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Abstract: With the application of complex fracturing and other complex technologies, external
extrusion has become the main cause of casing damage, which makes non-API high-extrusion-
resistant casing continuously used in unconventional oil and gas resources exploitation. Due to
the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to
high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of
high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is
used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale
physical data, including initial defect data, geometric size, mechanical parameters, etc., after data
preprocessing, the casing collapse strength data set is established for model training and blind
measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm
is used for training. Through empirical formula and trial and error method, it is determined that
when the number of hidden neurons is 12, the model is the best prediction model for high collapse
resistance casing. The prediction results of the blind test data imported by the model show that the
coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error
analysis with API formula prediction results and KT formula prediction results improved by least
square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability.
Compared with the traditional prediction method, this model can be used to predict casing strength
under more complicated working conditions, and it has a certain guiding significance.

Keywords: casing collapse strength; Bayesian regularization algorithm; artificial neural network

1. Introduction

As a key component in the development and production of oil and gas wells, the casing
is not only subjected to high axial tensile or compressive loads, as well as internal and
external pressure loads, but also the harsh service environment such as high-temperature
environment at the bottom of the well and acidic corrosion. Once damage occurs, it will not
only reduce oil and gas production but also seriously damage the reservoir and affect the
normal exploration and production [1–3]. The economic loss of well damage or scrapping
caused by casing damage in China’s oil fields amounts to billions of dollars every year, and
up to now, the casing damage problem is still a non-negligible part of the international
oil industry. Due to the long-term complex service environment, the casing is subject to
various uniform or non-uniform loads formed by the formation and downhole operations,
and its full-scale performance will constantly change due to the transformation of the
mechanical environment and downhole working conditions. Numerous studies on casing
strength show that casing steel grade, diameter-to-thickness ratio, geometric defects (OD
ellipticity and wall thickness unevenness), yield strength, and residual stresses are the main
factors affecting casing collapse strength. In addition, external factors such as temperature,
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downhole wear, and cement rings also affect the casing collapse strength [4]. In recent
years, with the deepening of drilling depth, the casing collapse strength has become a
key indicator in casing selection. The calculation of collapse strength used API and ISO
standards cannot fully consider the relationship between the inherent defects of the tubular
column and the non-uniform external load in complex downhole conditions, resulting
in the calculated value deviating from the actual value. To investigate the change law
of casing strength performance under the influence of multiple factors, scholars at home
and abroad have revised the formula for calculating the casing resistance to collapse with
experiments and finite element simulations. At present, the research on collapse strength is
still being explored, seeking a more accurate formula for casing collapse strength prediction
from a data-driven perspective.

Big data analytics, as a branch of data science, covers artificial intelligence, data mining,
machine learning, and pattern recognition. Machine learning studies the ability of comput-
ers to learn based on data and is used to extract predictive models from data [5–9]. Machine
learning is divided into two types. Supervised learning, which learns by classifying or label-
ing data, and supervised learning, which analyzes trained data to obtain a model capable
of predicting new cases based on a vector of homogeneous features [10,11]. Artificial neural
networks are one of the most widely used machine learning methods in the oil and gas
industry, with applications in oilfield production, drilling, fluid processing, etc. They are a
form of a mathematical structure inspired by biological neural networks for approximating
functions that rely on large amounts of input data. Neural networks “learn” from samples
and identify associations between input and output values from a selected sequence of
data [12–15]. Since there is no specific expected value for the correlation between the data
and the physical properties of each parameter in the model are independent, the collapse
strength of the casing can be predicted by combining different process parameters. In this
paper, the main correlation factors of the current casing collapse strength are combined
with the relevant data obtained from the laboratory collapse experiments, and the data
samples are formed after data pre-processing for training the artificial neural network to
form the casing collapse strength prediction model. In terms of algorithm optimization, the
Bayesian regularization algorithm is considered to improve the generalization ability of the
model and further ensure the effectiveness of the model.

2. Prediction Model Scheme of Casing Collapse Strength Based on Bayesian
Regularization Algorithm
Model Construction Scheme

Casing manufacturing process defects and complex underground service environment
make casing become one of the weak links in the oil and gas industry. Combining with
the relevant specifications of casing strength design, among many factors affecting casing
strength performance, diameter-thickness ratio, ovality, wall thickness unevenness, yield
strength, and residual stress are selected to carry out the prediction research on collapse
strength. Figure 1 shows the flow chart of the scheme for predicting casing collapse strength
with the help of an artificial neural network, which includes three parts: data acquisition,
model development, and comparative analysis of prediction results.

In the data acquisition part of the scheme, the full-scale physical performance experi-
ment will be used to acquire enough data on collapse strength and establish data sets. The
model development will be realized from the structure of the neural network, the division
of the data set, the optimization of the model, and the evaluation of the model. Finally, in
order to ensure that the model can effectively predict the collapse strength, the reserved
test data is imported for prediction, and the accuracy of the predicted values of the model
is calculated and compared by combining the traditional regression fitting method and the
collapse strength calculation formula in API 5C3 specification, so as to test the validity of
the model.
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Figure 1. Flow chart of prediction scheme of casing collapse strength. 
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Figure 1. Flow chart of prediction scheme of casing collapse strength.

3. Bayesian Regularized Artificial Neural Networks

In artificial neural networks, neural information is stored in the form of weights and
biases, and the magnitude of the weight value determines the impact of the corresponding
information on the whole model. The classical machine learning approach divides a data
set into 3 parts: training data subset, validation data subset, and test data subset [16,17].
Bayesian regularized neural networks refer to networks that use Bayesian regularization
methods to train BP. Bayesian-Regularization (BR) refers to the process of improving the
generalization ability of a neural network by modifying its performance function [10,18,19].
For function approximation, the most commonly used is the multilayer perception (MLP)
algorithm with backpropagation. The MLP architecture based on the BP algorithm is given
in Figure 2 and is the basis for developing the BRANN-based model in this study.

It can be seen that the architecture consists of 3 key components: the input layer, the
implicit layer, and the output layer. The signal (Xi) in the input layer is first passed through
a series of weights (wxi,i) and then passed into the implied layer through a commonly used
activation function (e.g., logistic function or hyperbolic tangent function). Therefore, these
processed signals are passed through using another series of weights (wyi) and eventually
summed to an output (YI) by a linear transfer function in the output layer. The mean
squared error function ED is then iteratively calculated to determine the optimal weights
and ultimately the appropriate architecture.
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However, the traditional BP algorithm may encounter overfitting problems, i.e., small
bias and large variance. As an alternative method, BRANN has better generalization
capability. The objective function F (including the combination of the mean square error
function ED and the weight decay function EW) is minimized and the optimal weights and
objective function parameters are fitted in a probabilistic manner. The objective function of
BRANN is:

F = βED + αEw (1)

ED =
1
N

N

∑
i
(yi − ti)

2 =
1
N

N

∑
i

e2
i (2)

Ew =
1
2

m

∑
i

w2
i (3)

where α and β denote hyperparameters to control the distribution of other parameters. w is
the weight and m is the number of weights. D = (xi,ti) denotes the data of the training set
with i = 1, 2, . . . , N, where N is the total number of training sets (input-output pairs). yi
denotes the ith output value corresponding to the ith training set (input-output pairs).

In BRANN, the initial weights are set randomly. With these initial weights, the density
function of the weights can be updated according to Bayer’s rule:

P(w|D, α, β, M) =
P(D|w, β, M)·P(w|α, M)

P(D|α, β, M)
(4)

where M is the particular neural network architecture used; P(w|α, M) is the prior density,
which represents the knowledge of the weights before collecting the data; P(D|w, β, M) is
the likelihood function, which is the probability of the data occurring given a weight w; and
P(D|α, β, M) is the normalization factor, which can be calculated by the following equation:

P(D|α, β, M) =
∫ +∞

−∞
P(D|α, β, M)P(w|α, M)dw (5)
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If the noise of the training set data and weights is assumed to be Gaussian distributed,
the probability density can be calculated by:

P(D|α, β, M) =
1

ZD(β)
exp(−βED) = (π/β)−N/2exp(−βED) (6)

P(w|α, M) =
1

Zw(α)
exp(−βEW) = (π/α)−m/2exp(−βEW) (7)

If these probability densities are substituted into Equation (4). The probability equation
becomes:

P(w|D, α, β, M) =
1

ZW (α)
1

ZD(β)
exp(−(βED+αEW ))

P( D|α,β,M )

= 1
ZF(α,β) exp(−F(w))

(8)

In BRANN, determining the optimal weights means maximizing the posterior probabil-
ity P(w|D, α, β, M), in this case, the objective function F of the minimization regularization.

Combined post-test density:

P(α, β/D, M) =
P(D/α, β, M)·P(α, β/M)

P(D/M)
(9)

The maximized joint posterior density can be determined by maximizing the likelihood
function P(D/α, β, M), which is calculated as follows:

P(D/α, β, M) =
P(D/w, β, M)·P(w/α, M)

P(w/D, α, β, M)
=

ZF(α, β)

(π/β)
n
2 (π/α)

m
2

(10)

where n is the number of observations (input target simulation pairs) and m is the total
number of network parameters. In addition, the parameter ZF(α, β) depends on the Hessian
of the objective function (prevent and Hagan, 1997), which is calculated as follows:

ZF(α, β) ∝
e−F(wmax)√
|Hmax|

(11)

where the subscript “max” indicates the maximum posterior probability. The Hessian
matrix (H) is calculated from the Jacobian (J) as follows:

H = JT J (12)

where the Jacobi matrix contains the first-order derivatives of the network errors concerning
the network parameters.

4. Experimental Data Acquisition

Full-scale collapse performance is a key parameter in ensuring the quality and safe
use of the casing [20–22]. The full-scale collapse tests were carried out by the requirements
of API RP 5C5 and API TR 5C3. The standard specifies a minimum length of 8 times the
nominal outside diameter (D) for tubes with a nominal outside diameter (D) less than or
equal to 9–5/8in and 7 times the nominal outside diameter (D) for tubes with nominal
outside diameter (D) more than 9–5/8in [23]. The collapse test is carried out utilizing a
composite collapse test system, which requires full-scale specimen lengths and no radial
or axial loads. The composite collapse test system ensures that the specimen is slowly
depressurized after the collapse has occurred and that the error does not exceed 1% of the
collapse test pressure.

The collapse test specimens were geometrically measured before the test and the
measurement locations are shown in Figure 3. Five sections were measured for each
specimen and 8 points were measured for each section. The results of the geometric
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measurements for specimen #1 are shown in Table 1. The average outer diameter, average
wall thickness, ellipticity, and wall thickness unevenness values were calculated.

Processes 2022, 10, x FOR PEER REVIEW 6 of 15 
 

 

or axial loads. The composite collapse test system ensures that the specimen is slowly de-
pressurized after the collapse has occurred and that the error does not exceed 1% of the 
collapse test pressure. 

The collapse test specimens were geometrically measured before the test and the 
measurement locations are shown in Figure 3. Five sections were measured for each spec-
imen and 8 points were measured for each section. The results of the geometric measure-
ments for specimen #1 are shown in Table 1. The average outer diameter, average wall 
thickness, ellipticity, and wall thickness unevenness values were calculated. 

 
Figure 3. Measured specimen before collapse test. Note: 1 residual stress test specimen; 2 tensile 
specimens; 3 collapseed specimen. L1 minimum length of the collapsed specimen. L2 minimum 
length of residual stress specimen. Average outside diameter, average wall thickness, and ellipticity 
are measured at five equally spaced locations and the wall thickness unevenness is calculated from 
the wall thickness measurements. 

Table 1. Specimen geometry inspection results (mm). 

Measurement section Average outside 
diameter 

Ellipticity (1) 
M1-N1 G1-H1 O1-P1 E1-F1 
141.58 141.18 141.07 141.17 141.25 0.36 

M1 N1 G1 H1 O1 P1 E1 F1 
Average wall 

thickness 
Wall thickness uneven-

ness (2) 
13.09 13.43 12.77 13.46 12.96 12.84 13.16 13.15 13.11 5.26 

Measurement section Average outside 
diameter 

Ellipticity 
M2-N2 G2-H2 O2-P2 E2-F2 
141.00 141.22 141.21 141.09 141.13 0.16 

M2 N2 G2 H2 O2 P2 E2 F2 
Average wall 

thickness 
Wall thickness uneven-

ness 
13.08 13.40 12.94 13.21 12.75 12.92 12.96 13.31 13.06 4.97 

Measurement section Average outside 
diameter 

Ellipticity 
M3-N3 G3-H3 O3-P3 E3-F3 
141.10 141.56 141.14 141.33 141.28 0.33 

M3 N3 G3 H3 O3 P3 E3 F3 
Average wall 

thickness 
Wall thickness uneven-

ness 
13.00 13.34 12.71 13.22 12.60 12.86 13.15 13.03 12.99 5.71 

Measurement section Average outside 
diameter 

Ellipticity 
M4-N4 G4-H4 O4-P4 E4-F4 
141.01 141.16 141.19 141.01 141.09 0.13 

M4 N4 G4 H4 O4 P4 E4 F4 
Average wall 

thickness 
Wall thickness uneven-

ness 
13.10 13.19 13.02 12.71 12.94 12.59 13.32 12.96 12.98 5.63 

Measurement section Average outside 
diameter 

Ellipticity 
M5-N5 G5-H5 O5-P5 E5-F5 
141.17 141.21 141.09 141.09 141.14 0.09 

M5 N5 G5 H5 O5 P5 E5 F5 
Average wall 

thickness 
Wall thickness uneven-

ness 
13.33 13.20 12.96 12.96 13.15 12.65 13.10 13.00 13.02 5.23 

Note: (1) Ellipticity calculation formula: 2(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚+𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

× 100%. Where: Dmax—the maximum meas-
ured outer diameter value on the same cross-section; Dmin—the minimum measured outer diameter 
value on the same cross-section. (2) Wall thickness unevenness calculation formula: 2(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
×

Figure 3. Measured specimen before collapse test. Note: 1 residual stress test specimen; 2 tensile
specimens; 3 collapseed specimen. L1 minimum length of the collapsed specimen. L2 minimum
length of residual stress specimen. Average outside diameter, average wall thickness, and ellipticity
are measured at five equally spaced locations and the wall thickness unevenness is calculated from
the wall thickness measurements.

Table 1. Specimen geometry inspection results (mm).

Measurement section
Average outside diameter Ellipticity (1)

M1-N1 G1-H1 O1-P1 E1-F1

141.58 141.18 141.07 141.17 141.25 0.36

M1 N1 G1 H1 O1 P1 E1 F1 Average wall thickness Wall thickness unevenness
(2)

13.09 13.43 12.77 13.46 12.96 12.84 13.16 13.15 13.11 5.26

Measurement section
Average outside diameter Ellipticity

M2-N2 G2-H2 O2-P2 E2-F2

141.00 141.22 141.21 141.09 141.13 0.16

M2 N2 G2 H2 O2 P2 E2 F2 Average wall thickness Wall thickness unevenness

13.08 13.40 12.94 13.21 12.75 12.92 12.96 13.31 13.06 4.97

Measurement section
Average outside diameter Ellipticity

M3-N3 G3-H3 O3-P3 E3-F3

141.10 141.56 141.14 141.33 141.28 0.33

M3 N3 G3 H3 O3 P3 E3 F3 Average wall thickness Wall thickness unevenness

13.00 13.34 12.71 13.22 12.60 12.86 13.15 13.03 12.99 5.71

Measurement section
Average outside diameter Ellipticity

M4-N4 G4-H4 O4-P4 E4-F4

141.01 141.16 141.19 141.01 141.09 0.13

M4 N4 G4 H4 O4 P4 E4 F4 Average wall thickness Wall thickness unevenness

13.10 13.19 13.02 12.71 12.94 12.59 13.32 12.96 12.98 5.63

Measurement section
Average outside diameter Ellipticity

M5-N5 G5-H5 O5-P5 E5-F5

141.17 141.21 141.09 141.09 141.14 0.09

M5 N5 G5 H5 O5 P5 E5 F5 Average wall thickness Wall thickness unevenness

13.33 13.20 12.96 12.96 13.15 12.65 13.10 13.00 13.02 5.23

Note: (1) Ellipticity calculation formula: 2(Dmax−Dmin)
Dmax+Dmin

× 100%. Where: Dmax—the maximum measured outer
diameter value on the same cross-section; Dmin—the minimum measured outer diameter value on the same
cross-section. (2) Wall thickness unevenness calculation formula: 2(tmax−tmin)

tmax+tmin
× 100%. Where: tmax—the same

section on the measured maximum wall thickness value; tmin—the same section on the measured minimum wall
thickness value.
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Each collapsed specimen shall be subjected to residual stress measurement using the
stress ring method, and the residual stress specimen shall be taken from the adjacent part
of the collapsed specimen. The minimum length of the specimen should be two times
the outer diameter (L/D ≥ 2), the specimen is shown in Figure 2, and the residual stress
measurement results for specimen #1 are shown in Table 2.

Table 2. Residual stress measurement results.

Specimen
Number

Location of
Measurements

Outer Diameter (mm) Wall Thickness (mm) Residual Stress (MPa)

B-D (before) B-D (after) C /

Di (m) Df (mm) t (mm) /

1#

1 141.29 142.16 13.04 /
2 140.90 141.65 13.40 /
3 140.92 141.85 13.15 /
4 140.90 141.78 13.06 /

Average value 141.00 141.86 13.16 130.57

Note: The residual stress calculation formula: σ = Et
(1−µ2)

(
1

Di
− 1

D f

)
. where E = 2.1 × 105 MPa; u =0.3.

The full-scale collapse test was conducted by an external pressure collapse test system
shown in Figure 4. The full-scale collapse test specimens are shown in Figure 5. The
collapse failure specimens are shown in Figure 6.
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5. Establishment of Bayesian Regularized Neural Network for Prediction Casing
Collapse Strength
5.1. Sample Data Pre-Processing

After the external extrusion test, the collected experimental data were grouped. Table 3
below shows the extrusion strength parameters corresponding to each pipe diameter of
4.5in, 5.5in, 7.0in, 9.5in, 13.5in, and 16in obtained after the experiment. Before model
training, the data of each parameter should be unified in dimension to eliminate the useless
data therein and form a casing collapse strength data set [24,25].

Table 3. Experimental data of casing collapse strength (partial).

Outer
Diameter in

Outer Diameter
Out-of-Roundness %

Unevenness of
Wall Thickness %

Residual Stress
Mpa

Yield Strength
Mpa

Casing Collapse
Strength/psi

4.53 0.471 3.145 14.76 700.53 12,469
4.51 0.416 2.356 116.92 817.06 13,550
4.51 0.074 4.400 225.95 661.92 13,416
. . . . . . . . . . . . . . . . . .

5.53 0.37 0.643 156.86 464.03 4263
5.53 0.428 0.7 145.27 458.17 4160
5.53 0.405 0.376 153.87 468.86 4048
. . . . . . . . . . . . . . . . . .

7.04 0.194 2.872 62.85 498.85 5757
7.05 0.192 2.304 130.21 480.92 5961
7.05 0.165 6.662 108.27 490.94 5400
. . . . . . . . . . . . . . . . . .

9.70 0.359 3.678 105.48 452.66 2689
9.71 0.402 1.985 35.31 645.37 5032
9.71 0.401 2.781 34.83 649.509 4975
. . . . . . . . . . . . . . . . . .

13.47 0.368 1.987 213.31 900.00 3342
13.47 0.184 1.643 254.84 890.48 3316
13.44 0.212 1.603 172.45 886.35 3208

. . . . . . . . . . . . . . . . . .
16.09 0.231 2.329 31.351 721.56 2669
16.08 0.291 4.723 37.79 718.45 2550
16.08 0.234 4.682 29.73 712.59 2413

In order to increase the validity of data, here, the min-max (Min-Max Normalization)
standardized data consistency processing method will be selected. This method, also called
deviation standardization, is a linear transformation of the original data, so that the result
value is mapped to [0–1]. The conversion function is as follows:

X∗ =
X−min

max−min
(13)

where max is the maximum value of the sample data and min is the minimum value of the
sample data. The drawback of this method is that once new data are added, it may lead to
changes in max and min and therefore needs to be redefined.

5.2. Define the Network Structure

The determination of the number of layers of the neural network model, i.e., the
determination of the hidden layers. In this paper, a three-layer neural network structure
(one input layer, one hidden layer, and one output layer) will be selected. The number of
nodes in the input and output layers is equal to the number of input and output parameters,
and the optimal number of neurons in the hidden layer is obtained by comparing them
after several training sessions. The five main correlation parameters of casing collapse
strength, namely diameter-thickness ratio, ellipticity, wall thickness inhomogeneity, yield
strength, and residual stress, will be used as the input of the neural network, and the output
will be the casing collapse strength. Under such a three-layer neural network, the input
layer contains five neurons, and the output layer contains one neuron. The structure of this
neural network is shown in Figure 7 below.
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5.3. Model Training and Optimization

Among the obtained data, 2/3 of the data are selected for model development, and
1/3 (not involved in model training) are used to test the degree of generalization of the
developed model, and the algorithm is selected as a Bayesian regularization algorithm. In
the model development group data, 85% of the data will be randomly divided into training
set data, and 15% of the data will be test set data, where each group of data includes
5 inputs (diameter-thickness ratio, ellipticity, wall thickness unevenness, yield strength,
and residual stress) and one output (casing collapse strength).

In the optimization of the model, the mean square error (MSE) and the decision
coefficient (R2) were mainly referenced. The MSE was the average square deviation between
the output value and the target value. The value of R2 was used to measure the correlation
between the output value and the target value. When the R2 of the training set was greater
than that of the test set, it indicated that an over-fitting occurred. When the model with
the MSE as low as possible and the R2 value close to 1 is the appropriate model in the
testing stage, these two indicators can show whether the model extracts all the information
or whether further adjustment is required. The fitting effect of the model is poor when
the number of neurons is too small, but it will lead to over-fitting. In order to find the
optimal model, the purpose can be achieved by adjusting the sample size, the proportion
of the dataset, or the number of neurons in the hidden layer. In order to obtain effective
feedback and eliminate the data deviation caused by network training fluctuation, the
training process would undergo 10 training and blind tests under the same condition and
the average value would be taken. In view of the input parameter n = 5 of the model, the
selection of the number of neurons in the hidden layer N follows N ≥ n, and the trial-and-
error initial value of the number of neurons in the hidden layer N0 = 5, the trial-and-error
upper limit value is set according to the empirical formula method (Equation (14)).

N =
√

n + m + a (14)

where n is the number of nodes in the input layer, m is the number of nodes in the output
layer, and a is an integer from 1 to 10.

Table 4 shows the average R2 of the neural network model after 10 times of training
under different numbers of hidden neurons, and Figure 8 shows the comparison curve
of the determination coefficient R2 of model training and prediction when the number of
hidden neurons is 5~15.
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Table 4. R2 of the model with different numbers of hidden layer neurons.

Number of Neurons in the
Hidden Layer

Neural Network Model
Training R2-Value

Neural Network Model
Predicting R2-Value

5 0.99699 0.99715
6 0.99707 0.99730
7 0.99675 0.99727
8 0.99689 0.99701
9 0.99537 0.99774
10 0.99716 0.99748
11 0.99684 0.99750
12 0.99746 0.99780
13 0.99740 0.99742
14 0.99712 0.99775
15 0.99685 0.99754
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It can be seen from Table 4 and Figure 8 that the change in the number of neurons
in the hidden layer affects the prediction accuracy of the model when the proportion
of data sets is constant. There is no regular relationship between the R2 value and the
number of neurons in the hidden layer, but overall, the determining coefficient R2 tends to
approach 1. It can be clearly seen from the comparison curve in Figure 8 that the predicted
R2 of 11 groups of models is higher than that of model training R2, and the model has not
been fitted. When the number of hidden neurons is 9, the difference between the two R2

values is the biggest, and when the number of hidden neurons is 13, R2 is the closest. When
the number of hidden layer neurons is 12, the average value of the training R2 and the
prediction R2 of the model is closest to 1. In addition, as can be seen from Figure 9, the error
of the network model is the smallest compared with other models at this time, which best
meets the demand of model optimization. Therefore, the number of hidden layer neurons
N is set to 12 for prediction research.
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5.4. Model Evaluation and Prediction Result Analysis

According to 5.3, the number of hidden layer neurons N = 12 is set to predict the casing
collapse strength. To test the effectiveness and advantages of the model, the casing collapse
pressure is calculated according to API 5C3 specification on the basis of the measured
data, and combined with KT improved formula in ISO/TR 10400:2007 specification, the
minimum collapse pressure of casing is predicted by the least square regression method.
For the casing with D/T < 12.53, the collapse strength is related to the collapse pressure Py
of the yield strength, which is calculated by Equation (15).

Py = 2σs

[
(D/t)− 1

(D/t)2

]
(15)

When 12.53 < D/t < 20.56, the minimum collapse strength is related to the plastic
collapse pressure Py, which is calculated by Equation (16).

Pp = σs

[
A

D/t
− B

]
− C (16)

A = 2.8762 + 0.15489× 10−3σs + 0.44809× 10−6σ2
s − 0.16211× 10−19σ3

s (17)

B = 0.026233 + 0.73402× 10−4σs (18)

C = −3.2125 + 0.030867σs − 0.15204× 10−5σ2
s + 0.7781× 10−9σ3

s (19)

When D/t > 20.56, the minimum collapse strength is related to the elastic collapse
pressure Py, which is calculated by the elastic collapse pressure Equation (20).

PE =
3.237× 105

(D/t)[(D/t)− 1]2
(20)

The data set to be measured includes 4.5in, 5.5in, 7.0in, 9.5in, 13.5in, 16in, and other
pipe diameter parameters. According to the BRANN model, the data to be predicted is
imported for prediction, and regression fitting and formula calculation are carried out
on the data to be measured. Figure 10 below shows the comparison between the model
prediction results, regression prediction results, formula calculation values, and measured
collapse strength, and Figure 11 shows the error distribution curves of the results obtained
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by three methods, in which the error is calculated by the relative error method, that is |
predicted value-actual value |/100% of actual value.
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From the distribution of prediction results, it can be seen that under different pipe
diameters, the calculated results guided by API specifications are obviously deviated from
the measured values. Both the least square regression fitting and Bayesian neural network
can predict the casing collapse strength. Compared with the traditional formula calculation,
the coincidence rate between the two prediction results and the measured values is higher.
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As for the trend of errors, the following Table 5 shows the maximum, minimum, and
average values of each error.

Table 5. Output error of blind test samples.

Tape Max Min Average

API formula 48.84% 0.02% 19.46%
The least square improved KT formula 85.56% 0.06% 7.41%

BRANN 15.09% 0.01% 3.33%

Combined with Figure 11 and Table 5, for the same blind sample input, the minimum
errors of the results obtained by the three methods are all less than 0.1%. In terms of stability,
the error span of the least square regression fitting results is the largest, with the maximum
error reaching 85.56%. By comparing the sample information, it is found that the error
is mainly distributed in the samples with a diameter of 10.8 inches. For the pipe fittings
with a diameter of 5 inches to 7.8 inches, the least square fitting effect is relatively stable.
It can be seen from Figure 10 that the error of API formula calculation results shows an
obvious swing between 0.02% and 50%, and the average error reaches 19.46% in different
pipe diameters; Combined with the error curve distribution in Figure 10, the error trend of
BRANN model is more stable than that of the other two methods, with the maximum error
of 15.09%. In different pipe diameters, the model can achieve good prediction results, and
the average prediction accuracy of the model can reach 96.67%, except that the prediction
error of individual samples in the range of 10.8~14.4in inches is more than 10%, which is
significantly improved compared with the traditional methods.

6. Conclusions

(1) The experimental results of five parameters affecting the casing collapse strength
(diameter-thickness ratio, ellipticity, wall thickness unevenness, yield strength, and residual
stress), are obtained by full-scale tests, which constitute the training data set of BRANN.

(2) The number of hidden layers neurons is 12, the R-value is closest to 1, which meets
the prediction accuracy requirement.

(3) Based on the established BRANN model, the casing collapse strength prediction
and supplementary regression fitting were performed. The results show that the BRANN-
based prediction model has higher prediction accuracy, and the maximum error between
this model and the physical experimental test results is 13.11%, and most of the errors are
less than 10%.
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