al. [14] integrated the path relinking technique into
multiverse optimization and obtained a satisfactory makespan. Sun et al. [12] proposed an
effective algorithm that combines particle swarm optimization with a genetic algorithm for
improved convergence ability. Li et al. [15] proposed a hybrid self-adaptive multiobjective
evolutionary algorithm based on decomposition with the objectives of fuzzy makespan
and fuzzy total workload, using an effective solution selection method based on the
Tchebycheff decomposition strategy to improve the convergence and diversity of the

Processes 2022, 10, 1517 3 of 23

population. Gao et al. [16] proposed a discrete harmony search algorithm and proved
its effectiveness. Lin et al. [17] proposed a biogeography-based optimization method
combined with certain heuristics that balance exploration and exploitation. Gao et al. [18]
proposed an improved artificial bee colony algorithm to solve the multiobjective FFJSP, and
an effective heuristic rule was developed to initialize the population. The experimental
results yielded a good Pareto solution.

From Sections 2.1 and 2.2, we can see that the DFJSP and FFJSP have become popular
topics in the scheduling field. However, time uncertainty is not taken into account in the
study of the DFJSP. In the FFJSP, the realistic scenario of collaboration among multiple
factories is not considered. Therefore, we consider the constraints of both models at the
same time and propose a new model (MO-DFFJSPT) to better solve scheduling problems
in the real world. Additionally, due to the complexity of the MO-DFFJSPT, there is no
optimization method as yet to solve the MO-DFFJSPT. The methods mentioned in the above
literature cannot be directly applied to solve the MO-DFFJSPT, and most of the existing
multiobjective evolutionary algorithms cannot achieve a good balance between exploration
and exploitation. Thus, we propose a new algorithm, HDVMA, to generate diverse and
improved Pareto-optimal solutions of the MO-DFFJSPT.

3. Fuzzy Set
3.1. Fuzzy Number

In real-life production, there is often no crisp time at which a machine processes
workpieces, considering that production activities may be performed by more or less
highly skilled workers and that the work environment changes frequently. The crudest
representation of uncertain time frames is as a confidence interval; if certain values seem
more plausible than others, then those values are expanded into fuzzy numbers.

TFNs are widely used in scheduling activities [19]. As shown in Figure 1, each
triangular fuzzy number consists of three values, (a1, a2, a3), with a1 being the earliest
processing time, a2 the most likely processing time, and a3 the latest processing time. The
membership function formula for x is as follows:

µ(x) =



0, x ≤ a1

x− a1

a2 − a1
, a1 < x ≤ a2

a3 − x
a3 − a2

, a2 < x < a3

0, x ≥ a3

(1)

Figure 1. Fuzzy Number.

Processes 2022, 10, 1517 4 of 23

3.2. Fuzzy Operation

When generating a feasible job shop schedule, several different mathematical op-
erations are needed. Therefore, the operations of fuzzy numbers need to be redefined.
Sakawa et al. [20] first defined these operations in the 1990s.

Addition Operation: Given two fuzzy numbers, X = (x1, x2, x3) and Y = (y1, y2, y3),
for any pair of TFNs X and Y it follows that

X + Y = (x1 + y1, x2 + y2, x3 + y3) (2)

Ranking Operation: To ensure that scheduling conforms to constraints, three compari-
son criteria are defined to sort two TFNs.

Criterion 1: F∼1 (X) = (x1 + 2x2 + x3)/4
Criterion 2: F∼2 (X) = x2
Criterion 3: F∼3 (X) = x3 − x1
For any two TFNs, we calculate the Criterion 1 value F∼1 (X) first, and the larger TFN

has a larger criterion value. If the two TFNs values F∼1 (X) are equal, we use Criterion 2. If
the two TFNs values F∼2 (X) are equal, we use Criterion 3.

Max Operation: We assume that with two TFNs X = (x1, x2, x3) and Y = (y1, y2, y3),
Sakawa’s criterion to obtain the maximum value is as follows:

Max(X, Y) = (max(x1, y1), max(x2, y2), max(x3, y3)) (3)

However, Lei [21] proposed a new max criterion in 2010 which has been proven to
have better results. In this paper, Lei’s criterion is adopted to determine the workpiece
fuzzy processing start time, which is as follows:

I f X > Y, Max(X, Y) = X; otherwise, Max(X, Y) = Y (4)

4. Problem Description and Mathematical Modeling
4.1. MO-DFFJSPT Description

The MO-DFFJSPT consists of n jobs, f factories, and m machines belonging to different
factories. The factories are located in several regions. There are NJi (i ∈ {1, 2, . . . , n})
operations for each job, and each operation needs to be processed on a candidate machine
of a factory. All the processing times for operations Oi,j on a machine and the times for
transporting operations between machines are TFNs, and all the TFNs are ascertained in
advance. The assumptions of MO-DFFJSPT are as follows:

• All the processing times and transfer times are TFNs;
• All the machines and jobs are available at time zero;
• The processing time and transfer time of each operation are known in advance;
• All jobs can be transported within a factory or between different factories;
• The time for transferring any job between machines in a factory is the same;
• The time for transferring any job between machines in different factories is the same;
• The processing time includes the transfer time of the job.

4.2. MILP Model for the MO-DFFJSPT

In this section, a mixed-integer linear program (MILP) is constructed; the parameters
and indices used in the model are as follows:

n: The total number of jobs
m: The total number of machines
f : The total number of factories
NJi : The total number of operations for job i
Mk: The k-th machine
Fl : The l-th factory
Oi,j: The j-th operation of the i-th job

Processes 2022, 10, 1517 5 of 23

Pk
i,j: The processing time for the j-th operation of the i-th job on machine k

TM: The transfer time between machines
TF: The transfer time between factories
Wl : The workload of factory l
Ci: The completion time of job i
Ci,j(u,v): The completion time of Oi,j(Ou,v)
L: A large positive number
Variables:
Xk

i,j: If Oi,j is processed on machine Mk, this value is set to 1; otherwise, it is set to 0

V l
i,j: If Oi,j is processed in factory Fl , this value is set to 1; otherwise, it is set to 0

Yl
i,j,u,v,k: If Oi,j is processed directly after Ou,v on Mk in Fl , this value is set to 1; other-

wise, it is set to 0
ZM

i,j : If there is a transfer between machines in a factory for Oi,j, this value is set to 1;
otherwise, it is set to 0

ZF
i,j: If there is a transfer between factories for Oi,j, this value is set to 1; otherwise, it is

set to 0
Objectives:
(1) OF1: Makespan

OF1 = max{Ci | i = 1, 2, . . . , n} (5)

(2) OF2: Max factory load

OF2 = max{Wl | l = 1, 2, . . . , f } (6)

where Wl can be calculated by Equation (7):

Wl =
n

∑
i=1

NJi

∑
j=1

m

∑
k=1

V l
i,j ∗ Xk

i,j ∗ Pk
i,j, l = 1, 2, . . . , f (7)

(3) OF3: Total workload

OF3 =
n

∑
i=1

NJi

∑
j=1

f

∑
l=1

m

∑
k=1

V l
i,j ∗ Xk

i,j ∗ Pk
i,j (8)

Subject to:

f

∑
l=1

m

∑
k=1

V l
i,j ∗ Xk

i,j = 1 (9)

where i = 1, 2, . . . , n, j = 1, 2, . . . , Nji .

Ci,j − Ci,j−1 ≥ V l
i,j ∗ Xk

i,j ∗ Pk
i,j, ∀i, j, l, k (10)

Ci,j − Cu,v ≥ Yl
i,j,u,v,k ∗ Pk

i,j + L ∗ (Yl
i,j,u,v,k − 1) (11)

for all i, j, u, v, k, l.

ZM
i,j + ZF

i,j ∈ {0, 1}, ∀i, j (12)

Equations (5), (6), and (8) are the three objective functions which include the makespan,
max factory load, and total workload objectives; OF1 determines the productivity of a
factory, OF2 determines the load balance between factories, and OF3 determines the wear

Processes 2022, 10, 1517 6 of 23

and tear on machines. Equation (9) guarantees that each job can only be processed by one
machine at a time. Equation (10) guarantees the processing sequence constraints between
previous and subsequent operations for the same job. Equation (11) guarantees that one
machine can only process one job at a time. Equation (12) guarantees that an operation can
only be transferred once between factories or machines.

5. The Proposed HDVMA

A memetic algorithm is a hybrid algorithm that combines a global search algorithm
with a local search algorithm to improve the convergence performance. In our proposed
HDVMA, we used the NSGA-II as the global optimization method and adopted VNS as the
local optimization method. However, due to the high convergence of VNS, the population
will converge to a few points too quickly. To maintain the diversity of the population, we
introduce a set of weight vectors. The HDVMA can efficiently solve the MO-DFFJSPT.

5.1. Framework of the HDVMA

In this section, we introduce the framework of the whole algorithm in detail, including
the initialization method, crossover strategy, mutation strategy, weight allocation strategy,
and DVNS strategy. The framework of the HDVMA is described in Algorithm 1.

Algorithm 1 The framework of the HDVMA

Input: Setting the key parameters.
Output: Pareto solution set POP.
1: Encode and initialize the population POP according to the four rules.
2: Decode POP and calculate the three objective fitness values and crowding distances

of POP.
3: while the stopping criterion is not met do
4: Perform non-dominated sorting on POP and execute 2 tournament selections on

POP to form the mating pool.
5: Population evolution (Sections 5.4 and 5.5).
6: Execute DVNS to generate NEW_POP.
7: Merge NEW_POP and POP to generate ALL_POP.
8: Eliminate repeated individuals in ALL_POP.
9: Calculate the crowding distance of ALL_POP, perform non-dominated sorting for

ALL_POP, and select the best Np individuals to generate the next generation POP.
10: end while

5.2. Encoding and Decoding Method

The first step of the metaheuristic algorithm is to encode and decode the required
problem. The encoding can transform the solution space to the search space, and the
decoding can transform the search space into a scheduling scheme. In DFJSP, many
researchers choose a three-layer encoding method [10,22] including factory encoding,
machine encoding, and operation sequence encoding. However, the three-layer encoding
method increases the complexity of the evolution operators. Therefore, we propose a new
encoding method. Two vectors are used to represent the solution, and all the operation
sequences, factory numbers, and machine numbers can be obtained from the two vectors.

The two vectors are the equipment allocation vector and operation sequence vector.
The equipment allocation vector represents the allocation of machines and factories, and
the operation sequence vector represents the operation process order. The feasibility of
the machine allocation in flexible scheduling can be guaranteed by the index value of the
available machine set for an operation. The operation sequence vector is constructed from
the job number, and the procedures of a job are represented by the number of occurrences
of the job. This encoding approach can ensure the feasibility of the solution, and there will
be no infeasible solution.

Processes 2022, 10, 1517 7 of 23

A simple example of MO-DFFJSPT is constructed to illustrate the encoding method.
The example consists of two factories (F1, F2); three machines (M1, M2, M3) are assigned
to F1 and two machines (M4, M5) are assigned to F2. The ten operations of three jobs are
assigned to their respective candidate machines for processing; the detailed processing
information of the example is shown in Table 1. Figure 2 shows an example of the encoding
method; the total number of each vector is the total number of operations and the operation
sequence is (O3,1, O1,1,. . ., O3,3), as shown in Figure 2. The value of the equipment allocation
vector represents the index of the available machine set. For instance, as the index of
operation O1,3 is 2, it is assigned the second index value among the available machines, i.e.,
machine number 3, while operation O3,1 is assigned to machine number 5. It is notable
that when the machine number is determined, the factory number is determined as well,
because machine number 3 belongs to factory number 1, and the factory number of O1,3 is
set to 1. For the same reason, the factory number of O3,1 is set to 2.

Figure 2. Solution representation.

Table 1. Example of MO-DFFJSPT.

Jobs Operations F1 F2
M1 M2 M3 M4 M5

J1 O1,1 — (1,2,3) (2,3,4) — (1,3,5)
O1,2 (4,5,6) (2,3,4) (5,8,9) (5,7,8) (7,9,10)
O1,3 (4,5,7) — (2,3,4) (1,2,3) (8,10,12)

J2 O2,1 (4,7,8) (5,7,10) (1,2,3) — (1,3,5)
O2,2 (5,6,7) (1,2,4) (8,10,12) — (4,5,6)
O2,3 (1,3,4) (4,5,8) — (2,3,4) (5,6,7)
O2,4 (1,2,3) (9,10,11) — (6,8,10) (2,4,5)

J3 O3,1 (4,5,6) — — (2,3,4) (1,3,5)
O3,2 — (12,13,17) (10,11,13) (14,15,16) —
O3,3 (5,6,7) — (7,9,10) (10,11,13) —

Decoding yields a feasible scheduling scheme. In this section, we use a insert decoding
method [23] that can process the operations as early as possible. The decoding steps are
shown in Algorithm 2.

Ta = max
{

Ci,j−1 + TT , Ts
}

(13)

Ta + Pk
i,j ≤ Te (14)

Processes 2022, 10, 1517 8 of 23

Algorithm 2 Insert decoding method

Input: An operation sequence vector OS.
Output: A scheduling scheme.
1: while OS is not empty do
2: The fuzzy transfer time TT is set to [0,0,0].
3: Extract the first gene from OS as CV.
4: Obtain Oi,j, Fl , Mk and Pk

i,j on Mk of the CV.
5: if Oi,j is transferred from another factory then
6: TT ⇐ TF
7: end if
8: if Oi,j is transferred from another machine in the same factory then
9: TT ⇐ TM

10: end if
11: Obtain all idle time periods of the machine.
12: If the insertion criteria are met, Oi,j is inserted and the idle time periods are updated.
13: Remove CV from OS.
14: end while

Equations (13) and (14) represent the insertion criteria. When Equation (14) is met,
Oi,j can be inserted into the current idle time period, where Ts and Te denote the start time
and end time, respectively, for each idle time period. Ta represents the start time of the
current workpiece processing, and TT represents the time taken for the workpiece to be
transferred from other machines or factories to the current machine. A simple decoding
example with fuzzy processing and transportation time is shown in Figure 3. The inverted
triangle and upright triangle represent the start time and end time, respectively, the dotted
triangle represents the transfer time, and the filled triangle represents the processing time.

M1

M2

M3

oi,j-1

oi,j-1

Machine Number

TimeTs

Factory l

Te

Met the insert criteria

oi,j

oi,j

Figure 3. An example of the insert decoding method.

5.3. Population Initialization

In this section, four initialization rules are proposed to generate a high-quality population.
To maintain the high quality and diversity of the initial population, we use different

rules to design initialization strategies. The four rules are as follows.
Global rule: The global rule aims to balance the machine load and reduce the schedul-

ing completion time (OF1).

Processes 2022, 10, 1517 9 of 23

1. Generate a machine load array to store the total processing time of each machine. The
length of the array is the total number of machines. The initial value of the array is set
to 0.

2. Select a job randomly, and obtain the candidate machine number and fuzzy processing
time of each operation of the job.

3. According to the operation sequence of the selected job, add the candidate processing
time of each operation to the corresponding machine load array, find the lowest value
in the array, and store the corresponding machine.

4. Update the machine load array, and repeat step 3 until all operations of the selected
job are assigned to a machine.

5. Select other jobs in the same way until all jobs have been selected.

Factory load rule: The factory load rule aims to reduce the maximum factory load
(OF2). While it is similar to the global rule, the difference is that it generates a factory load
array rather than a machine load array to balance the workload between factories.

Workload rule: The workload rule aims to reduce the total workload (OF3). Each
operation is allocated to the machine with the shortest processing time.

Random rule: The random rule randomly assigns each operation to a machine to
ensure the diversity of the initial population.

The combination of the first three initialization rules improves the quality of the initial
population. The random rule ensures the quality of the population and maintains the
diversity of the population, preventing it from easily falling into a local optimum in the
search process. Finally, the probabilities of these four initialization rules are determined to
be 0.5, 0.1, 0.1, and 0.3, respectively.

5.4. Crossover

Crossover is an important part of the algorithm, as it determines the global search
ability of the algorithm. Due to the different encoding methods of the two vectors, we adopt
two different crossover methods: precedence operation crossover(POX) and multi-point
crossover(MPX) [24].

Operation sequence crossover: POX can preserve the good characteristics of the two
parent chromosomes to produce better operation sequence vectors for the offspring.

1. Randomly divide the job set into two nonempty sets (Job1,Job2).
2. Find the genes belonging to Job1 from Parent1 and copy them to New1 at the same

position; find the genes belonging to Job2 from Parent2 and copy them to New2 at the
same position.

3. Find the genes belonging to Job1 from Parent1 and copy them from left to right to the
unassigned positions in New2; find the genes belonging to Job2 from Parent2 and
copy them from left to right to the unassigned positions in New1. An example of this
procedure is shown in Figure 4.

Equipment allocation crossover: MPX is adopted to generate feasible equipment
allocation vectors.

1. Randomly generate several positions as crossover positions.
2. Exchange the gene values of Parent1 and Parent2 based on the generated crossover

positions. An example of this procedure is shown in Figure 5.

Processes 2022, 10, 1517 10 of 23

Figure 4. POX crossover.

Figure 5. MPX crossover.

5.5. Mutation

The mutation operation maintains the diversity of the population during evolution
and prevents a reduction in diversity from leading to convergence to a local optimum. In
the process of mutation, we always expect the mutation to lead in a good direction; thus, we
propose two mutation strategies to reduce the three objective values of the MO-DFFJSPT.

Operation sequence mutation:

1. Randomly select two positions, P1 and P2, in the operation sequence vector.
2. Exchange the values of P1 and P2.

Equipment allocation mutation:

1. Randomly select two positions, P1 and P2, in the equipment allocation vector.
2. Obtain Oi,j, the candidate machine number, and the corresponding fuzzy processing

times of P1 and P2.
3. Change the current machine of P1 and P2 to the machine with the minimum fuzzy

processing time other than the current machine.

Processes 2022, 10, 1517 11 of 23

For each individual among the offspring, we only perform one mutation operation on
it. If the mutation conditions are met, a random number from 0 to 1 is generated. When the
random number is less than 0.5, the operation sequence mutation is executed; otherwise,
the equipment allocation mutation is executed.

5.6. DVNS

In this section, a VNS method combining three local search strategies is proposed, and
a weight vector is introduced to evaluate the solution quality and design an acceptance
criterion after performing VNS.

5.6.1. Individual Selection Criteria

There are two problems that need to be solved before conducting the local search of
the population:

1. What is the probability of performing local search?
2. Which individuals are selected for local search?

The answer to the first question is determined in Section 6.3. For the purpose of
selecting high-quality individuals, we introduce a set of weight functions to evaluate the
quality of individuals. The corresponding equation is shown as Equation (15):

F(x, λ) = λ1OF1(x) + λ2OF2(x) + λ3OF3(x) (15)

where OF1(x), OF2(x), OF3(x) denotes the three objective function values after decoding
vector x and λ1, λ2, λ3 denotes uniformly distributed vectors. A set of weight vectors
satisfies the following constraints:

λ1 + λ2 + λ3 = I, λ1, λ2, λ3 ∈ {1, 2, . . . , I} (16)

In Equation (16), I is set to 23 to generate 300 sets of weight vectors [25]. When a local
search is performed, a set of weight vectors is selected randomly from among the 300 sets
of uniformly distributed vectors as individual quality criteria. The value of F(x, λ) is used
to perform tournament selection for the current population in order to obtain high-quality
individuals for the VNS. Algorithm 3 provides the detailed steps of individual selection.

Algorithm 3 High-quality individual selection

Input: Current population POP, local search probability Pl , population size Np, 300 sets
of weight vectors λ=(λ1, λ2, λ3).

Output: High-quality individuals POPh, selected weight vector sets λs.
1: for i = 1 to Np ∗ Pl do
2: Randomly select a group of vectors from the set of weight vectors λ. Calculate F(x, λ)

according to Equation (15) for each individual, and perform tournament selection to
select a high-quality individual.

3: Store the selected individual in POPh and store the selected weight vector set in λs.
4: end for

5.6.2. VNS Method

In this section, three neighborhood structures of VNS are introduced in detail. The
combination of the three neighborhoods expands the search space of the neighborhood and
improves the convergence performance of the algorithm. The three local search strategies
are shown in Algorithms 4–6.

Processes 2022, 10, 1517 12 of 23

Algorithm 4 Strategy LS1

Input: An individual vector X.
Output: Vector XLS1 after performing local search LS1.
1: Decode X and obtain the number Fm of the factory with the maximum load.
2: Obtain the operations processed in factory Fm and store them in set Sm.
3: Randomly select an operation Or from Sm and obtain its candidate fuzzy processing

time array Ac, current gene value Gc and candidate machine index array Ia in Fm.
4: Ac(Gc, 1 : 3)⇐ [in f , in f , in f].
5: for i=1 to size(Ia) do
6: Ac(Ia(i), 1 : 3)⇐ [in f , in f , in f].
7: end for
8: Obtain the minimum value Vm in fuzzy array Ac and its index Im in Ac.
9: if Vm == [in f , in f , in f] then

10: Execute Algorithm 5.
11: else
12: Change Gc to Im.
13: end if

Algorithm 5 Strategy LS2

Input: An individual vector X.
Output: Vector XLS2 after local search LS2.
1: Randomly select an operation Or from among all operations.
2: Obtain the candidate fuzzy processing time array Ac and current gene value Gc of Or.
3: Ac(Gc, 1 : 3)⇐ [in f , in f , in f].
4: Obtain the minimum value Vm in fuzzy array Ac and its index Im in Ac.
5: Change Gc to Im.

Algorithm 6 Strategy LS3

Input: An individual vector X.
Output: Vector XLS3 after local search LS3.
1: Obtain the critical path of individual X.
2: Randomly select two positions P1 and P2 from the critical path.
3: Exchange the gene values of P1 and P2.

The first two local search strategies are designed for equipment allocation vectors.
Algorithm 4 reduces the maximum factory load (OF2) by changing the processing machine
in the maximum-load factory to the machine with the minimum processing time among
the other factories. The purpose of Algorithm 5 is to reduce the total workload (OF3) by
changing the current machine to a machine with the minimum processing time.

The third local search strategy is designed for the operation sequence vectors. As
many previous studies [25,26] have proven that it is possible to reduce the makespan
(OF1) only by moving an operation on the critical path, we process the operations on the
critical path to produce better scheduling results. Algorithm 6 exchanges the positions
of two operations on the critical path to reduce the makespan of the MO-DFFJSPT. An
example of Algorithm 4 is shown in Figure 6, and Algorithm 7 shows the steps of the entire
VNS process.

Processes 2022, 10, 1517 13 of 23

Algorithm 7 VNS

Input: Neighborhood number T, high-quality individual set POPh, selected weight vector
sets λs.

Output: Individual sets POPv after the VNS.
1: for i = 1 to size(POPh) do
2: (λc1, λc2, λc3)⇐ λs(i, 1 : 3).
3: POPc ⇐ POPh(i, :).
4: Decode POPc and calculate F(x, λ)(Fc) according to Equation (15).
5: k⇐ 1.
6: while k ≤ 3 do
7: for j = 1 to T do
8: if k == 1 then
9: Execute Algorithm 4 for POPc to generate POPLS.

10: end if
11: if k == 2 then
12: Execute Algorithm 5 for POPc to generate POPLS.
13: end if
14: if k == 3 then
15: Execute Algorithm 6 for POPc to generate POPLS.
16: end if
17: Decode POPLS and calculate F(x, λ).
18: Fall(j)⇐ F(x, λ).
19: end for
20: Find the minimum value Fmin in Fall and its corresponding vector POPmin.
21: if Fmin ≤ Fc then
22: k⇐ 1, POPc ⇐ POPmin, Fc ⇐ Fmin.
23: else
24: k⇐ k + 1.
25: end if
26: end while
27: POPv(i, :)=POPc.
28: end for

Figure 6. LS1 example.

5.6.3. Acceptance Criteria

After performing VNS on the high-quality individuals, we need to judge whether
the solution after the VNS is better than the original solution. In this section, in order to
maintain the diversity of the population and prevent it from becoming trapped in local

Processes 2022, 10, 1517 14 of 23

optima, we use Equation (15) to judge the quality of the solution. For each locally searched
solution, the corresponding weight vector is extracted from the weight vector set λs, then
the value F(x, λ) is calculated. If the value is less than that of the original solution, the new
solution is accepted. All the flows of DVNS are shown in Algorithm 8.

Algorithm 8 DVNS

Input: Population POP.
Output: Population POPD after DVNS.
1: Execute Algorithm 3 to select high-quality individuals POPh.
2: Execute Algorithm 7 for POPh to generate individuals POPv after local search.
3: Replace POPh in POP with POPv to generate POPD.

6. Experimental Results and Discussion

The HDVMA was executed in MATLAB R2017a and computed on an Intel(R) Core i7
2.60 GHz processor with 16.0 GB RAM. To avoid the influence of randomness as much as
possible, each experiment was carried out ten times and the average value was taken as the
experimental result.

6.1. Benchmark Construction

Because there are no benchmarks for the MO-DFFJSPT, we extend fifteen benchmarks
to test the effectiveness of the proposed algorithm. The first set of benchmarks is obtained
from Lei [21,27]. We assign the machines to different factories to generate DFInstance01–
DFInstance05. However, as Lei’s benchmarks are all completely flexible, we expand another
partially flexible benchmarks, which are obtained from the famous MK benchmarks [28]; we
transform MK to fuzzy Mk (DFMK01-DFMK10) according to Lei’s fuzzification method [29].
The distributed workshop is generated as follows:

1. The maximum number of factories is set to [2,3,4] according to the benchmark scale.
2. The difference in the number of machines between factories does not exceed 1.

The scheduling benchmark details are shown in Table 2. In addition, the fuzzy transfer
time TM between machines is set to (1,2,3) units, and the fuzzy transfer time TF between
factories is set to (8,10,12) units.

Table 2. Constructed benchmarks.

Benchmark Size (n × f × m) Source

DFMK01 10 × 2 × 6 MK01
DFMK02 10 × 2 × 6 MK02
DFMK03 15 × 2 × 4 MK05
DFMK04 20 × 2 × 5 MK07
DFMK05 15 × 3 × 8 MK03
DFMK06 15 × 3 × 8 MK04
DFMK07 20 × 3 × 10 MK08
DFMK08 20 × 3 × 10 MK09
DFMK09 10 × 4 × 15 MK06
DFMK10 20 × 4 × 15 MK10

DFInstance01 10 × 3 × 10 Instance01
DFInstance02 10 × 3 × 10 Instance02
DFInstance03 10 × 3 × 10 Instance03
DFInstance04 10 × 3 × 10 Instance04
DFInstance05 15 × 3 × 10 Instance05

6.2. Performance Metrics

To test the performance of different algorithms, the following three metrics are used to
evaluate the algorithms.

Processes 2022, 10, 1517 15 of 23

1. HV metric:

HV(P, r) =
P⋃

x∈P
v(x, r) (17)

where P denotes the non-dominated solution set generated by the algorithm and
v(x, r) denotes the hypercube formed between a solution in the obtained Pareto front
and the reference point r. r usually takes the maximum value after the normalization
of the objective, i.e., (1, 1, 1), to obtain HV.

2. IGD metric:

IGD(P, P∗) =
1
| P∗ | ∑

x∈P∗
min
y∈P

dis(x, y) (18)

where P denotes the non-dominated solution set generated by the algorithm, P*
denotes the Pareto front, and dis(x, y) denotes the minimum Euclidean distance
between points x and y.

3. Spread metric:

Spread =

dl + d f +
N−1
∑

i=1
| di − d |

dl + d f + (N − 1)d
(19)

where the parameters d f and dl are the Euclidean distances between the extreme
solutions and the boundary solutions of the obtained non-dominated set, di denotes
the Euclidean distance between consecutive solutions in the obtained non-dominated
set of solutions, d denotes the average value of di, and N denotes the number of
non-dominated solution sets.

In the above three metrics, HV can measure the comprehensive performance of the
algorithm, IGD can measure the convergence and diversity of the algorithm, and Spread
can measure the uniformity of the solution distribution in the algorithm. At the end of
each algorithm run, we calculate three metrics values based on the Pareto frontier and the
non-dominated set of solutions generated by the algorithm. The Pareto frontier for each
benchmark is generated by the sets of non-dominated solutions for all algorithms. The
lower the IGD value and Spread are, the better the algorithm performance, and the higher
the HV value is, the better the algorithm’s performance. Additionally, as all of the objective
function values are TFNs, we need to calculate the expected value of each TFN and then
standardize them to calculate the three metrics. The expected value calculation method [19]
and the standardization method are shown in Equations (20) and (21), respectively:

E(aξ) =
1
4
(a1 + 2a2 + a3) (20)

OFi =
OFo

i −OFmin
i

OFmax
i −OFmin

i
, i ∈ {1, 2, 3} (21)

where OFo
i denotes the original expected objective function value. OFmax

i and OFmin
i

denote the maximum and minimum expected values, respectively, of the i-th objective for
all solutions.

6.3. Parameter Settings

Different parameters affect the overall performance of the algorithm, and thus we
need to adjust the key parameters of the algorithm. The invariant parameters include the
population number Np, number of iterations MaxIt, and neighborhood number T; Np and
MaxIt are set to 100. Considering the high time complexity of the DVNS, T is set to 3.

Processes 2022, 10, 1517 16 of 23

In addition, there are three important variable parameters in the proposed algorithm:
the mutation probability, Pm, local search probability, Pl , and number of tournament selec-
tions, Nt, in DVNS. The Taguchi design-of-experiment (DOE) approach is adopted here to
determine the best parameter values. In this paper, the four levels for each parameter are
as follows:

• Nt:{5, 10, 15, 20}
• Pl :{0.05, 0.10, 0.15, 0.20}
• Pm:{0.1, 0.2, 0.3, 0.4}

An orthogonal array L16(43) is adopted to measure the impact of each parameter level
on a medium scale benchmark (DFInstance03), and we use a normalization value called
the objective deviation sum (ODS) [10] as the metric, which is shown in Equation (22):

ODS(OFc) =
3

∑
i=1

(
OFc

i −min
{

OFi
all
}

min
{

OFi
all
} ∗ 100) (22)

where OFc
i denotes the i-th average expected objective value of OFc and

{
OFi

all
}

denotes
the i-th average expected objective value set of all combinations; the smaller the ODS value
is, the better the performance of the algorithm.

Table 3 shows the DOE results, and Figure 7 shows the influence of different levels of
the three factors on the performance of the algorithm. From Figure 7, we find that the local
search probability has the greatest impact on the ODS value, and the higher the local search
probability is, the lower the ODS value, which shows the effectiveness of DVNS. However,
the decrease in ODS from three to four levels is not a large difference. Considering the
time complexity and algorithm performance, we choose 0.15 as the local search probability,
and Nt and Pm are determined to be 10 and 0.1, respectively, according to Figure 7. To
determine Pl change from level 3 to level 4 does not significantly affect the efficiency of
HDVMA, we designed two comparative experiments (DFInstance02, DFMK05). The value
of Pl is taken as 0.15 and 0.2 respectively, and the influence of Pl on the algorithm at level 3
and level 4 is observed by calculating three metrics.

Table 3. L16 Taguchi experiment for the ODS.

Factor Levels
Number

Nt Pl Pm
ODS

1 1 1 1 5.8898
2 1 2 2 6.0353
3 1 3 3 4.8123
4 1 4 4 5.3476
5 2 1 2 5.7420
6 2 2 1 5.6049
7 2 3 4 5.2423
8 2 4 3 5.0575
9 3 1 3 7.2676
10 3 2 4 5.8657
11 3 3 1 4.5849
12 3 4 2 5.1784
13 4 1 4 6.5863
14 4 2 3 5.7924
15 4 3 2 6.0990
16 4 4 1 4.2528

In Table 4, HDVMA-0.15 denotes the HDVMA with the Pl of 0.15, while HDVMA-0.20
denotes the HDVMA with the Pl of 0.20. It can be seen that the gap between HDVMA-0.20
and HDVMA-0.15 in the three metrics is very small, which proves the effectiveness of a Pl
value of 0.15.

Processes 2022, 10, 1517 17 of 23

1 2 3 4

4.9

5.4

5.9

6.4

M
e
a
n

V
a
l
u
e

N
t

1 2 3 4

P
l

1 2 3 4

P
m

Figure 7. Factor levels.

Table 4. Comparison of Pl level.

HV IGD Spread
Benchmarks

HDVMA-0.15 HDVMA-0.20 HDVMA-0.15 HDVMA-0.20 HDVMA-0.15 HDVMA-0.20

DFMK05 0.7011 0.7213 0.0364 0.0350 0.6974 0.6874
DFInstance02 0.6586 0.6579 0.0515 0.0505 0.4961 0.5171

6.4. Effectiveness of the Initialization Strategy

In this section, we discuss the effectiveness of the initialization strategy. We use
HDVMA-NIS to denote the HDVMA without an initialization strategy, meaning that the
initial population is generated randomly. We tested the performance of the HDVMA-NIS
and HDVMA on fifteen instances (DFMK01–DFMK10 and DFInstance01–DFInstance05)
and calculated each HV, IGD, and Spread value on each benchmark. All the algorithms
were run ten times, and the average values were taken as the final results shown in Table 5.

Table 5. Comparison of initialization strategy.

HV IGD Spread
Benchmarks

HDVMA-NIS HDVMA HDVMA-NIS HDVMA HDVMA-NIS HDVMA

DFMK01 0.6471 0.6624 0.0807 0.0797 0.4504 0.4588
DFMK02 0.6486 0.6591 0.1588 0.1442 0.7462 0.6997
DFMK03 0.5682 0.6644 0.0569 0.0317 0.6723 0.4440
DFMK04 0.6196 0.6299 0.0572 0.0531 0.4306 0.4301
DFMK05 0.6517 0.7011 0.0508 0.0364 0.7625 0.6974
DFMK06 0.6578 0.7470 0.0526 0.0341 0.6023 0.5506
DFMK07 0.5490 0.6344 0.0813 0.0622 0.4220 0.4200
DFMK08 0.5386 0.7093 0.0768 0.0436 0.6828 0.5330
DFMK09 0.5549 0.5453 0.0747 0.0775 0.5392 0.5473
DFMK10 0.5360 0.6527 0.0757 0.0664 0.4899 0.4407

DFInstance01 0.5413 0.5284 0.0844 0.0867 0.5920 0.5656
DFInstance02 0.6306 0.6586 0.0643 0.0515 0.5057 0.4961
DFInstance03 0.6609 0.6273 0.0520 0.0491 0.5759 0.5672
DFInstance04 0.6012 0.5356 0.0909 0.1143 0.6416 0.6853
DFInstance05 0.6592 0.6293 0.0942 0.0900 0.6022 0.5951

In Table 5, the bold values in each metric represent better results. We observe that the
three metrics of the HDVMA are better than those of the HDVMA-NIS on most DFMK
benchmarks; however, the HV metrics of the HDVMA are slightly worse than those of
the HDVMA-NIS on four DFInstance benchmarks. This is because on the completely
flexible benchmarks there are too many candidate machines for each operation, and the

Processes 2022, 10, 1517 18 of 23

initialization strategy may not obtain enough high-quality genes, thus losing points on
the Pareto frontiers and resulting in a slight decrease in the HV value. However, this
is acceptable, and the initialization strategy performs well on IGD and Spread, which
proves that the initialization strategy can improve the convergence of the algorithm and the
universality of the solution set distribution. In general, the results in Table 5 demonstrate
that whether the HV, IGD, or Spread is used, the HDVMA achieves better results than
the HDVMA-NIS on most benchmarks. Based on this, we can conclude that the proposed
initialization strategy initializing the population with the four rules improves the quality
of the initial population, effectively producing a high-quality initial population for the
MO-DFFJSPT.

6.5. Effectiveness of the DVNS Strategy

In this section, we use HDVMA-NLS to denote the HDVMA algorithm without the
DVNS strategy. The HDVMA-NLS and HDVMA were run ten times on each benchmark to
demonstrate the superiority of the DVNS strategy. Better metric values are shown in bold.

As shown in Table 6, in terms of HV, the HDVMA outperforms the HDVMA-NLS on all
fifteen benchmarks except for DFMK05. In terms of IGD, the performance of the HDVMA
is slightly worse only on DFMK04 and is higher than that of the HDVMA-NLS on the other
benchmarks. In the comparison of Spread, we find that the HDVMA performs worse than
the HDVMA-NLS on only two benchmarks. This fully demonstrates the effectiveness of the
proposed DVNS. The three well-designed local search strategies expand the solution space
during the search, improve the convergence speed of the algorithm, and help it to avoid
local optima. The individual selection strategy based on weight preference and acceptance
criteria ensures the convergence of the algorithm and the diversity of solutions, and the
solutions are more evenly distributed on the Pareto front.

Table 6. Comparison of DVNS strategy.

HV IGD Spread
Benchmarks

HDVMA-NLS HDVMA HDVMA-NLS HDVMA HDVMA-NLS HDVMA

DFMK01 0.5983 0.6624 0.0960 0.0797 0.4563 0.4588
DFMK02 0.5638 0.6591 0.2009 0.1442 0.8341 0.6997
DFMK03 0.6214 0.6644 0.0422 0.0317 0.4900 0.4440
DFMK04 0.5923 0.6299 0.0512 0.0531 0.4662 0.4301
DFMK05 0.7110 0.7011 0.0378 0.0364 0.7177 0.6974
DFMK06 0.6873 0.7470 0.0444 0.0341 0.6076 0.5506
DFMK07 0.6269 0.6344 0.0698 0.0622 0.3866 0.4200
DFMK08 0.6968 0.7093 0.0510 0.0436 0.5650 0.5330
DFMK09 0.4200 0.5453 0.1341 0.0775 0.6358 0.5473
DFMK10 0.5898 0.6527 0.1087 0.0664 0.4608 0.4407

DFInstance01 0.3806 0.5284 0.1175 0.0867 0.6412 0.5656
DFInstance02 0.5010 0.6586 0.1572 0.0515 0.5368 0.4961
DFInstance03 0.5194 0.6273 0.0852 0.0491 0.6008 0.5672
DFInstance04 0.4135 0.5356 0.1553 0.1143 0.7287 0.6853
DFInstance05 0.5087 0.6293 0.1455 0.0900 0.6037 0.5951

Therefore, we can conclude that DVNS can enable the algorithm to obtain a better
solution set and further improve the performance of the algorithm.

6.6. Comparison with Other Algorithms

In this section, to further evaluate the performance of the HDVMA, we choose four
algorithms for comparison: NSGA-II, NSGA-III, MOEA/D, and DJAYA. Among them,
NSGA-II, NSGA-III, and MOEA/D are all classical multiobjective optimization algorithms
that are widely used in many fields. DJAYA [30] is a recently proposed algorithm for
solving the multiobjective flexible job shop scheduling problem.

Processes 2022, 10, 1517 19 of 23

All algorithms use the same encoding and decoding methods and the same muta-
tion operator. In order to ensure the fairness of the experiment, the population number,
maximum number of iterations, and mutation probability of all algorithms are set to the
same values, (100,100,0.1), except MOEA/D and NSGA-III. Due to the existence of weight
vectors and reference points, the population numbers of MOEA/D and NSGA-III are set to
the number closest to 100, i.e., 105. The number of neighborhoods in MOEA/D is set to 10.
All the algorithms were run ten times independently in each benchmark, and the average
value was taken as the final result.

Tables 7–9 show the HV, IGD and Spread values of the five algorithms, respectively.
The HDVMA achieves better performance than all other algorithms in terms of every metric
on almost all benchmarks. Regarding Spread, the HDVMA is inferior to NSGA-III and
MOEA/D on only three benchmarks, performing well on the other benchmarks.

Table 7. HV value comparison.

Benchmarks NSGA-II NSGA-III MOEA/D DJAYA HDVMA

DFMK01 0.5690 0.6106 0.4775 0.5037 0.6624
DFMK02 0.4793 0.5012 0.2522 0.2757 0.6847
DFMK03 0.4577 0.4981 0.2799 0.4788 0.6644
DFMK04 0.4748 0.4509 0.3378 0.2815 0.6447
DFMK05 0.2483 0.2801 0.0860 0.1620 0.7011
DFMK06 0.4946 0.4853 0.4239 0.4778 0.7401
DFMK07 0.4440 0.4370 0.3338 0.2564 0.6273
DFMK08 0.2654 0.3173 0.1439 0.1587 0.7145
DFMK09 0.1958 0.2890 0.0695 0.1337 0.5883
DFMK10 0.1862 0.2275 0.1009 0.1157 0.6613

DFInstance01 0.4604 0.4199 0.3707 0.4829 0.5456
DFInstance02 0.5426 0.4514 0.3451 0.5537 0.6841
DFInstance03 0.5516 0.4268 0.3691 0.5437 0.6369
DFInstance04 0.5217 0.4657 0.3623 0.4904 0.6527
DFInstance05 0.2718 0.2150 0.1356 0.3637 0.6293

Table 8. IGD value comparison.

Benchmarks NSGA-II NSGA-III MOEA/D DJAYA HDVMA

DFMK01 0.0771 0.0792 0.1388 0.1746 0.0565
DFMK02 0.1516 0.1444 0.2408 0.2796 0.0814
DFMK03 0.0608 0.0717 0.1767 0.1817 0.0228
DFMK04 0.0640 0.0734 0.0982 0.3528 0.0362
DFMK05 0.1745 0.1653 0.2160 0.4757 0.0165
DFMK06 0.0860 0.1072 0.1256 0.1695 0.0301
DFMK07 0.0835 0.0805 0.1166 0.2508 0.0620
DFMK08 0.1891 0.2008 0.2828 0.5683 0.0214
DFMK09 0.1786 0.1929 0.2393 0.5937 0.0266
DFMK10 0.2233 0.2375 0.3141 0.5948 0.0310

DFInstance01 0.0862 0.1212 0.1341 0.1537 0.0323
DFInstance02 0.0962 0.1405 0.1421 0.1463 0.0311
DFInstance03 0.0714 0.1336 0.1322 0.1328 0.0303
DFInstance04 0.1161 0.2346 0.1589 0.1863 0.0614
DFInstance05 0.2242 0.4316 0.2589 0.2864 0.0241

The HDVMA is superior to the other algorithms in convergence and more uniform in
the distribution of solutions along the Pareto front. This excellent convergence performance
is due to the fact that the initialization strategy produces a high-quality initialization
population, which makes it easier for the algorithm to converge, while the three local search
methods of DVNS further enhance the convergence performance of the algorithm. The
more uniform distribution of the algorithm is due to the introduction of weight vectors.

Processes 2022, 10, 1517 20 of 23

Because the individual selection strategies and acceptance criteria are affected by different
weights, the algorithm can accept new solutions with different weighting preferences and
obtain solution sets with higher diversity and wider distributions.

Table 9. Spread value comparison.

Benchmarks NSGA-II NSGA-III MOEA/D DJAYA HDVMA

DFMK01 0.4735 0.4803 0.4507 0.4762 0.4770
DFMK02 0.7896 0.8015 1.0096 0.8362 0.7210
DFMK03 0.7414 0.7280 0.8923 0.6290 0.4697
DFMK04 0.4741 0.4727 0.5453 0.6106 0.4195
DFMK05 0.8243 0.7590 0.9287 0.7388 0.6807
DFMK06 0.6696 0.6749 0.7724 0.6337 0.5532
DFMK07 0.4775 0.4692 0.5123 0.6303 0.4104
DFMK08 0.7885 0.7316 0.7985 0.7186 0.5616
DFMK09 0.7554 0.6602 0.9057 0.7420 0.6903
DFMK10 0.6329 0.6540 0.8001 0.7662 0.4421

DFInstance01 0.7162 0.7481 0.8170 0.7309 0.6127
DFInstance02 0.6890 0.7571 0.7912 0.7023 0.6523
DFInstance03 0.7486 0.7310 0.8653 0.6954 0.6608
DFInstance04 0.7407 0.6880 0.8415 0.7038 0.6959
DFInstance05 0.7727 0.8001 0.9189 0.7725 0.6572

To observe the performance of different algorithms, we plot the non-dominated so-
lution set graph generated by all algorithms on the six representative benchmarks from
DFMK and DFInstance(DFInstance01, DFInstance03, DFInstance05, DFMK02, DFMK05,
and DFMK08), which are shown in Figure 8. From these six benchmarks, we find that
the HDVMA is closer to the bottom of the three-dimensional graph and more evenly dis-
tributed than the other algorithms, which indicates that the comprehensive performance of
the HDVMA is better than that of the other algorithms. This is consistent with our analysis
in Tables 7–9, and further validates the effectiveness of the HDVMA.

75

233

80

232

85

231

90

80

230

O
F

2

95

75

229

100

70

OF
3

228

105

65

OF
1

110

227 60

226 55

225 50

224 45

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(a) DFInstance01

115

400

120

125

395

130

390
120

135

385 115

140

O
F

2

380 110

145

OF
3

105

150

375
100

155

OF
1

370 95

160

365 90
85360

80
355

75
350 70

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(b) DFInstance03

150

530

160

520

170

115

180

510

O
F

2

110

190

105

OF
3

500

200

100

OF
1

210

490 95

90
480

85

470 80

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(c) DFInstance05

74

162

76

160

78

64158

80

62

O
F

2

156 60

82

OF
3

58154

84

56

OF
1

152 54

86

52
150

50
48148

46
146 44

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(d) DFMK02

280

1150

300

320

1100

340

340
1050

360

O
F

2

320

380

1000
300

OF
3

400

420

950 280

OF
1

440

260900

240
850

220

800 200

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(e) DFMK05

750

2650

800

2600

850

2550 560

900

5402500

O
F

2

520

950

2450

OF
3

500

1000

2400 480

OF
1

460

1050

2350
440

2300 420
4002250

380
2200 360

HDVMA DJAYA NSGA-II NSGA-III MOEA/D

(f) DFMK08

Figure 8. PF chart of select benchmarks.

Figure 9 shows a two-workshop Gantt diagram example for DFMK02.The processing
time and transfer time of different processes of the same workpiece have the same color. The
workpiece is transferred from workshop 2 to workshop 1 and from workshop 1 to workshop
2 eight times to generate the final scheduling scheme. It can be seen that the distributed
workshop considering workpiece transfer can make the scheduling more flexible, and the

Processes 2022, 10, 1517 21 of 23

fuzziness of the processing time and transfer time is more in line with actual production
situations.

0 10 20 30 40 50 60

Time

0

1

2

3

4

5

6

M
a

c
h

in
e

 n
u

m
b

e
r

O
51

O
51

O
31

O
31

O
32

O
32

O
13

O
13

O
73

O
73

O
64

O
64

O
83

O
83

O
44

O
44

O
66

O
66

O
11

O
11

O
91

O
91

O
33

O
33

O
14

O
14

O
43

O
43

O
74

O
74

O
45

O
45

O
65

O
65

O
25

O
25

O
26

O
26

O
16

O
16

O
81

O
81

O
12

O
12

O
92

O
92

O
24

O
24

O
95

O
95

O
56

O
56

(a) Workshop 1

0 10 20 30 40 50 60

Time

0

1

2

3

4

5

6

M
a

c
h

in
e

 n
u

m
b

e
r

O
71

O
71

O
101

O
101

O
53

O
53

O
104

O
104

O
55

O
55

O
35

O
35

O
46

O
46

O
41

O
41

O
72

O
72

O
102

O
102

O
63

O
63

O
82

O
82

O
103

O
103

O
23

O
23

O
54

O
54

O
34

O
34

O
36

O
36

O
75

O
75

O
61

O
61

O
62

O
62

O
42

O
42

O
21

O
21

O
52

O
52

O
22

O
22

O
93

O
93

O
94

O
94

O
15

O
15

O
105

O
105

O
106

O
106

O
84

O
84

O
85

O
85

O
86

O
86

(b) Workshop 2

Figure 9. DFMK02 Gantt chart.

7. Conclusions

In this paper, we construct a mathematical model of distributed flexible job shop
scheduling problem with fuzzy transfer time and fuzzy processing time to better fit real-
world production scheduling. The objectives are to minimize the fuzzy maximum com-
pletion time, fuzzy maximum factory load, and fuzzy total workload. Workpieces can be
transferred between factories, and the factories work together to produce the final schedul-

Processes 2022, 10, 1517 22 of 23

ing scheme. The fuzzy treatment of the transfer time and processing time makes it easier to
express uncertainty in the real world.

To solve the MO-DFFJSPT, we meticulously design the encoding and decoding meth-
ods of this model. An efficient initialization heuristic that combines four different rules
is designed to generate an initial population to produce high-quality initial individuals.
Then, based on the algorithm framework of NSGA-II, crossover and mutation operators
are designed to search the solution space and maintain the diversity of the population. We
introduce a weight decomposition strategy and design a VNS method to further accelerate
the convergence performance and ensure the uniform distribution of the solution set. Fi-
nally, we compare the HDVMA with four other excellent multiobjective algorithms, and the
results show that the HDVMA is superior to the other algorithms in terms of convergence
performance and the uniformity of the solution set distribution.

This work proposes a new scheduling problem model which is meaningful for real-
world distributed production applications. At the same time, the proposed HDVMA takes
into account the convergence and diversity, and can be used by other researchers to test the
performance of the algorithm. In future work, we will further study complex situations
of distributed production workshops, such as considering machine breakdown and new
workpiece insertion. Additionally, one drawback of our proposed algorithm is too high a
number of parameters, meaning that improper parameter settings that have a bad impact
on the algorithm are too likely. Future research could use adaptive strategies or feedback
mechanisms to dynamically adjust parameters, solving the problem of excessive parameters
in the algorithm.

Author Contributions: J.Y. designed and performed the experiments; J.Y. provided analysis software;
J.Y. analyzed the data; J.Y. organized the data and wrote the paper. H.X. perfected the details of the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The code in this article cannot be published due to privacy, and can be
obtained from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, Y.; Sahnoun, M.; Abdelaziz, F.B.; Baudry, D. A simulated multi-objective model for flexible job shop transportation scheduling.

Ann. Oper. Res. 2022, 311, 899–920. [CrossRef]
2. Zhang, Y.; Zhu, H.; Tang, D. An improved hybrid particle swarm optimization for multi-objective flexible job-shop scheduling

problem. Kybernetes 2020, 49, 2873–2892. [CrossRef]
3. Ziaee, M.; Mortazavi, J.; Amra, M. Flexible job shop scheduling problem considering machine and order acceptance, transportation

costs, and setup times. Soft Comput. 2022, 26, 3527–3543. [CrossRef]
4. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
5. Naderi, B.; Azab, A. An improved model and novel simulated annealing for distributed job shop problems. Int. J. Adv. Manuf.

Technol. 2015, 81, 693–703. [CrossRef]
6. Chang, H.C.; Liu, T.K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms.

J. Intell. Manuf. 2017, 28, 1973–1986. [CrossRef]
7. Wu, X.; Liu, X.; Zhao, N. An improved differential evolution algorithm for solving a distributed assembly flexible job shop

scheduling problem. Memetic Comput. 2019, 11, 335–355. [CrossRef]
8. Tang, H.; Fang, B.; Liu, R.; Li, Y.; Guo, S. A hybrid teaching and learning-based optimization algorithm for distributed sand

casting job-shop scheduling problem. Appl. Soft Comput. 2022, 120, 108694. [CrossRef]
9. Ziaee, M. A heuristic algorithm for the distributed and flexible job-shop scheduling problem. J. Supercomput. 2014, 67, 69–83.

[CrossRef]
10. Luo, Q.; Deng, Q.; Gong, G.; Zhang, L.; Han, W.; Li, K. An efficient memetic algorithm for distributed flexible job shop scheduling

problem with transfers. Expert Syst. Appl. 2020, 160, 113721. [CrossRef]
11. Sang, Y.; Tan, J. Intelligent factory many-objective distributed flexible job shop collaborative scheduling method. Comput. Ind.

Eng. 2022, 164, 107884. [CrossRef]

http://doi.org/10.1007/s10479-020-03600-0
http://dx.doi.org/10.1108/K-06-2019-0430
http://dx.doi.org/10.1007/s00500-021-06481-y
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s00170-015-7080-8
http://dx.doi.org/10.1007/s10845-015-1084-y
http://dx.doi.org/10.1007/s12293-018-00278-7
http://dx.doi.org/10.1016/j.asoc.2022.108694
http://dx.doi.org/10.1007/s11227-013-0986-8
http://dx.doi.org/10.1016/j.eswa.2020.113721
http://dx.doi.org/10.1016/j.cie.2021.107884

Processes 2022, 10, 1517 23 of 23

12. Sun, L.; Lin, L.; Gen, M.; Li, H. A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling. IEEE Trans.
Fuzzy Syst. 2019, 27, 1008–1022. [CrossRef]

13. Zheng, Y.l.; Li, Y.x.; Lei, D.m. Multi-objective swarm-based neighborhood search for fuzzy flexible job shop scheduling. Int. J.
Adv. Manuf. Technol. 2012, 60, 1063–1069. [CrossRef]

14. Lin, J.; Zhu, L.; Wang, Z.J. A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Comput. Ind.
Eng. 2019, 127, 1089–1100. [CrossRef]

15. Li, R.; Gong, W.; Lu, C. Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy
processing time. Comput. Ind. Eng. 2022, 168, 108099. [CrossRef]

16. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. An effective discrete harmony search algorithm for flexible job shop
scheduling problem with fuzzy processing time. Int. J. Prod. Res. 2015, 53, 5896–5911. [CrossRef]

17. Lin, J. A hybrid biogeography-based optimization for the fuzzy flexible job-shop scheduling problem. Knowl.-Based Syst. 2015,
78, 59–74. [CrossRef]

18. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Chong, C.S.; Cai, T.X. An improved artificial bee colony algorithm for flexible
job-shop scheduling problem with fuzzy processing time. Expert Syst. Appl. 2016, 65, 52–67. [CrossRef]

19. Vela, C.R.; Afsar, S.; Palacios, J.J.; Gonzalez-Rodriguez, I.; Puente, J. Evolutionary tabu search for flexible due-date satisfaction in
fuzzy job shop scheduling. Comput. Oper. Res. 2020, 119, 104931. [CrossRef]

20. Sakawa, M.; Mori, T. An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy
duedate. Comput. Ind. Eng. 1999, 36, 325–341. [CrossRef]

21. Lei, D. A genetic algorithm for flexible job shop scheduling with fuzzy processing time. Int. J. Prod. Res. 2010, 48, 2995–3013.
[CrossRef]

22. Xu, W.; Hu, Y.; Luo, W.; Wang, L.; Wu, R. A multi-objective scheduling method for distributed and flexible job shop based on
hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission. Comput. Ind. Eng. 2021,
157, 107318. [CrossRef]

23. Wang, C.; Tian, N.; Ji, Z.; Wang, Y. Multi-objective fuzzy flexible job shop scheduling using memetic algorithm. J. Stat. Comput.
Simul. 2017, 87, 2828–2846. [CrossRef]

24. Gao, K.Z.; Suganthan, P.N.; Chua, T.J.; Chong, C.S.; Cai, T.X.; Pan, Q.K. A two-stage artificial bee colony algorithm scheduling
flexible job-shop scheduling problem with new job insertion. Expert Syst. Appl. 2015, 42, 7652–7663. [CrossRef]

25. Yuan, Y.; Xu, H. Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom. Sci. Eng. 2013,
12, 336–353. [CrossRef]

26. Wang, L.; Zhou, G.; Xu, Y.; Wang, S.; Liu, M. An effective artificial bee colony algorithm for the flexible job-shop scheduling
problem. Int. J. Adv. Manuf. Technol. 2012, 60, 303–315. [CrossRef]

27. Lei, D. Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Appl. Soft Comput. 2012, 12, 2237–2245.
[CrossRef]

28. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
29. Lei, D.; Guo, X. Swarm-based neighbourhood search algorithm for fuzzy flexible job shop scheduling. Int. J. Prod. Res. 2012,

50, 1639–1649. [CrossRef]
30. Caldeira, R.H.; Gnanavelbabu, A. A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem.

Expert Syst. Appl. 2021, 170, 114567. [CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2019.2895562
http://dx.doi.org/10.1007/s00170-011-3646-2
http://dx.doi.org/10.1016/j.cie.2018.11.046
http://dx.doi.org/10.1016/j.cie.2022.108099
http://dx.doi.org/10.1080/00207543.2015.1020174
http://dx.doi.org/10.1016/j.knosys.2015.01.017
http://dx.doi.org/10.1016/j.eswa.2016.07.046
http://dx.doi.org/10.1016/j.cor.2020.104931
http://dx.doi.org/10.1016/S0360-8352(99)00135-7
http://dx.doi.org/10.1080/00207540902814348
http://dx.doi.org/10.1016/j.cie.2021.107318
http://dx.doi.org/10.1080/00949655.2017.1344846
http://dx.doi.org/10.1016/j.eswa.2015.06.004
http://dx.doi.org/10.1109/TASE.2013.2274517
http://dx.doi.org/10.1007/s00170-011-3610-1
http://dx.doi.org/10.1016/j.asoc.2012.03.025
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1080/00207543.2011.575412
http://dx.doi.org/10.1016/j.eswa.2021.114567

	Introduction
	Literature Review
	Distributed Flexible Job Shop Scheduling Problem
	Fuzzy Flexible Job Shop Scheduling Problem

	Fuzzy Set
	Fuzzy Number
	Fuzzy Operation

	Problem Description and Mathematical Modeling
	MO-DFFJSPT Description
	MILP Model for the MO-DFFJSPT

	The Proposed HDVMA
	Framework of the HDVMA
	Encoding and Decoding Method
	Population Initialization
	Crossover
	Mutation
	DVNS
	Individual Selection Criteria
	VNS Method
	Acceptance Criteria

	Experimental Results and Discussion
	Benchmark Construction
	Performance Metrics
	Parameter Settings
	Effectiveness of the Initialization Strategy
	Effectiveness of the DVNS Strategy
	Comparison with Other Algorithms

	Conclusions
	References

