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Abstract: As renewable energy penetration increases, the lack of flexibility in a multi-renewable
power system can seriously affect its own economics and reliability. To address this issue, three
objectives are considered in this study: power fluctuations on tie-line, operating cost, and curtailment
rate of renewable energy. Presented also is an optimal day-ahead scheduling model based on the
MREPS for distributed generations with flexibility constraints. The multi-objective particle swarm
optimization (MOPSO) algorithm can be applied to obtain a set of Pareto non-dominated solutions
for the day-ahead scheduling strategy with the proposed model. By using fuzzy comprehensive
evaluation, the optimal compromise solution is determined in the set. The presented method sacrifices
a small amount of economy and power fluctuation, but it can reduce the deviation between forecast
and realized power fluctuations on the tie-line, while improving the utilization of renewable energy.

Keywords: flexibility constraints; fuzzy comprehensive evaluation method; MOPSO; MREPS; optimal
day-ahead scheduling

1. Introduction

In modern power systems, the scarcity of fossil fuels and increasing pollution of the
environment contribute to the development of renewable energy sources, such as solar and
wind. Despite this, the stochastic nature of renewable energy generation is likely to have
significant effects on system reliability and economy [1–3].

When operating a multi-renewable energy power system (MREPS), it is necessary
to develop an optimal schedule to cope with the stochasticity of renewable energy gener-
ation [4,5]. MREPS scheduling is divided into two categories: day-ahead and real-time
scheduling. There are several strategies for achieving various operational objectives using
day-ahead scheduling. Reference [6] used a two-stage stochastic optimization model for
an MREPS for minimizing the short-term operation cost, which introduces uncertainty
in renewable generation, and showed that stochastic scheduling can provide significant
reliability benefits to multi-energy supply systems. Reference [7] presented a day-ahead
scheduling model that considers the seasonal uncertainty of renewable energy for a micro-
grid equipped with multi-renewable energy units. An improved optimization algorithm
was proposed to solve optimization problems that focus on minimizing the operation cost.
The results indicate that day-ahead scheduling based on the proposed algorithm can pro-
vide an efficient solution for managing MREPS energy. An MREPS is highly influenced by
both economic indicators and the rate at which renewable energy is utilized, as illustrated
in [8–10]. Furthermore, power fluctuations on the tie-line serve as relevant indicators for
the main grid connected to an MREPS [11,12]. In the current MREPS scheduling process,
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the impact of these power fluctuations on the main grid is rarely considered. Although
operating costs, curtailment rates of renewable energy, and power fluctuations on the
tie-lines are all commonly considered in current studies on optimal dispatch [4–15], few
studies consider these three indicators simultaneously. This can lead to a situation where,
while some of these indicators are optimal, the other indicators may be poor. As a result,
the present study proposes a day-ahead scheduling strategy based on operating costs,
curtailment rates of renewable energy, and power fluctuations on the tie-lines.

In the case of real-time scheduling, the schedule is amended if the actual renewable en-
ergy output differs from the forecasted output. An improved particle swarm-optimization
(PSO)-based strategy for managing energy over a two-time scale was presented in [16]. In
day-ahead scheduling, one of the primary objectives is to achieve the most cost-effective
schedule, and in real-time scheduling, the primary goal is to track day-ahead schedul-
ing, compensate for power fluctuations, and maintain system stability. According to the
experimental results, the proposed method could minimize the cost of generated elec-
tricity and maximize the efficiency of renewable energy systems. Real-time scheduling,
however, relies on day-ahead scheduling. It is possible to increase the utilization rate of
renewable energy if uncertainties associated with the generation of renewable energy can
be properly incorporated into day-ahead scheduling. To address uncertainties in power
systems [17–19], flexibility has been proposed. In [20], an optimal scheduling model for
flexible resources was presented from both the generation and load sides. According to the
results, a dynamic line rating model that incorporates optimal scheduling can maximize the
utilization of flexible resources without curtailing wind power and minimize dispatch costs.
Consequently, we propose a day-ahead scheduling strategy for an MREPS that accounts for
flexibility constraints and concentrates on operation costs, renewable energy curtailment
rates, and power fluctuations on the tie-line.

In this study, we attempt to solve a multi-objective optimization problem. It is pos-
sible to solve a multi-objective optimization problem in several ways. Among them, the
linear weighted sum method and intelligent algorithms are frequently adopted. The linear
weighted sum method is simple and fast, but it usually gives unclear physical results. In
addition, the resulting error is typically large because several targets are of different dimen-
sions and orders of magnitude. These factors remarkably impact the results and conclusions
of practical problems [21]. Intelligent algorithms, which have clearer physical meaning, out-
perform the linear weighted sum method in accuracy, flexibility, and effectiveness in solving
multi-objective problems. A number of intelligent algorithms have been successfully ap-
plied to engineering optimization, such as multi-objective particle swarm optimization
(MOPSO) due to its unique search mechanism, excellent convergence performance, and
convenient calculation capabilities [22,23]. As a result, MOPSO is adopted in this study to
identify the Pareto non-dominated set of objective functions. Following the determination
of the Pareto non-dominated solution set, a fuzzy comprehensive evaluation method [24] is
adopted to determine the optimal compromise solution. The optimal day-ahead scheduling
strategy can be determined based on the optimum compromise solution.

The contributions of this paper are summarized as follows:

1 Considering the operation cost, renewable energy curtailment rates, and power fluc-
tuations on the tie-line, a day-ahead scheduling model for the MREPS is established.

2 MOPSO and a fuzzy comprehensive evaluation method are used to evaluate the
day-ahead scheduling model, and a day-ahead scheduling strategy for the MREPS
considering flexibility is proposed.

Following is the remainder of this paper. The MREPS presents the day-ahead optimal
scheduling model in Section 2, along with its constraints, taking flexibility into account.
In Section 3, MOPSO and fuzzy comprehensive evaluation are discussed. An analysis of
the experimental results is presented in Section 4, which simulates an actual MREPS. In
Section 5, the conclusions are summarized.
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2. Model for Multi-Objective Optimal Scheduling

The MREPS, consisting of wind turbines (WTs), photovoltaic (PV) arrays, diesel
generators (DGs), energy storage systems (ESSs), and loads, only purchases electricity from
the main grid. Figure 1 illustrates the details of the MREPS.
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Figure 1. MREPS model.

2.1. Objective Function
2.1.1. Operation Cost

A major consideration in the MREPS’s day-ahead scheduling is the operation cost. The
operation cost mainly includes fuel cost, operation and maintenance, pollutant control, and
purchased power cost. The daily operation cost of the MREPS can be expressed as follows:

F1 = Cfuel + COM + CPC + CPP (1)

where Cfuel, COM, and CPC are the total fuel, operation and maintenance (OM), and pollutant
control (PC) costs associated with each distributed power generation in one day and CPP is
the total cost of the purchased power (PP) from the main grid in one day. The formulas for
Cfuel, COM, CPC, and CPP are as follows:

Cfuel =
N

∑
n=1

T

∑
t=1

ξf.DG.n · PDG.n(t) · ∆t (2)

COM =
M

∑
m=1

T

∑
t=1

ξOM.m · Pm(t) · ∆t (3)

CPC =
M

∑
m=1

J

∑
j=1

T

∑
t=1

ξm.j · Pm(t) · ∆t (4)

CPP =
T

∑
t=1

ξPP(t) · PPP(t) · ∆t (5)

where N is the total number of DGs; T is the total scheduling time; ξf.DG.n is the consumption
cost per kW·h of the nth DG; PDG.n(t) is the output power of the nth DG in period t; ∆t is
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the scheduling interval; M is the total number of distributed generation types; ξOM.m is
the cost of operation and maintenance per kW·h of the mth type of distributed generation
variety; Pm(t) is the output power of the mth type of distributed generation during period t;
J is the total number of pollutant types; ξm.j is the emission cost factor for the jth type of
pollutants generated by the mth type of distributed power generation; ξPP(t) and PPP(t) are
the power purchased by the MREPS from the main grid for the period t, respectively.

2.1.2. Renewable Energy Curtailment Rate

The renewable energy curtailment rate is the ratio of the power curtailed by all
renewable energy units to the total power that can be generated by renewable energy
units during the dispatching period. The lower the value, the higher the utilization rate of
renewable energy is. Utilization of the renewable energy is ideally increased while reducing
the operation cost of the MREPS [15]. Thus, this study considers the curtailment rate of
renewable energy. Following is the daily curtailment rate of the MREPS’s renewable energy:

F2 =
T

∑
t=1

H

∑
h=1

Ph.c(t)/
T

∑
t=1

H

∑
h=1

Ph.all(t) (6)

where H represents the total number of the renewable energy types; Ph.c(t) and Ph.all(t) re-
flect the power curtailment and the available power generation of the hth type of renewable
energy in period t, respectively.

2.1.3. Tie-Line Power Fluctuations

The frequent power exchange between the MREPS and the main grid can be attributed
to the stochastic nature of renewable energy. In general, the unit commitment and economic
load dispatch of the main grid have no impact on the MREPS. This is because the MREPS
can be self-sufficient. Only when the MREPS is not self-sufficient, it is necessary for the
main grid to help the MREPS to achieve power balance through unit commitment or
economic load dispatch. As a consequence, the significant fluctuation in power on the
tie-line has a negative impact on the main grid. The MREPS day-ahead scheduling must be
designed to take into account power fluctuations across the tie-line.

As the square root of the variance, the standard deviation is a metric used to measure
how dispersed a dataset is relative to its mean. Consequently, the standard deviation is
typically used to describe the fluctuation of a data series. However, the standard deviation
lacks comparability for different objects or samples with varying means of the same object.
Hence, the coefficient of variation is used in this study to avoid these problems.

As a measure of data dispersion around the mean, the coefficient of variation represents
the ratio of the standard deviation to the mean for a series of data points. The degree
of variation from one data series to another can be compared, although the means are
remarkably different from one another. A small variation indicates a small fluctuation
degree [11]. On the tie-line, the power fluctuation can be defined as follows:

F3 =

√√√√ 1
T
·

T

∑
t=1

(PTL(t)− µTL)
2/µTL (7)

where PTL(t) represents the transmission power of the tie-line during period t and µTL
represents the average transmission power of the tie-line during one day, which can be
expressed as follows:

µTL =
1
T
·

T

∑
t=1

PTL(t) (8)
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Based on the above three objectives, the total objective function for the multi-objective
optimal scheduling model is as follows:

minF = [F1, F2, F3] (9)

2.2. Constraint Conditions
2.2.1. Constraints on the Power Balance

During the operation of the MREPS, at the end of each period, the sum of the output
power of the DGs, the charging and discharging power of the ESS, and the purchased
power from the main grid should be equal to the net load (NL) power of the system. As a
result of this relationship, we may state:

PDG(t) + PESS(t) + PTL(t) = PL(t)− PWT(t)− PPV(t) = PNL(t) (10)

where PDG(t) is the sum of the output power of the DGs in period t; PESS(t) is the charge
and discharge power of the ESS in period t and becomes negative when the ESS is being
charged; PTL(t) is the transmission power of the tie-line in period t; PL(t), PWT(t), PPV(t),
and PNL(t) are the load power, output of WTs, output of PV arrays, and net load power in
period t, respectively.

2.2.2. Constraints of Output Power for DGs Considering Flexibility

In light of the uncertainty associated with renewable energy generation, it is imperative
that the MREPS be flexible. The DG is a commonly used flexible resource in MREPSs
because of its satisfactory controllability and fast response speed. Therefore, flexibility
should be considered and exploited in the output power constraints of DGs.

The uncertainty of renewable energy generation leads to prediction errors in net
load power and the MREPS’s flexibility requirements. These flexibility requirements are
provided by DGs in the MREPS. DGs are typically restricted in their output power range as
follows [7]: {

PDG(t) ≥ PDG.min
PDG(t) ≤ PDG.max

(11)

where PDG.min and PDG.max represent the minimum and maximum output power of
DGs, respectively.

In terms of conventional constraints, DGs are only considered for their minimum and
maximum output. Due to these constraints, the output power of DGs may be inflexible
during operation. When large prediction errors occur, DGs output power fails to meet
the flexibility requirements. Therefore, new constraints that consider flexibility based on
conventional constraints can be expressed as follows:{

PDG(t) ≥ (PDG.min + FNL.D(t))
PDG(t) ≤ (PDG.max − FNL.U(t))

(12)

where FNL.U(t) and FNL.D(t) represent the maximum upward and downward flexibility
requirements of the MREPS in each period t.

Because of the error in predicting net load power, the MREPS is required to be flexible.
Variables such as wind, solar, and load power are among the factors that affect the prediction
errors of the net load power. As a result, wind, solar, and load power prediction errors are
assumed to follow a normal distribution with a zero mean [25]. σPV(t), σWT(t), and σL(t)
have the following standard deviations:

σPV(t) = 0.2WPV.F(t) + 0.02WPV.C
σWT(t) = 0.2WWT.F(t) + 0.02WWT.C

σL(t) = 0.02WL.F(t)
(13)
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where WPV.F(t), WWT.F(t), and WL.F(t) are the predicted wind, solar, and load power in
period t, respectively, and WPV.C and WWT.C are the total installed capacity of PV arrays
and WTs, respectively.

There are no correlations among wind, solar, and load power prediction errors. Ac-
cording to the basic characteristics of the normal distribution, the sum of two independent
normally distributed random variables is normal, with the sum of the two means as the
mean and the sum of the two variances as the variance. Hence, prediction errors of the net
load power also follow the normal distribution with mean zero and standard deviation
σNL(t), as shown below:

σNL(t) =
√

σ2
PV(t) + σ2

WT(t) + σ2
L(t) (14)

The MREPS must offer flexibility equal to the forecast errors of net load power. How-
ever, in the prediction of net load power, there is a very small probability of maximum
errors. Hence, the scenario where the flexibility requirement and forecast error are equal is
uneconomical and wasteful. As a result, we need to consider the confidence intervals of
these prediction errors. If the confidence level is 1 − α, then FNL.U(t) and FNL.D(t) can be
expressed as: {

FNL.U(t) = u1−α/2 · σNL(t)
FNL.D(t) = −u1−α/2 · σNL(t)

(15)

where u1−α/2 is the upper (1 − α/2) critical value for the standard normal distribution.
Conventional ramping-rate constraints of DGs are expressed as follows:{

PDG(t)− PDG(t− ∆t) ≥ −RD
DG.max · ∆t

PDG(t)− PDG(t− ∆t) ≤ RU
DG.max · ∆t

(16)

where RD
DG.max and RU

DG.max are the maximum downward and upward ramping rates of
DGs, respectively, with both values positive, and ∆t is the time interval.

Conventional constraints only consider the minimum and maximum ramping rates.
The maximum ramping rate of DGs may occur in some periods under these constraints.
The output power of DGs fails to meet the fluctuation of the net load power in this situation
when DGs lack the ramping rate. Consequently, ramping-rate constraints should take
flexibility into consideration.

As shown in Figure 2, A0, B0, and C0 are the prediction output power values of DGs
at different times. DGs must reduce their output power to A2 if the maximum downward
prediction errors of the net load power occur at time t − ∆t. According to Equation (15),
the reduced output power should be equal to FNL.D(t − ∆t). It is imperative that the DGs
increase their output power to B1 if they experience maximum upward prediction errors at
time t. According to Equation (15), the increased output power should be equal to FNL.U(t).
Therefore, the margin of the ramping rate that DGs should reserve is the sum of FNL.D(t −
∆t) and FNL.U(t) from time t − ∆t to time t. Similarly, the margin of the ramping rate that
DGs should reserve is the sum of FNL.U(t) and FNL.D(t + ∆t) from time t to time t + ∆t. As a
result, new constraints that consider flexibility can be expressed as follows:{

PDG(t)− PDG(t− ∆t) ≥ −RD
DG.max · ∆t+(FNL.D(t) + FNL.U(t− ∆t))

PDG(t)− PDG(t− ∆t) ≤ RU
DG.max · ∆t− (FNL.U(t) + FNL.D(t− ∆t))

(17)
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2.2.3. Constraints of the ESS Considering Flexibility in Charging and Discharging

In this study, the main function of the ESS is to provide assistance to DGs and ensure
that DGs have adequate flexibility. Thus, the ESS and its conventional constraints are
similar in terms of charging and discharging power:

SESS(t + ∆t) = (1− δ) · SESS(t)− ∆t·αESS(t)·PESS(t)
EESS

SESS.min ≤ SESS(t) ≤ SESS.max
|PESS(t)| · ∆t′ ≤ ηESS · EESS

(18)

where SESS(t) represents the state of charge (SOC) of the ESS in period t; δ represents the self-
discharge efficiency of the ESS; EESS represents the maximum capacity of the ESS; SESS.min and
SESS.max represent the minimum and maximum SOC of the ESS, respectively; ∆t′ represents
an hour; ηESS represents the percentage of the maximum charge–discharge capacity per hour
to the maximum capacity of the ESS; αESS(t) represents the charge–discharge efficiency of the
ESS in period t. The following formula can be used to calculate αESS(t):

αESS(t) =
{

αc, ∀PESS(t) < 0
1/αd, ∀PESS(t) > 0

(19)

where αc and αd are the charge and discharge efficiencies of the ESS, respectively.
DGs, however, fail to achieve the maximum prediction error of the net load power.

Because of this, we should take into account flexibility in the power constraints of the ESS
when charging and discharging. This is because the secondary function of the ESS is to
meet these maximum prediction errors. Here are the revised constraints:

SESS(t + ∆t) = (1− δ) · SESS(t)− ∆t·αESS(t)·PESS(t)
EESS

(SESS.min + FESS.U) ≤ SESS(t) ≤ (SESS.max − FESS.D)
|PESS(t)| · ∆t′ ≤ ηF.ESS · EESS

(20)

where FESS.U and FESS.D are the reserved SOC of the ESS and ηF.ESS is the percentage of the
maximum charge–discharge capacity per hour to the maximum capacity of the ESS after
considering flexibility.

If the maximum prediction error of the net load power occurs, DGs are capable of
meeting most of these prediction errors. There is only a small portion of these prediction
errors that must be met by the ESS. As a result, the constraints of FESS.U, FESS.D, and ηF.ESS
are as follows: 

0 ≤ FESS.U ≤ 0.1
0 ≤ FESS.D ≤ 0.1

0.8 · ηESS ≤ ηF.ESS ≤ ηESS

(21)
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Since the ESS operation is periodic, the initial SOC should be equal to the final SOC in
a day and expressed as follows:

SESS(t = 0) = SESS(t = T) (22)

where T represents the total scheduling time.

2.2.4. Tie-Line Transmission Power Constraints in Consideration of Flexibility

In the MREPS, DGs and the ESS can sometimes fail. In this case, the tie-line must be
flexible to facilitate the normal functioning of the MREPS. Therefore, the power limitation
for tie-line transmission considering flexibility is expressed as follows:

PTL.min ≤ PTL(t) ≤ PTL.max − FTL.U(t) (23)

where PTL.min and PTL.max represent the minimum and maximum transmission power of
the tie line, respectively, and FTL.U(t) represents the reserved transmission power of the
tie-line that can be increased in period t.

Load shedding is prohibited in the operation of the MREPS. In the event that DGs and
the ESS fail, it is necessary to reserve the transmission power on the tie-line, which may be
increased in case of a breakdown. However, if the load power decreases, then we may be
able to achieve power balance by reducing the output power of DGs or curtailing the use of
renewable energy sources. As a consequence, it is not necessary to reserve the transmission
power of the tie-line.

3. Algorithm for the Solution of the Multiobjective Optimization Model
3.1. MOPSO

The multi-objective optimization problem in the presented model is solved via MOPSO
in this study. Although MOPSO is one of the commonly used intelligent optimization
algorithms [22,23], it is briefly introduced since it is the core of the algorithm in this paper.
MOPSO updates the position and the velocity of each particle in every iteration and
searches for the local and global best positions of particles. The velocity is modified and
updated as follows:

vk+1
i = ωvk

i + c1r1(pk
l − xi) + c2r2(pk

g − xi) (24)

where vk
i and xi are the velocity and position of the ith particle in the kth iteration; pk

l is the
local optimal position of the ith particle; pk

g is the global optimal position of particles; ω is
the inertia weight that influences the local and global exploitation abilities for MOPSO; c1
and c2 are the cognitive and social learning factors that maintain the movement of particles
to the local and global optimal positions, respectively; r1 and r2 are two uniform random
functions in the range [0,1].

Constraints of the velocity are expressed as follows:{
vk+1

i = vmax, ∀vk+1
i > vmax

vk+1
i = vmin, ∀vk+1

i < vmin
(25)

where vmin and vmax are the minimum and maximum velocities of particles, respectively.
The position of particles is indicated as follows:

xk+1
i = xk

i + vk
i (26)

MOPSO obtains the non-dominated solution set, unlike the single-objective PSO
algorithm. Therefore, an external file is needed to store the set. The flowchart of MOPSO is
shown in Figure 3.



Processes 2022, 10, 1401 9 of 17

Processes 2022, 10, x FOR PEER REVIEW 9 of 18 
 

 

MOPSO obtains the non-dominated solution set, unlike the single-objective PSO 
algorithm. Therefore, an external file is needed to store the set. The flowchart of MOPSO 
is shown in Figure 3. 

START

Initialize the velocity, position and size of particle, capacity of 
external file, k and kmax

Calculate the objective function of each particle

Select noninferior solutions and store them in the external file

Compare new noninferior solutions with the noninferior solution 
set in the external file and then delete the inferior solution

Update the velocity and position of each particle

k=k+1

k≤kmax?

Find the Pareto non-inferior solution set

END

Update the local best position and the global best position

YES

NO

 
Figure 3. Flowchart of MOPSO. 

The SOC of the ESS, the output power of DGs, and the tie-line transmission power 
are unknown in this study. Therefore, the SOC of the ESS and the output power of DGs 
in each period are considered decision variables. The tie-line power of transmission in 
each period can be obtained using Equation (10). Due to the fact that the set of Pareto non-
dominated solutions is determined by these decision variables, each solution in the set 
corresponds to an operation state of the MREPS. Therefore, if we wish to determine the 
optimal day-ahead scheduling strategy, then we need to first identify the optimum 
compromise solution from the set of non-dominated Pareto solutions. 

3.2. Fuzzy Comprehensive Analysis Methodology 
This study employs the fuzzy comprehensive evaluation method to determine the 

most appropriate compromise solution. An effective and widely adopted method for 
evaluating hierarchical and integrated problems is a fuzzy comprehensive evaluation. The 
top two critical steps of this method are determining the weight vector of each evaluation 
objective appropriately and selecting the appropriate fuzzy membership function. Figure 
4 illustrates the fuzzy comprehensive evaluation method flowchart. 

Determine evaluation 
objectives

Determine the degree of 
membership function

Determine the degree of 
membership

Determine the evaluation 
matrix Fuzzy evaluation Find the evaluation 

result

Determine the weight Weight determination 
method

 
Figure 4. Flowchart of the fuzzy comprehensive evaluation method. 

Assume that X is the Pareto non-dominated solution set, which is expressed as 
follows: 

11 1 1

1

1

=

j n

i ij in

m mj mn

x x x

x x x

x x x

 
 
 
 
 
 
 
 

X

 
    

 
    

 
 

(27) 

Figure 3. Flowchart of MOPSO.

The SOC of the ESS, the output power of DGs, and the tie-line transmission power are
unknown in this study. Therefore, the SOC of the ESS and the output power of DGs in each
period are considered decision variables. The tie-line power of transmission in each period
can be obtained using Equation (10). Due to the fact that the set of Pareto non-dominated
solutions is determined by these decision variables, each solution in the set corresponds to
an operation state of the MREPS. Therefore, if we wish to determine the optimal day-ahead
scheduling strategy, then we need to first identify the optimum compromise solution from
the set of non-dominated Pareto solutions.

3.2. Fuzzy Comprehensive Analysis Methodology

This study employs the fuzzy comprehensive evaluation method to determine the
most appropriate compromise solution. An effective and widely adopted method for
evaluating hierarchical and integrated problems is a fuzzy comprehensive evaluation. The
top two critical steps of this method are determining the weight vector of each evaluation
objective appropriately and selecting the appropriate fuzzy membership function. Figure 4
illustrates the fuzzy comprehensive evaluation method flowchart.
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Assume that X is the Pareto non-dominated solution set, which is expressed as follows:

X =



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xm1 · · · xmj · · · xmn

 (27)
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where m is the total number of objectives, n is the total number of the Pareto non-dominated
solutions, and xij is the value of the ith objective of the jth Pareto non-dominated solution.
To determine the most effective compromise solution from the Pareto non-dominated
solution set, follow the steps outlined below:

(1) For determining the membership degree of each objective in each Pareto non-dominated
solution, a single-factor fuzzy evaluation is adopted. The fuzzy relation matrix can
then be obtained as follows:

R =



r11 · · · r1j · · · r1n
...

. . .
...

. . .
...

ri1 · · · rij · · · rin
...

. . .
...

. . .
...

rm1 · · · rmj · · · rmn

 (28)

where rij is the membership degree of the ith objective in the jth Pareto non-dominated
solution. rij can be calculated as follows:

rij =


1 , xij ≤ Xi

Xi−xij

Xi−Xi
, Xi < xij < Xi

0 , xij ≥ Xi

(29)

where Xi and Xi are the minimum and maximum expectations of the decision-maker
for the ith objective, respectively.

(2) The analytic hierarchy process (AHP)-entropy weight method (EWM) can be em-
ployed to determine the comprehensive weight vector for each objective. Assume that
the comprehensive weight vector is:

A = [ω1, ω2, · · · , ωi, · · · , ωm]
T (30)

where ωi is the comprehensive weight vector of the ith objective. A can then be
calculated using the following equation:

ωi =
ω′i ·ω

′′
i

m
∑

i=1
(ω′i ·ω

′′
i )

(31)

where ω′i and ω
′′
i are the objective weights based on AHP and EWM, respectively.

The discussion on AHP [26] and EWM [27] is excluded from this paper given that
both have been extensively analyzed in the literature.

(3) The comprehensive fuzzy evaluation vector B can be calculated as follows: B = A�R = [b1, b2, · · · , bj, · · · , bm]

bj =
m
∑

i=1
(ωi · rij)

(32)

where bj is the membership degree of the jth Pareto non-dominated solution.

When bj is close to 1, we can evaluate the jth Pareto non-dominated solution com-
prehensively. Therefore, from the set of Pareto non-dominated solutions, the optimal
compromise solution corresponds to the maximum bj.

4. Case Study

Practical MREPS data are presented in this study within a simulation and analysis
environment. The parameters of each power supply unit in the MREPS are listed in Table 1.



Processes 2022, 10, 1401 11 of 17

The cost of each distributed generation is presented in Table 2. Table 3 presents the pollutant
emission coefficients generated by each distributed generation. Table 4 shows the electricity
purchase price of the MREPS from the main grid [15].

Table 1. Parameters of each power supply unit in the MREPS.

Power Supply Unit Type Parameter Type Parameter Value

Photovoltaic array Power rating 100 kW

Wind turbine Power rating 33 kW

Lead-acid battery
Rated capacity
Range of SOC

Maximum charge and discharge power

100 kW·h
0.2–1

25 kW

Diesel generator
Power rating

Maximum upward ramping rate
Maximum downward ramping rate

200 kW
120 kW/h
120 kW/h

Tie line Maximum transmission power 90 kW

Table 2. Cost coefficient of each distributed generation.

Generation Unit Type Fuel Cost
(CNY·(kW·h)−1)

Operation Management Coefficient
(CNY·(kW·h)−1)

Photovoltaic array — 0.0096
Wind turbine — 0.0296

Lead-acid battery — 0.0322
Diesel generator 0.81 0.0880

Table 3. Pollutant emission coefficient generated by each distributed generation.

Pollutant Type CO2 SO2

Handling Expense (CNY·kg−1) 0.21 14.842

Pollutant emission coefficient
(g·(kW·h)−1)

Photovoltaic power generation 0 0
Wind power generation 0 0
Diesel power generation 649 0.206

Table 4. Electricity purchase price of the MREPS from the main grid.

Type of Period Period (h) Purchase Price (CYN)

Peak period
8:00–11:00

13:00–15:00
18:00–21:00

1.25

Ordinary period

6:00–8:00
11:00–13:00
15:00–18:00
21:00–22:00

0.80

Valley period 0:00–6:00
22:00–0:00 0.40

This study adopts a simulation of the load and output date of a typical day in the
MREPS for WTs and PV arrays. To determine an optimal scheduling strategy, the forecast
values of these data are used. Utilizing the realized values of these data, the optimal
scheduling strategy is evaluated. Figures 5 and 6 present the predicted and realized curves
for the load and output from WTs and PV arrays in the MREPS for a typical day, respectively.
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As shown in Section 4, it is possible to determine the optimal scheduling strategy of
a typical day after obtaining the non-dominated solution set. On the basis of the models,
constraints, data, and decision variables of this study, the non-dominated solution set
of objectives can therefore be obtained using MOPSO. Figures 7 and 8 illustrate non-
dominated solutions based on the conventional and proposed strategies, respectively. From
Figures 7 and 8, we can see that the three objectives cannot reach the optimal solution at the
same time for the non-dominated solution set obtained by MOPSO. The distribution of the
non-dominated solution set shows a narrow shape at both ends and is wide in the middle.
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Furthermore, Figures 7 and 8 indicate that the non-dominated solution set of the
proposed strategy is larger than that of the conventional strategy. According to this finding,
after evaluating the flexibility constraints, the MREPS will sacrifice a portion of the economy,
the utilization rate of renewable energy, and power fluctuations.

We must then determine the optimal compromise solution from the Pareto non-
dominated solution set to find the optimal day-ahead scheduling strategy for a typical day.
The fuzzy comprehensive evaluation method can be used to obtain optimal compromise
solutions from non-dominated Pareto solution sets, based on the conventional and proposed
strategies, as discussed in Section 4. By the fuzzy comprehensive evaluation method, Point
A and Point B are the solutions with the highest evaluation scores in the respective non-
dominated solution sets of Figures 7 and 8, respectively. Therefore, Points A and B represent
optimal compromise solutions in Figures 7 and 8, respectively.

Finally, based on the relevant decision variables, the optimal day-ahead schedul-
ing strategy for a typical day according to every optimal compromise solution can be
determined. These are illustrated in Figures 9 and 10.
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Figure 10. Optimal scheduling strategy of the typical day based on the proposed strategy.

Using the conventional and proposed strategies, Strategies A and B provide an optimal
scheduling strategy for the typical day based on what has been denoted, respectively, for
ease of use. Figures 9 and 10 illustrate Strategy A’s preference for purchasing electricity
from the main grid. It was found that the tie-line transmission power of Strategy A is close
to its average. The consequence is a relatively low level of power fluctuations at the tie-line
under Strategy A, whereas Strategy B prefers to generate electricity from DGs. It is more
expensive to generate electricity through DGs than to purchase electricity from the main
grid; therefore, Strategy B has a higher operation cost.

To better compare Strategies A and B, they were both applied in the context of a realistic
scenario based on a typical day. Figure 5 shows such a situation. In Figures 11 and 12, the
realized operation results under Strategies A and B are presented, respectively.
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The realized output of WTs and PV arrays is larger than the predicted value, as 
depicted in Figures 5 and 6. Consequently, the realized output power of DGs in both 
Figures 11 and 12 is smaller than the predicted value. However, DGs based on Strategy A 
generally have a minimum output power. DGs fail to reduce the output power in this 
case. Hence, curtailing renewable energy is the most economical way to maintain power 
balance after the ESS absorbs the excess power to the extent possible. By comparison, DGs 
based on this strategy are able to reduce the output power because Strategy B takes 
flexibility constraints into account. Therefore, the MREPS can decrease the output power 
of DGs to increase the utilization rate of renewable energy. In addition, Strategy B reduces 
the power purchased from the main grid during peak load periods from 18:00 to 22:00 in 
comparison to Strategy A. This phenomenon significantly eases the demand for power on 
the main grid during peak load periods. 

The simulation results of Strategies A and B are listed in Table 5. It can be seen that 
Strategy A has a lower forecast operation cost, forecast curtailment rate of renewable 
energy, and forecast power fluctuations on the tie-line. All three indicators are higher for 
Strategy B. However, the IFR is 31.47% higher, the FSR is 45.83% lower, and the AIF is 
13.36 kW/h higher for Strategy A compared to Strategy B. This indicates that Strategy A 
is less capable of coping with uncertainties during the real-time operation of the MREPS 
compared to Strategy B. This is corroborated by the real-time operation results of the two 
strategies. 

Figure 11. Realized operation results under Strategy A.
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The realized output of WTs and PV arrays is larger than the predicted value, as
depicted in Figures 5 and 6. Consequently, the realized output power of DGs in both
Figures 11 and 12 is smaller than the predicted value. However, DGs based on Strategy A
generally have a minimum output power. DGs fail to reduce the output power in this case.
Hence, curtailing renewable energy is the most economical way to maintain power balance
after the ESS absorbs the excess power to the extent possible. By comparison, DGs based
on this strategy are able to reduce the output power because Strategy B takes flexibility
constraints into account. Therefore, the MREPS can decrease the output power of DGs to
increase the utilization rate of renewable energy. In addition, Strategy B reduces the power
purchased from the main grid during peak load periods from 18:00 to 22:00 in comparison
to Strategy A. This phenomenon significantly eases the demand for power on the main
grid during peak load periods.

The simulation results of Strategies A and B are listed in Table 5. It can be seen that
Strategy A has a lower forecast operation cost, forecast curtailment rate of renewable energy,
and forecast power fluctuations on the tie-line. All three indicators are higher for Strategy
B. However, the IFR is 31.47% higher, the FSR is 45.83% lower, and the AIF is 13.36 kW/h
higher for Strategy A compared to Strategy B. This indicates that Strategy A is less capable
of coping with uncertainties during the real-time operation of the MREPS compared to
Strategy B. This is corroborated by the real-time operation results of the two strategies.

Table 5. Simulation results of Strategies A and B.

Parameters and Units Strategy A Strategy B

Insufficient flexibility rate of the day-ahead scheme (IFR) (%) [15] 46.21 14.74
Flexibility sufficiency rate (FSR) (%) [28] 4.17 50.00

Average insufficiency of flexibility (AIF) (kW·h) [28] 28.458 15.098
Forecast operation cost (CNY) 1503.96 1598.37
Realized operation cost (CNY) 1756.52 1794.48

Forecast curtailment rate of renewable energy (%) 0 6.96
Realized curtailment rate of renewable energy (%) 37.58 19.55

Forecast power fluctuations on the tie-line (%) 59.71 69.65
Realized power fluctuations on the tie-line (%) 60.18 69.70

Deviation rate of forecast and realized power fluctuations on the tie-line (%) 29.17 14.58

What is more, the MREPS is operating at a higher cost under Strategy B, and the
tie-line power fluctuations are 9.52% higher than they are under Strategy A. However, the
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rate of utilization of renewable energy for the MREPS under Strategy B is 18.03% higher
than that under Strategy A. In addition, the deviation rate of forecast and realized power
fluctuations of power under Strategy B is 14.59% lower than that under Strategy A. These
findings indicate that Strategy B can reduce the deviation between forecast and realized
power fluctuations on the tie-line and increase the utilization of renewable energy at the
expense of a small amount of economy and power fluctuations at the same time. Moreover,
the realized values of the three objectives under Strategy A increased by 16.79%, 37.58%,
and 0.47% compared with their forecast values. In comparison with their forecast values,
the realized values of the three objectives under Strategy B increased by 12.27%, 12.59%,
and 0.05%. Based on this finding, the results formulated by Strategy B are more consistent
with the realized operation results.

5. Conclusions

In this study, a day-ahead scheduling strategy designed to account for flexibility
constraints was presented. A multi-objective problem was solved using MOPSO, and a
set of the non-dominated solutions was derived for the three objectives. Using the fuzzy
comprehensive evaluation method, the optimal compromise solution of the non-dominated
solution set was determined. In addition, the optimal strategy proposed in this study was
the day-ahead scheduling strategy corresponding to the optimal compromise solution.
During peak load periods, the simulation results showed that the proposed strategy was
effective in relieving the main grid’s pressure on power supply. Moreover, compared with
those formulated using the conventional strategy, the results obtained from day-ahead
scheduling formulated using the proposed strategy were closer to the results obtained from
the MREPS. Although the economy and power fluctuations on the tie-line were slightly
higher under the revised strategy, renewable energy usage was significantly higher, and the
differences between forecast and realized power fluctuations on the tie-line were relatively
small. This finding showed that the revised strategy has the potential to significantly
improve the flexibility and reliability of the MREPS’s operation at the cost of a small
amount of economy and fluctuations in power supply.

Author Contributions: Conceptualization, L.Y. (Lei Yang); and Q.W.; methodology, L.Y. (Lei Yang);
software, C.G. and D.Z.; validation, W.H., C.X., and L.Y. (Longjie Yang). All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to data confidentiality requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hong, Z.; Hao, S.; Zhang, Q.; Kong, G. Microgrid Spinning Reserve Optimization with Improved Information Gap Decision

Theory. Energies 2018, 11, 2347.
2. Cz, A.; Hc, A.; Lu, L.; Zhang, H.; Zhang, X.; Li, G. Coordination planning of wind farm, energy storage and transmission network

with high-penetration renewable energy. Int. J. Electr. Power Energy Syst. 2020, 120, 105944.
3. Li, J.; Liu, J.; Yan, P.; Li, X.; Zhou, G.; Yu, D. Operation Optimization of Integrated Energy System under a Renewable Energy

Dominated Future Scene Considering Both Independence and Benefit: A Review. Energies 2021, 14, 1103. [CrossRef]
4. Menezes, R.; Soriano, G.D.; Aquino, R. Locational Marginal Pricing and Daily Operation Scheduling of a Hydro-Thermal-Wind-

Photovoltaic Power System Using BESS to Reduce Wind Power Curtailment. Energies 2021, 14, 1441. [CrossRef]
5. Wang, L.; Li, Q.; Ding, R.; Sun, M.; Wang, G. Integrated scheduling of energy supply and demand in microgrids under uncertainty:

A robust multi-objective optimization approach. Energy 2017, 130, 1–14. [CrossRef]
6. Shams, M.H.; Shahabi, M.; Khodayar, M.E. Stochastic Day-ahead Scheduling of Multiple Energy Carrier Microgrids with Demand

Response. Energy 2018, 155, 326–338. [CrossRef]

http://doi.org/10.3390/en14041103
http://doi.org/10.3390/en14051441
http://doi.org/10.1016/j.energy.2017.04.115
http://doi.org/10.1016/j.energy.2018.04.190


Processes 2022, 10, 1401 17 of 17

7. Chen, W.; Shao, Z.; Wakil, K.; Aljojo, N.; Samad, S.; Rezvani, A. An efficient day-ahead cost-based generation scheduling of a
multi-supply microgrid using a modified krill herd algorithm. J. Clean. Prod. 2020, 272, 122364. [CrossRef]

8. Han, S.; Yin, H.; Alsabbagh, A.; Ma, C. A flexible distributed approach to energy management of an isolated microgrid. In
Proceedings of the 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 2063–2068.

9. Kumar, K.P.; Saravanan, B. Day ahead scheduling of generation and storage in a microgrid considering demand Side management.
J. Energy Storage 2019, 21, 78–86. [CrossRef]

10. Ebrahimi, M.R.; Amjady, N. Adaptive robust optimization framework for day-ahead microgrid scheduling. Int. J. Electr. Power
Energy Syst. 2019, 107, 213–223. [CrossRef]

11. Shi, J.; Huang, W.; Tai, N.; Zhu, Q.; Liu, D. Strategy to smooth tie-line power of microgrid by considering group control of heat
pumps. J. Eng. 2017, 2017, 2417–2422. [CrossRef]

12. Yao, Y.; Zhang, P. Transactive control of air conditioning loads for mitigating microgrid tie-line power fluctuations. In Proceedings
of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

13. Hosseini, S.E.; Najafi, M.; Akhavein, A.; Shahparasti, M. Day-Ahead Scheduling for Economic Dispatch of Combined Heat and
Power with Uncertain Demand Response. IEEE Access 2022, 10, 42441–42458. [CrossRef]

14. Shan, X.; Xue, F. A Day-Ahead Economic Dispatch Scheme for Transmission System with High Penetration of Renewable Energy.
IEEE Access 2022, 10, 11159–11172. [CrossRef]

15. Yang, L.; Li, H.; Yu, X.; Zhang, L.; Pang, B.; Yi, R.; Gai, P.; Xin, C. Multi-Objective Day-Ahead Optimal Scheduling of Isolated
Microgrid Considering Flexibility. Power Syst. Technol. 2017, 5, 1432–1440.

16. Yi, W.; Jiang, H.; Xing, P. Improved PSO-based energy management of Stand-Alone Micro-Grid under two-time scale. In
Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016;
pp. 2128–2133.

17. Varghese, S.; Dalvi, S.; Narula, A.; Webster, M. The Impacts of Distinct Flexibility Enhancements on the Value and Dynamics of
Natural Gas Power Plant Operations. IEEE Trans. Power Syst. 2021, 36, 5803–5813. [CrossRef]

18. Li, H.; Lu, Z.; Qiao, Y.; Zhang, B.; Lin, Y. The Flexibility Test System for Studies of Variable Renewable Energy Resources. IEEE
Trans. Power Syst. 2021, 36, 1526–1536. [CrossRef]

19. Eltohamy, M.S.; Moteleb, M.S.A.; Talaat, H.; Mekhemer, S.F.; Omran, W. Technical investigation for power system flexibility. In
Proceedings of the 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International
Conference on New Paradigms in Electronics & information Technology (PEIT), Hurghada, Egypt, 17–20 November 2019;
pp. 299–309.

20. Song, C.; Chu, X. Optimal Scheduling of Flexibility Resources Incorporating Dynamic Line Rating. In Proceedings of the 2017
IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

21. Lu, W.; Hang, N. A Multiobjective Evaluation Method for Short-term Hydrothermal Scheduling. IEEJ Trans. Electr. Electron. Eng.
2017, 12, 31–37. [CrossRef]

22. Elgammal, A.; El-Naggar, M. Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable
energy resources using multi-objective particle swarm optimisation (MOPSO). J. Eng. 2018, 11, 1806–1816. [CrossRef]

23. Liu, X.; Zhang, P.; Fang, H.; Zhou, Y. Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm
Optimization With ε-Greedy Strategy and Pareto Archive Algorithm. IEEE Access 2021, 9, 65650–65659. [CrossRef]

24. Li, C.; Yang, J.; Xu, Y.; Wu, Y.; Wei, P. Classification of voltage sag disturbance sources using fuzzy comprehensive evaluation
method. CIRED Open Access Proc. J. 2017, 2017, 544–548. [CrossRef]

25. Sang, Y.; Zheng, Y. Reserve scheduling in the congested transmission network considering wind energy forecast errors. In
Proceedings of the 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 11–13 October 2021; Volume 1,
pp. 1–6.

26. Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International 2017, 7, 9–172.
27. Huang, X. Time-series analysis model based on data visualization and entropy weight method. In Proceedings of the 4th

International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 19–21 November
2021; pp. 501–503.

28. Liu, W.; Li, H.; Zhang, H.; Xiao, Y. Expansion Planning of Transmission Grid Based on Coordination of Flexible Power Supply
and Demand. Autom. Electr. Power Syst. 2018, 42, 56–63.

http://doi.org/10.1016/j.jclepro.2020.122364
http://doi.org/10.1016/j.est.2018.11.010
http://doi.org/10.1016/j.ijepes.2018.11.029
http://doi.org/10.1049/joe.2017.0763
http://doi.org/10.1109/ACCESS.2022.3168306
http://doi.org/10.1109/ACCESS.2022.3145973
http://doi.org/10.1109/TPWRS.2021.3084367
http://doi.org/10.1109/TPWRS.2020.3019983
http://doi.org/10.1002/tee.22332
http://doi.org/10.1049/joe.2018.5036
http://doi.org/10.1109/ACCESS.2021.3075777
http://doi.org/10.1049/oap-cired.2017.0776

	Introduction 
	Model for Multi-Objective Optimal Scheduling 
	Objective Function 
	Operation Cost 
	Renewable Energy Curtailment Rate 
	Tie-Line Power Fluctuations 

	Constraint Conditions 
	Constraints on the Power Balance 
	Constraints of Output Power for DGs Considering Flexibility 
	Constraints of the ESS Considering Flexibility in Charging and Discharging 
	Tie-Line Transmission Power Constraints in Consideration of Flexibility 


	Algorithm for the Solution of the Multiobjective Optimization Model 
	MOPSO 
	Fuzzy Comprehensive Analysis Methodology 

	Case Study 
	Conclusions 
	References

