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Abstract: Microbial diversity and dynamic changes play an important role in the production of
fermented peppers. In this study, the relationship between fungal communities and the volatile
flavor compounds of traditional Chinese fermented peppers was investigated by high-throughput
sequencing technology. The results showed that Hanseniaspora was a dominant fungus during the
whole fermentation course and accounted for 82.22% of the fungal community on average (ranging
from 50.44% to 98.15%). Bidirectional orthogonal partial least squares (O2PLS) analysis between
fungal community and volatile flavor compounds showed that Pichia, Hanseniaspora, Cryptococcus,
Debarvomvces, and Trichosporon were closely correlated with the concentrations of the volatile flavor
components such as α-terpineol, trans-3-tetradecene, 4-methylpentyl 3-methylbutanoate, and 11 other
volatile flavor compounds. This study elucidated the dynamics of fungal communities and volatile
flavor compounds during pepper fermentation and the correlation between them. Our analysis
of the relationships between fungal communities and volatile flavor compounds advanced our
understanding of the formation mechanism of volatile flavor compounds in fermented peppers.

Keywords: Capsicum annuum L. Var. Dactylus M; fungal diversity; volatile favor compounds;
correlation analysis

1. Introduction

Pepper (Capsicum spp.) is one of the most important fruit crops worldwide. It is
cultivated all over the world, primarily in tropical and subtropical countries. The Capsicum
genus belongs to the Solanaceae family and includes 27 recognized species. There are five
distinct cultivated species: C. annuum L., C. frutescens L., C. Chinese Jacq., C. baccatum L.,
and C. pubescens Ruiz et Pav [1]. C. annuum L. is the most widely cultivated pepper
species in the world. Its variants are mainly var. cerasiforme Irish, var. conoides Irish,
var. fasciculatum Sturt, var. longum Sendt, var. grossum Sendt, and var. Dactylus M [2].
Pepper (Capsicum spp.) is not only an important vegetable, but it can also be processed
into condiments, spices, coloring agents, etc. [3]. According to the amount of salt used for
fermentation, fermented peppers can be divided into high-salt-content and low-salt-content
fermented peppers [4]. Fermented peppers with a high salt content can be stored for about
one year after desalination, seasoning, bottling, vacuum sealing, and sterilization [5]. Most
low-salt-content fermented peppers are currently made from high-salt-content fermented
peppers that have been desalted, seasoned, bottled, vacuum sealed, and sterilized to
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become low-salt-content fermented pepper products. However, this method produces
products with poor flavor and generates large amounts of brine and pepper juice during
the desalination process, resulting in environmental pollution and resource waste [6]. On
the other hand, fermentation with a low salt content of 5–12% is difficult to control due to
the abundance of microbial species [7].

The fermentation, flavor, safety, and preservation of fermented peppers are strongly
dependent on microorganisms. In our previous study, the fungal communities in fresh and
fermented C. annuum L. var. fasciculatum Sturt were investigated by 454 pyrosequencing. A
wide variety of fungi such as Hanseniaspora, Pichia, and Debaryomyces, which are known to
influence the flavor and maturation of fermented peppers, were isolated and identified [8].
Capsicum annuum L. var. fasciculatum Sturt and Capsicum annuum L. Var. Dactylus M are two
pepper varieties that are very different in their pungency and water content. There may
be different species and abundances of endophytic bacteria and fungi on the surface of
different varieties of fresh pepper due to their varying water content, capsaicin content, and
growth environments [9]. The microbial composition and relative abundance of different
pepper varieties may be further complicated by the process of fermentation. However,
the association between these microbiota and flavor components is poorly understood. In
recent years, a large number of studies have been conducted to explore the correlation
between microorganisms and the flavor components and microorganisms of fermented
foods. Yang, et al. [10] elucidated the relationship between microbial genera and fresh taste
peptide formation during the fermentation of stinky cinnamon by peptidomic and macroge-
nomic analyses, and the results showed that Vagococcus, Peptostreptococcus, Acinetobacter,
Psychrobacter, and Enterococcus play a major role in the formation of fresh taste peptides.
Zhang, et al. [11] characterized the aroma profile, including the key aroma compounds and
bacterial community, of tempeh after fermentation and investigated the correlation between
the dominant bacterial genera and the key aroma compounds, showing that five dominant
bacterial genera were positively correlated with more than six key volatile compounds.
Therefore, in order to standardize fermentation, it is crucial to elucidate the key microbial
communities in traditional Chinese fermented peppers.

The aim of this study was to identify the succession of fungal communities during
the fermentation of Capsicum annuum L. Var. Dactylus M by high-throughput sequencing
technology. Changes in the volatile components during fermentation were identified
using GC–MS. Based on this information, the relationship between fungal communities
and volatile flavor compounds was revealed by two-way orthogonal partial least squares
(O2PLS). Our results can provide a reference for studying the interactions between microbial
communities and metabolites in fermentation systems.

2. Materials and Methods
2.1. Sample Preparation and Collection

The pepper species used in this study was Capsicum annuum L. var. Dactylus M, which
is slender and has a low pungency degree (about 2600 SHU) and high water content (about
84%, w/w). Fresh Capsicum annuum L. Var. Dactylus M was cleaned, chopped, salted with
8% (w/w) salt, placed in 8 sterile pickle jars with the same mass, covered, sealed with
water, and fermented in a 30 ◦C incubator. In order to reveal the fungal communities in
the fermented pepper, one pickle jar was removed from the incubator on the 3rd, 5th, 7th,
9th, 11th, 14th, 17th, and 20th fermentation days for sampling. Samples were marked X_3,
X_5, X_7, X_9, X_11, X_14, X_17, and X_20, respectively. X_0 was cleaned fresh Capsicum
annuum L. Var. Dactylus M. All samples were stored at −20 ◦C.

2.2. Fungal Community Analyses by High-Throughput Sequencing
2.2.1. DNA Extraction

Total genomic DNA was extracted from the samples by using a previously reported
method [8]. Total microbial DNA was extracted from 0.2-1.0 g pepper using the E.Z.N.A
Soil DNA kit (OMEGA, Bio-Tek, Norcross, GA, USA) according to the manufacturer’s
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protocol. The extracted DNA was purified using an AxyPrep™ DNA Gel Extraction Kit
(OMEGA, Bio-Tek, Norcross, GA, USA), and the DNA concentration and quality were
checked on 2% agarose gel. The purified DNA was stored at −20 ◦C until quantitative PCR
and 454 pyrosequencing analysis.

2.2.2. PCR Amplification

Fungal ITS rDNA genes were amplified using the forward primer ITS1 (5′-TCCGTAG
GTGAACCTGCGG-3′) and the reverse primer ITS4 (5′-TCCTCCGCTTATTGATATGC-3′).
PCR amplifications were carried out according to the previously reported method [8].
The amplification products were visualized on 2.0% agarose gels and purified using an
AxyPrep™ DNA Gel Extraction Kit (OMEGA, Bio-Tek, Norcross, GA, USA) according to
the manufacturer’s instructions. All PCR reactions were repeated in triplicate using the
DNA extracted from each pepper sample.

2.2.3. Pyrosequencing Analysis

After being purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) and quantified using QuantiFluor™-ST (Promega, Madison, Wis,
USA), a mixture of amplicons of each sample was used for pyrosequencing on a Roche
454 GS FLX + Titanium platform (Roche 454 Life Sciences, Branford, CT, USA) according to
standard protocols.

2.2.4. Bioinformatics Analysis

After sequencing, low-quality sequences were filtered, and high-quality sequences were
clustered into operational taxonomic units (OTUs). All sequences were classified from phylum
to genus at the 97% sequence similarity level according to silva (version 115 http://www.arb-
silva.de accessed 20 July 2021) using the RDP Classifier (version 2.2 http://sourceforge.net/
projects/rdp-classifier/ accessed 20 July 2021) of the Qiime platform. Sequences that could
not be classified into any known group are labeled “unclassified”. Taxa in proportions
<1% were grouped as “Others”. Rarefaction analysis, OTU cluster analysis, and principal
component analysis (PCA) were performed using Mothur, as reported in our previously
study [8].

2.3. Qualitative and Semi-Quantitative Determination Analysis of Volatile Components

A 3.0 g sample was placed into a headspace injection bottle, 2 mL deionized water
and internal standard o-dichlorobenzene were added, and the bottle cap was tightened.
The extraction head was inserted into the injection port of the GC–MS, and the fiber head
was activated at 270 ◦C for 60 min. The headspace injection bottle was preheated at 70 ◦C
for 15 min on a constant temperature magnetic stirrer. The aged extraction head was
inserted after preheating, and the fiber head was pushed out for extraction for 30 min.
After extraction, the fiber head was retracted and inserted into the GC–MS injection port.
The fiber head was pushed out for 5 min. The column temperature was 40 ◦C. The initial
temperature of the first stage was 40 ◦C, which was maintained for 3 min. In the second
stage, the temperature was raised to 150 ◦C for 7 min at a rate of 5 ◦C/min. In the third
stage, the temperature was raised to 270 ◦C for 2 min at a rate of 10 ◦C/min. In the splitless
mode, the flow rate had a pressure of 33.8 kPa, total flow was 124.1 mL/min, column
flow was 0.8 mL/min, linear velocity was 32.3 cm/s, and purge flow was 3.0 mL/min.
Mass spectrometry conditions were as follows: interface temperature 220 ◦C, ion source
temperature 200 ◦C, ionization mode EI, and ionization voltage 70 ev. The scanning range
was 45–500 (M/z). The identification of VOCs was performed by comparing the retention
index and matching mass spectra fragment with the NIST14, NIST17 databases (matching
degree > 80).

http://www.arb-silva.de
http://www.arb-silva.de
http://sourceforge.net/projects/rdp-classifier/
http://sourceforge.net/projects/rdp-classifier/
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2.4. Statistical Analysis

Significant differences were calculated with one-way ANOVA in SPSS 20.0 (Interna-
tional Business Machines Corp., Armonk, NY, USA). The line graph was created using
OriginPro 2019 (OriginLab Corp., Northampton, Mass, USA). To study the dynamic suc-
cession of the microbial community, hierarchical cluster analysis (HCA) was carried out
using OriginPro 2019 (OriginLab Corp., Northampton, Mass, USA). The heatmaps and
stacked histogram of the relative abundance at the microbial genus level were created using
OriginPro 2019 (OriginLab Corp., Northampton, Mass, USA). Bidirectional partial least
squares (O2PLS) modeling was used to estimate the relationship between microbiota and
volatile compounds. The visualized network planning of the Pearson correlation coefficient
was conducted using Cytoscape 3.8.2.

3. Results
3.1. PCR Amplification of Fungal 18S rDNA Genes

The PCR amplification results for the fungal ITS genes are shown in Figure 1. All
the amplicons of fermented pepper were bright and clear, and there were few nonspecific
bands. The concentration of PCR products was greater than 5 ng/µL, and the OD260/280
was between 1.8 and 2.0. The PCR amplification products were of good quality for pyrose-
quencing analysis.
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Figure 1. 2% agarose gel electrophoresis of PCR amplification result for fungal 18S rDNA genes using
universal primers ITS1/ITS4. DL2000: DL2000 marker (from top to bottom: 2000 bp, 1000 bp, 750 bp,
500 bp, 250 bp, and 100 bp). Target DNA bands of samples (about 800 bp).

3.2. Fungal Abundance and Diversity in the Fresh and Fermented Capsicum annuum L. Var.
Dactylus M

The rarefaction curve and the Shannon diversity curve of the fungi for each sample
are presented in Figures 2 and 3, respectively. When the sequencing amount increased to
about 1000, the rarefaction curves and the Shannon diversity curves of all samples tended
to be flat, and the sequencing amount reached saturation. The maximum sequencing
amount of the experiment was 5000, which met the requirement of sequencing and implied
that the sequencing depth was reasonable. The fungal abundance and diversity of each
sample are shown in Table 1. The nine samples yielded 53,282 high-quality fungal 18S
rDNA gene sequences with an average length of about 447 bp. After the low-quality
sequences were filtered out, 10,887 trimmed sequences with an average length of about
430 bp were obtained and clustered into OTUs. In total, 225 OTUs were identified at
a 97% similarity level for fresh Capsicum annuum L. Var. Dactylus M, and 82 OTUs on
average (from 47 to 163) were identified for fermented Capsicum annuum L. Var. Dactylus M.
Shannon diversity (H) and Simpson diversity (D) were calculated to describe the microbial
diversity, while the Chao1 and ACE indices were positively correlated with the change in
species richness. As shown in Table 1, sample X_0 exhibited the highest fungal diversity
(ACE = 413, Chao 1 = 325, H = 3.87, D = 0.0536). During the fermentation process, the
fungal diversity of the peppers decreased, which may have been due to the increase in acid
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inhibiting the growth of fungi. Fungal diversity decreased to the minimum level on the
seventh fermentation day (ACE = 96, Chao 1 = 68, H = 1.22, D = 0.6161) and then increased.

Table 1. Fungal diversity and richness estimators of fresh and fermented Capsicum annuum L. Var.
Dactylus M based on the 454 pyrosequencing data.

Sample
ID

Valid
Reads OTU Estimator

(ACE)
Chao1

Diversity
Shannon

Diversity (H)
Simpson

Diversity (D)

X_0 6931 225 413 325 3.87 0.0536
X_3 3750 54 140 90 2.04 0.3535
X_5 6024 61 166 123 1.49 0.5342
X_7 6151 47 96 68 1.22 0.6161
X_9 5664 98 431 264 2.06 0.366

X_11 5932 101 203 257 2.3 0.3047
X_14 6200 55 154 89 1.16 0.6345
X_17 6852 163 484 335 2.79 0.1905
X_20 5778 83 146 169 1.72 0.4583
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Figure 3. Shannon diversity index curves. The Shannon diversity index reached saturation, sug-
gesting that the observed sequences were a good representation of the fungal community in the
nine samples.

3.3. Fungal Community Dynamics of Capsicum annuum L. Var. Dactylus M in Different
Fermentation Stages

The relative fungal community abundance at the genus level for each sample is sum-
marized in Figure 4. The results show that only eight genera had relative abundances >1%
during fermentation. In sample X_0, taxa with known taxonomic statuses in proportions
>0.01% were Debarvomvces 2.69%, Rhodotorula 2.39%, Trichosporon 2.28%, Cladosporium 0.77%,
Pichia 0.63%, Guehomyces 0.33%, Cryptococcus 0.26%, Hanseniaspora 0.26%, Candida 0.04%,
and others 1.62%. About 88.59% of the sequences of sample X_0 could not be classified
into any known group because of the inadequate fungal genome database, the limitation of
reading length, experimental error, etc. When fresh Capsicum annuum L. Var. Dactylus M
was chopped, salted, and sealed in a pickle jar to be fermented, the acid content increased,
and the oxygen content decreased gradually. Since salt, acid, and hypoxia inhibit the
growth of fungi, the fungal richness and diversity decreased. Taxa in proportions >0.01%
in samples X_3, X_5, X_7, X_9, X_11, X_14, X_17, and X_20 were only assigned to 7, 4, 5, 9,
9, 3, 13, and 7 different genera, respectively. Hanseniaspora was a dominant fungus during
the whole fermentation course, accounting for 82.22% of the fungal community on average
(ranging from 50.44% to 98.15%).
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3.4. Volatile Flavor Compounds Analysis

According to Figure 5, 64 main volatile flavor compounds were detected in the natural
fermentation of Capsicum annuum L. Var. Dactylus M. Esters, alcohols, and alkanes were
the main volatile flavor compounds, including 21 esters, 12 alcohols, and 10 alkanes. In
addition, 8 aldehydes, 7 olefins, and 5 ketones were detected. The number of different
volatile flavor compounds gradually increased along with the fermentation time. The
numbers of volatile flavor compounds in X_3, X_5, X_7, X_9, X_11, X_14, X_17, and X_20
were 32, 44, 45, 55, 40, 47, 51, and 46, respectively, which were greater than that (24)
before fermentation (X_0). The volatile flavor compounds in X_0 were mainly alcohols
and aldehydes, which came from the metabolism of yeast attached to the surface of the
pepper and were important substrates for the synthesis of esters. The alcohol compounds
mainly included linalool, α-terpineol, and n-hexanol. The main aldehydes in X_0 were
benzaldehyde and octanal. Benzaldehyde has almond, cherry, and nut aromas and is the
most commonly used aromatic aldehyde in industry. Octanal has a strong fruit flavor
and can be used as an intermediate in spices and organic synthesis. In the fermented
peppers, the aldehydes were mainly benzaldehyde and octanal; the alcohols were mainly
linalool, α-terpineol, and 4-methyl-1-pentanol; the esters were mainly methyl salicylate, 4-
methylpentyl 2-methylbutanoate, and 4-methylpentyl 3-methylbutanoate; the olefins were
mainly β-guaiene; the alkanes were mainly 2-methyltetradecane, 2-methyltridecane, and
2-isobutyl-3-methoxypyrazine; and the ketones were mainly trans-β-ionone and methyl
pentyl ketone.
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3.5. Correlation Analysis between Fungi and Volatile Flavor Compounds

In the fermentation process of the peppers, five kinds of fungi were identified as the
core functional fungi because of their high abundances throughout the whole fermentation
process, high VIP values (VIP > 1.0), and the high absolute values of the linear correlation
coefficient between the concentration profile of the volatile flavor compounds and the
fungi (R > 0.7). The significant linear correlation coefficient (with a significance p < 0.05)
between the selected microorganisms and the flavor compounds was calculated and is
shown in Figure 6. Five kinds of fungi, Pichia, Hanseniaspora, Cryptococcus, Debarvomvces,
and Trichosporon, were closely correlated with the concentrations of the flavor compounds.
The abundance of Pichia was positively correlated with 4-methylhexyl 2-methylbutanoate
and1-dodecanol. The abundance of Hanseniaspora was positively correlated with 1,2,4,5-
tetramethylbenzene, trans-3-tetradecene, Cis-1,1,3,5-tetramethylcyclohexane, and (S)-(+)-4-
methyl-1-hexanol (p < 0.05, R > 0.73) and negatively correlated with α-terpineol (p < 0.05,
R < −0.83). The abundance of Cryptococcus was positively correlated with trans-2-decen-
1-ol (p < 0.05, R > 0.78). The abundance of Debarvomvces was positively correlated with
trans-2-decen-1-ol (p < 0.05, R > 0.82) and negatively correlated with 4-methylpentyl
3-methylbutanoate and 4-methylpentyl 2-methylbutanoate (p < 0.05, R < −0.77). The
abundance of Trichosporon was negatively correlated with α-ionone (p < 0.05, R < −0.72).
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4. Discussion

Traditional Chinese fermented peppers are mostly spontaneously fermented with a
complex mixture of participating microorganisms, which makes it difficult to control the
process of fermentation and produce a product of uniform quality [12,13]. Therefore, it
is crucial to study the diversity of the microbial communities involved in fermentation
in order to control the whole fermentation process. Most previous studies have used
culture-dependent or culture-independent approaches to understand microbial commu-
nities in vegetable fermentation [14,15], but to our knowledge, little is known about the
correlation between fungi and the main volatile flavor components of fermented peppers.
In this study, we revealed the structure of the fungal communities at different fermentation
stages, the main volatile flavor compounds, and the correlation between the fungi and
these compounds. The results showed that in fresh Capsicum annuum L. Var. Dactylus M,
there were eight fungi with a relative abundance greater than 1% of the known genus-level
classification, of which the most abundant fungus was Debarvomvces. The fungal commu-
nity structure of Capsicum annuum L. Var. Dactylus M at different stages of fermentation
was relatively stable, being dominated by Hanseniaspora, which accounted for 82.22% of the
fungal community on average (ranging from 50.44% to 98.15%), indicating that Hansenias-
pora may play an important role in product quality. The abundance and diversity of the
fungal communities differed greatly before and after fermentation, with the abundance of
“Unclassified” fungi decreasing rapidly after fermentation, probably due to the inhibition
of the growth of these fungi by salt, acid, and anoxia [16]. In addition, only Hanseniaspora
showed a significant increase in abundance compared to the unfermented samples, while
the abundance of Debarvomvces, Rhodotorula, Trichosporon, Cladosporium, Pichia, Guehomyces,
Cryptococcus, and Candida significantly decreased after fermentation. The results of the
analysis of fungal community structure and abundance were consistent with the previous
analysis of fungal community diversity in the fermentation of Capsicum annuum L. var.
Fasciculatum Sturt [8]. However, few studies have focused on the dominant fungal genera.
Cladosporium was found to be the main microorganism in the early stages of vegetable
fermentation as an endophyte of vegetable tissues, and its abundance gradually decreased
as fermentation progressed, being strongly influenced by the salt concentration during
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vegetable fermentation [17–19]. Mucor has been reported to be the primary fermentation
starter microorganism in traditional Chinese fermented tofu, giving the fermented tofu its
creamy consistency and unique flavor while reducing biogenic amine production during
the fermentation process [20,21]. However, the contribution of microorganisms to the flavor
production of fermented products is rarely considered when selecting the ideal culture.
Candida has been reported to be used in the production of flavor compounds, namely
geraniol and propionic acid [22,23]. Therefore, further research will focus on predicting the
mechanisms of production between microorganisms and flavor substances.

Flavor compounds are a key factor in consumer acceptance and product identification.
Volatile substances are the main contributors to the flavor of fermented peppers and, when
present in different combinations, they influence the aroma of these products [24]. Flavor
components in different fermented foods have been systematically investigated [25]. How-
ever, studies on the relationship between microbiota and flavor have been scarce. In this
study, 21 ester, 12 alcohol, 10 alkane, 8 aldehyde, 7 olefin, and 5 ketone volatile compounds
were detected during spontaneous fermentation, and these volatile components changed
dynamically during fermentation, with some aromas increasing and others decreasing,
implying that the overall flavor profile also changed during fermentation. In addition, the
O2PLS method was used to determine the association between fungal flora and volatile
components during the fermentation process. Hanseniaspora was the predominant fun-
gus during fermentation and was positively correlated with 1,2,4,5-tetramethylbenzene,
trans-3-tetradecene, cis-1,1,3,5-tetramethylcyclohexane, and (S)-(+)-4-methyl-1-hexanol
(p < 0.05, R > 0.73) and negatively correlated with α-pinoresinol (p < 0.05, R < −0.83).
Hanseniaspora has been reported to be the main microorganism in the fermentation process
of other foods, including the fermentation of apple juice, cocoa beans, vegetables, and
wine [26–31]. Several studies have shown that Hanseniaspora produces maximum concen-
trations of isoamyl acetate and isobutyl acetate during wine fermentation, as well as some
common short-chain ethyl esters that contribute banana and strawberry aromas to the
wine [32–34]. Debaryomyces produces alcohols, acids, esters, aldehydes, and other flavor
compounds that sweeten and significantly improve the quality of fermented peppers. Dur-
ing the fermentation of Capsicum annuum L. Var. Dactylus M, Debaryomyces was associated
with three volatile components: trans-2-decen-1-ol, 4-methylpentyl 3-methylbutanoate,
and 4-methylpentyl 2-methylbutanoate [35]. Pichia has been reported to be one of the
most dominant fungal genera during the fermentation of light and strong white wines,
producing large amounts of alcohols, organic acids, and esters as a non-saccharide fungal
genus [36–39]. Pichia was also found to be associated with the production of 1-dodecanol
during the fermentation of Capsicum annuum L. Var. Dactylus M. However, this study was
based on DNA, which may also detect dead or inactive cells. Therefore, third-generation
sequencing technologies with improved performance are promising and will be used in
future studies [40].

In summary, comprehensive information on the composition and dynamics of the
fungal communities at different fermentation stages of Capsicum annuum L. Var. Dactylus
M was revealed by high-throughput sequencing, and Hanseniaspora was found to be the
most abundant fungus during the fermentation of Capsicum annuum L. Var. Dactylus
M. The flavor compounds were characterized and identified using GC–MS. Moreover,
O2PLS was applied to determine the correlation between fungal communities and flavor,
and Pichia, Hanseniaspora, Cryptococcus, Debarvomvces, and Trichosporon were found to be
associated with the formation of volatile flavors. These findings provide new insights
into the variability of fungal communities and increase our understanding of the core
aroma-related microbiota involved in the manufacture of fermented Capsicum annuum L.
Var. Dactylus M with unique flavor profiles.
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