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Abstract: Fused deposition modelling (FDM) is well-known as an inexpensive and the most com-
monly used additive manufacturing process. In FDM, build orientation is one of the critical factors
that affect the quality of the printed part. However, the activity of determining a build orientation for
an FDM part, i.e., part orientation for FDM, usually relies on the knowledge and experience of domain
experts. This necessitates an approach that enables the capture, representation, reasoning, and reuse
of the data and knowledge in this activity. In this paper, a description logic (DL) ontology-supported
part orientation approach for FDM is presented. Firstly, a set of top-level entities are created to
construct a DL ontology for FDM part orientation. Then a DL ontology-supported alternative orienta-
tion generation procedure, a DL ontology-supported factor value prediction procedure, and a DL
ontology-supported optimal orientation selection procedure are developed successively. After that,
the application of the presented approach is illustrated via part orientation on six FDM parts. Finally,
the effectiveness and efficiency of the presented approach are demonstrated through theoretical
predictions and printing experiments and the advantages of the approach are demonstrated via an
example. The demonstration results suggest that the presented approach has satisfying effectiveness
and efficiency and provides a semantic enrichment model for capturing and representing FDM part
orientation data and knowledge to enable automatic checking, reasoning, query, and further reuse.

Keywords: additive manufacturing; fused deposition modelling; build orientation determination;
description logic ontology; triangular facet clustering; multi-criterion decision-making

1. Introduction

Fused deposition modelling (FDM), also known as fused filament fabrication, is an
additive manufacturing (AM) process that builds a three-dimensional (3D) object directly
from its 3D model through selectively dispensing molten material in a layer-upon-layer
manner [1]. A schematic diagram of the FDM process is shown in Figure 1. An FDM
machine mainly consists of a part material spool, a support material spool, a heated nozzle,
and a build platform with an elevator. The process of using an FDM machine to fabricate
a 3D object is described as follows. At the beginning, the heated nozzle deposits molten
material from the feedstock supply onto the cross-sectional area of the first slice to build
the first layer. Then the remaining layers are successively added on top of the previous
layers with the help of the build platform with an elevator. During this process, layers
are fused together by deposition as the material is in a melted state. After completion,
a 3D object with a support structure is built. FDM is well-known as an inexpensive AM
process and the most popular AM process for domestic and hobby use. It has also achieved
certain applications in industry. In the aerospace industry, FDM has been used to create
aircraft interior components, which provides new opportunities for reducing the cost and
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improving the environmental efficiency of aircraft. In the automotive sector, FDM has
been applied to develop new components with complex designs and structures, which
drives weight reduction and increases the efficiency of the operating components. In the
biomedical industry, FDM has been instrumental in helping doctors to plan surgeries better
via providing organs that are accurate in structure and made according to personalised
requirements.

Figure 1. Schematic diagram of the FDM process.

In general, the process of using FDM to realise a 3D part consists of a set of activities,
where part orientation is an essential one. Part orientation for FDM is an activity of
determining a build orientation for an FDM part that best satisfies certain requirements on
the part [2,3]. The build orientation of an FDM part is considered a fundamental factor that
has a direct effect on the time and cost of manufacturing the part and an important effect on
the quality of the built part [4]. In practice, part orientation for FDM is usually performed
by a process planner according to his or her knowledge and experience. There is not yet
a tool with autonomous decision-making capability for this activity. This necessitates a
part-orientation approach that enables the capture, representation, reasoning, and reuse of
the data and knowledge used and generated in the activity.

In this paper, a description logic (DL) ontology-supported approach for FDM part
orientation is presented. A DL ontology is a formalised specification of concepts, relations,
instances, and axioms in a domain, which provides effective means to capture, represent,
infer, and reuse domain knowledge [5]. An important feature of a DL ontology is that
it can represent the semantics explicitly, which makes it possible to achieve semantic
interoperability between two different systems. In the presented DL ontology-supported
approach, the data and knowledge in part orientation for FDM are formalised in DL [6]
and represented and stored in web ontology language (OWL) [7]. As advantages of
the approach, consistency checking, knowledge reasoning, and semantic query can be
performed automatically and reuse of the data and knowledge can be achieved easily.

The rest of the paper is organised as follows: a review and analysis of related work is
made in Section 2; the details of the presented DL ontology-supported approach are de-
scribed in Section 3; Section 4 documents an illustration of the application of the approach,
a demonstration of its effectiveness and efficiency, and an explanation of its advantages. Sec-
tion 5 ends the paper with a conclusion.
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2. Related Work

Research topics related to the present paper include DL ontologies in AM and AM
part orientation. In this section, an overview of the main existing work on each topic is
respectively provided. Then the research gap is identified based on the overviews.

2.1. Main Existing Work on DL Ontologies in AM

During the past two decades, the application of DL ontologies in AM has gained im-
portance and popularity. Many researchers developed ontologies or ontology-supported ap-
proaches to assist certain tasks in AM: Yim and Rosen [8] presented an ontology-supported
case-based reasoning approach to assist AM process planning; Yim and Rosen [9] devel-
oped a ontology-based repository for AM design problems; Liu and Rosen [10] proposed
an ontology-supported knowledge modelling and reuse approach for AM process plan-
ning; Witherell et al. [11] constructed an ontology-based metamodel for composable and
reusable laser powder bed fusion process; Eddy et al. [12] developed an ontology-based
intelligent tool for AM knowledge management; Roh et al. [13] constructed an ontology-
based laser and thermal metamodel for laser powder bed fusion; Lu et al. [14] presented
a set of ontology-supported digital solutions for integrated and collaborative AM; As-
souroko et al. [15] proposed an ontology-supported approach for characterising model
fidelity in laser powder bed fusion; Dinar and Rosen [16] developed a design for AM ontol-
ogy; Kim et al. [17] proposed an ontology-based approach to link AM design to AM process
planning; Hagedorn et al. [18] presented an ontology-supported approach for innovative
design for AM; Liang [19] proposed an ontology-oriented knowledge methodology for
AM process planning; Kim et al. [20] developed a design for AM ontology to support
manufacturability analysis; Sanfilippo et al. [21] constructed an ontology to represent the
data and knowledge in the AM value chain; Ali et al. [22] developed a product life cycle
ontology for AM; Xiong et al. [23] established an ontology-supported process planning
framework for wire arc AM; Ko et al. [24] studied machine learning and ontology based de-
sign rule construction for laser powder bed fusion; Chen et al. [25] studied ontology-driven
learning of Bayesian network for causal inference and quality assurance in laser powder
bed fusion; Roh et al. [26] established an ontology-based process map for laser powder
bed fusion; Mayerhofer et al. [27] studied ontology-driven manufacturability analysis for
lithography-based ceramic manufacturing; Jarrar et al. [28] presented an ontology-based
approach for a decision support system in AM; Park et al. [29] studied ontology-supported
collaborative knowledge management to identify data analytics opportunities in laser
powder bed fusion; Li et al. [30] developed an ontology for knowledge representation in
process planning for laser powder bed fusion.

As can be seen from the description above, each ontology/approach has its specific
usage in AM. The ontologies/approaches in [8–10,12,14,16–22,28] are targeted at general
AM processes, while each of the remaining ones is presented for one specific AM process,
including laser powder bed fusion, wire arc AM, or lithography-based ceramic manu-
facturing. Among those targeted at general AM processes, the ontologies/approaches
in [8,10,16,17,19,20] are related to part orientation for FDM. However, their main purposes
are not to support this activity. They need major modifications and extensions to be used
for it.

2.2. Main Existing Work on AM Part Orientation

As with the application of DL ontologies in AM, computer-aided part orientation for
AM is also a hot research topic in academia. There have been a large number of approaches
proposed for this topic. Two comprehensive reviews of these approaches have been made
in [2,3]. According to these reviews, existing AM part orientation approaches can be
categorised into one-step and two-step approaches.

A one-step approach generally adopts a search algorithm to directly search for an
orientation that best meets certain requirements from an infinite solution space. The com-
monly used search algorithms include the exhaustive search algorithm [31–36] and heuristic
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search algorithms, such as the genetic algorithm [37–42], non-dominated sorting genetic
algorithm II [43,44], particle swarm optimisation algorithm [45,46], electromagnetism-
like mechanism algorithm [47], bacterial foraging optimisation algorithm [48], sequential
quadratic programming algorithm [49], and S-metric selection evolutionary multi-objective
algorithm [50]. A prominent feature of one-step approaches is that they are applicable to
all forms of 3D models in theory. However, it is difficult to balance the effectiveness of the
resultant orientation and efficiency of the search process when setting the rotation step size
in the approaches based on exhaustive search; the approaches based on heuristic search are
easy to fall into local optima. In addition, one-step approaches are usually time-consuming
because they need to traverse a huge solution space [3].

Unlike one-step approaches, a two-step approach first shrinks the solution space by
generating a certain number of alternative orientations and then selects an orientation that
best meets certain requirements from the generated alternatives. The techniques applied to
generate alternative orientations mainly include shape feature recognition [51–54], convex hull
generation [55], quaternion rotation [56,57], and triangular facet clustering [58,59]. The tech-
niques used to select an optimal orientation mainly include deviation model [51], weighted
sum model [53–55,57,58,60], deviation-similarity model [61], ordered weighted averaging
operator [56], fuzzy aggregation operators [62,63], and double-layer priority aggregation
multi-criterion decision-making [64]. Two-step approaches are generally efficient. However,
the approaches using shape feature recognition cannot be applied to free-form models since
it is difficult to define the shape features for these models. The approach using convex hull
generation could introduce an accuracy issue as the convex hull is an approximate model.
The approaches using quaternion rotation could miss the real optimal orientation because the
alternative orientations are generated based on randomly obtained rotation axes [3]. Com-
pared to these approaches, the approaches using triangular facet clustering can work for all
forms of 3D models and would not introduce an accuracy issue. Further, the approach in [59]
is, as demonstrated in [59], more stable and efficient than the approach in [58]. However, this
approach does not consider the capture, representation, reasoning, and reuse of the data and
knowledge in part orientation and it is developed just for the laser powder bed fusion process.

2.3. Research Gap

Based on the overviews above, a research gap is evident: there is not yet an FDM part
orientation approach that supports the capture, representation, reasoning, and reuse of
related data and knowledge. In this paper, DL ontology is introduced into the two-step
approach using triangular facet clustering and weighted sum model in [59,60] to develop
an ontology-supported approach for FDM part orientation. Compared to the approach
in [59,60], the developed approach is targeted at the FDM process and would need different
prediction models for build orientation factors. More importantly, the developed approach
can fill the research gap.

3. DL Ontology-Supported Part Orientation

In this section, the developed DL ontology-supported approach is described in detail.
A schematic representation of this approach is given in Figure 2. The approach takes
as input the STL (standard tessellation language) model of an FDM part and outputs
an optimal orientation to build the part. It consists of a step of alternative orientation
generation, a step of factor value prediction, and a step of optimal orientation selection,
which are supported by a DL ontology for FDM part orientation and the triangular facet
clustering-based method in [59], the DL ontology and a set of prediction models of factor
values in the existing literature, and the DL ontology and the weighted sum model-based
method in [60], respectively. The present section documents the development of a set of
top-level entities in the DL ontology first and then respectively explains the details of the
three steps.
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Figure 2. Schematic representation of the presented DL ontology-supported approach.

3.1. Top-Level Entities in DL Ontology for FDM Part Orientation

Part orientation for FDM takes as input a 3D model for AM, an FDM material, an FDM
machine, and certain requirements and outputs a certain number of alternative build
orientations or an optimal build orientation. There are currently many formats of 3D
models for AM, where the most widely used one is the STL model [65]. The requirements
on an FDM part are generally described by a set of orientation factors, which mainly
include support volume, build time, part cost, volumetric error, surface roughness, and part
properties (e.g., hardness, elongation, tensile strength, and fatigue performance) [2,3]. Only
the first five factors are considered in the developed DL ontology-supported approach since
suitable prediction models of part properties where the build orientation of an FDM part
is a variable were not found in existing literature.

According to the description above, a DL ontology for FDM part orientation was
created in Protégé [66] and twenty-five top-level concepts were created in the DL ontology
and shown in Figure 3. Among these concepts, Fdm, FdmMachine, FdmMaterial, FdmPart,
and PartOrientation are composite concepts, while the rests are atomic concepts. The DL
definitions of the five composite concepts are as follows:

Fdm ≡ AmProcess u ∃isBasedOn.MaterialExtrusion u
∃hasEnergySource.ThermalEnergy u ∃hasBuildMechanism.FusedDeposition

(1)

FdmMachine ≡ AmMachine u ∃isBasedOn.Fdm (2)

FdmMaterial ≡ AmMaterial u ∃isApplicableFor.Fdm (3)

FdmPart ≡ AmPart u ∃isBuiltUsing.Fdm (4)

PartOrientation ≡ RealisationActivity u ∃hasAimO f Designing.BuildOrientation u
∃hasInput.(3dModelForAm u FdmMaterial u FdmMachine u Requirement) u
∃hasOutput.(AlternativeOrientation t OptimalOrientation)

(5)

where isBasedOn, hasEnergySource, hasBuildMechanism, isApplicableFor, isBuiltUsing, ha-
sAimOfDesigning, hasInput, and hasOutput are object relations.
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Figure 3. Graphical representation of twenty-five top-level concepts in the DL ontology.

3.2. DL Ontology-Supported Alternative Orientation Generation

Alternative orientation generation is a part orientation task that aims to generate a
certain number of alternative build orientations. In the developed DL ontology-supported
approach, this task is completed using the triangular facet clustering-based method in [59].
According to the method, alternative orientation generation takes as input an STL model
of an FDM part and outputs a set of alternative build orientations for the part. The basic
geometric information of an STL model includes the number of its facets, the length, width,
and height of its bounding box, and its total volume. An alternative build orientation is
described by a unit vector (x, y, z) (where x, y, and z are the X, Y, and Z components of
the unit vector, respectively). The generation process consists of a step of facet clustering
and a step of orientation generation. In the first step, a set of meaningful facet clusters
are generated by the accelerated hdbscan∗ algorithm, a facet clustering rule, and the k-
cluster lifetime partition method. In the second step, a certain number of alternative build
orientations are obtained using an orientation generation rule or a cluster refinement rule
and the orientation generation rule.

To represent the data and knowledge in alternative orientation generation, three
concepts named AlternativeOrientationGeneration, UnitVector, and FacetClusteringMethod
were created in the DL ontology, where AlternativeOrientationGeneration is a composite
concept that is defined by the following terminological axiom:
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AlternativeOrientationGeneration ≡ PartOrientation u
∃hasAimO f Generating.AlternativeOrientation u
∃hasInput.StlModel u ∃hasOutput.AlternativeOrientation u
∃hasUsedMethod.FacetClusteringMethod

(6)

where hasAimOfGenerating and hasUsedMethod are two object relations. Further, an ob-
ject relation named isDescribedBy, thirteen data relations named hasFacets, hasLength-mm,
hasWidth-mm, hasHeight-mm, hasVolume-mm3, hasComponentX, hasComponentY, hasCom-
ponentZ, hasClusteringAlgorithm, hasClusteringRule, hasPartitionMethod, hasRefinementRule,
and hasGenerationRule, and six instances named method in [59], accelerated hdbscan* algorithm,
facet clustering rule in [59], k-cluster lifetime partition method, cluster refinement rule in [59],
and orientation generation rule in [59] were also created in the DL ontology. On the basis of
the created entities, an ontological view of alternative orientation generation is delineated
in Figure 4.

Figure 4. Ontological view of alternative orientation generation. # stands for in [59].

3.3. DL Ontology-Supported FACTOR Value Prediction

Factor value prediction is a task before optimal orientation selection that aims to
predict the values of the factors considered in part orientation using certain theoretical
models according to the 3D model and alternative build orientations of a part. In the
developed DL ontology-supported approach, five orientation factors including support
volume, build time, part cost, volumetric error, and surface roughness are considered.
Prediction of the value of each factor is respectively described in detail as follows:

• Support volume. In the FDM process, the support structure is needed to sustain the
overhanging areas to resist deformation or collapse, reduce part distortion caused by
thermal gradients, or balance a building part to avoid shift or collapse [67]. In the
weighted sum model-based method in [60], the amount of the support structure,
i.e., support volume, is predicted using Autodesk Meshmixer, which is accurate but
not efficient. The developed approach uses a more efficient theoretical model from [68]:
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VO
s =

n′

∑
j=1

(
Za,j Af,j

)
n
∑

i=1
Af,i

(
1 +

n′

∑
j=1

∣∣Zj
∣∣) (7)

where VO
s is the predicted support volume in an orientation O, n is the number of

triangular facets of an STL model, n′ is the number of downward triangular facets in
O, Af,i (Af,j) is the area of the i-th (j-th) triangular facet, Za,j is the average of the Z
components of the three vertices of the j-th triangular facet, and Zj is the Z component
of the normal vector of the j-th triangular facet.

• Build time. Build time refers to the total time spent in building an FDM part. It
is an important orientation factor for the FDM process [69]. In the weighted sum
model-based method in [60], build time is predicted using a theoretical model for
the laser powder bed fusion process, which is not applicable for the FDM process.
The developed approach adopts a different theoretical model from [47]:

TO
b =

n
max
i=1

(
OTV1,i, OTV2,i, OTV3,i

)
−

n
min
i=1

(
OTV1,i, OTV2,i, OTV3,i

)
(8)

where TO
b is the predicted build time in an orientation O, O is a unit vector that

describes O, and V1,i, V2,i, and V3,i are the three vertices of the i-th triangular facet.
• Part cost. Part cost refers to the total cost for realising an FDM part. It is also an

essential orientation factor for the FDM process. In the weighted sum model-based
method in [60], the part cost is predicted using a theoretical model for the laser powder
bed fusion process, which cannot be applied to the FDM process. The developed
approach uses a different theoretical model from [50]:

CO
p = (Recost + Rfcost)TO + CO

smat + CO
pproc (9)

where CO
p is the predicted part cost in an orientation O, Recost is the energy cost rate,

Rfcost is the fixed cost rate, CO
smat is the support material cost in O, and CO

pproc is the
post-processing cost in O.

• Volumetric error. Volumetric error is one of the important part accuracy indicators.
It is mainly caused by the staircase effect of the FDM process. The volumetric error
of an FDM part cannot be eliminated, but it can be reduced via designing a proper
build orientation. There have been a number of theoretical models for predicting the
volumetric error of an FDM part [3]. The developed approach adopts a theoretical
model from [47]:

EO
v =

n

∑
i=1

( t2
∣∣∣OTV i

∣∣∣Af,i

2

)
(10)

where EO
v is the predicted volumetric error in an orientation O, n is the number of

triangular facets of an STL model, t is the layer thickness, O is a unit vector that
describes O, V i is the normal vector of the i-th facet, and Af,i is the area of the i-th
triangular facet.

• Surface roughness. Surface roughness is an indicator used to measure the smoothness
of a surface. It reflects the surface quality of an FDM part [70]. There have been many
available theoretical models for predicting the surface roughness of an FDM part [3].
The developed approach uses a simplified version of a theoretical model from [71]:
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RO
s =

n
∑

i=1

(
t
∣∣cosθO

i

∣∣Af,i

)
n
∑

i=1
Af,i

(11)

where RO
s is the predicted surface roughness (i.e., predicted Ra) in an orientation O, n

is the number of triangular facets of an STL model, t is the layer thickness, θO
i is the

sloping angle of the i-th triangular facet with respect to O, and Af,i is the area of the
i-th triangular facet.

To represent the data and knowledge in factor value prediction, a concept named Factor-
ValuePrediction, two object relations named hasOrientation and hasConsideredFactor, six data
relations named hasPredictionModel, hasPredictedVs-mm3, hasPredictedTb-min, hasPredictedCp-
usd, hasPredictedEv-mm3, and hasPredictedRs-µm, and five instances named model in Equa-
tion (7), model in Equation (8), model in Equation (9), model in Equation (10), and model in
Equation (11) were created in the DL ontology. Based on the created entities, an ontological
view of factor value prediction is depicted in Figure 5.

Figure 5. Ontological view of factor value prediction.

3.4. DL Ontology-Supported Optimal Orientation Selection

Optimal orientation selection is a part orientation task that aims to select an optimal
build orientation from the generated alternative build orientations. In the developed DL
ontology-supported approach, this task is completed using the weighted sum model-based
method in [60]. According to the method, optimal orientation selection takes as input a set
of alternative build orientations for an FDM part, the predicted factor values under each
alternative orientation, and the importance degrees of factors and outputs of an optimal
build orientation for the part. The selection process consists of a step of fuzzification of the
predicted factor values, a step of normalisation of the fuzzy values, a step of determination
of the weights of factors, a step of calculation of summary normalised fuzzy values, and a
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step of generation of an optimal orientation. The fuzzification, normalisation, and deter-
mination are carried out using a ratio model, a normalisation rule, and a scaling method
based on pairwise comparison, respectively. The summary normalised fuzzy values are
calculated using the weighted sum model and an optimal orientation is selected based on
the calculation results.

To represent the data and knowledge in optimal orientation selection, four concepts
named OptimalOrientationSelection, PredictedFactorValue, ImportanceDegree, and WeightedSum-
Method were created in the DL ontology, where OptimalOrientationSelection is a composite
concept that is defined by the following terminological axiom:

OptimalOrientationSelection ≡ PartOrientation u
∃hasAimO f Selecting.OptimalOrientation u ∃hasInput.(

AlternativeOrientation u PredictedFactorValue u ImportanceDegree) u
∃hasOutput.OptimalOrientation u ∃hasUsedMethod.WeightedSumMethod

(12)

where hasAimOfSelecting is an object relation. Further, five data relations named hasFuzzifi-
cationWay, hasNormalisationWay, hasDeterminationWay, hasAggregationWay, and hasSelection-
Criterion and six instances named method in [60], ratio model in [60], normalisation rule in [60],
scaling method, weighted sum model, and summary values were also created in the DL ontology.
On the basis of the created entities, an ontological view of optimal orientation selection is
delineated in Figure 6.

Figure 6. Ontological view of optimal orientation selection. # stands for in [60].

4. Application, Validation, and Illustration

In this section, the application of the developed DL ontology-supported approach
is first illustrated. Then its effectiveness and efficiency are demonstrated. Finally, its
advantages are explained.

4.1. Application of the Approach

Part orientation on six FDM parts from [60] is performed to illustrate the application
of the developed approach. The STL models of these parts are shown in Figure 7. The first
three models are regular-form models, while the remaining three ones belong to free-form
models. The basic geometric information of these models can be found in [60]. Assume
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that the six parts will be built using ABS (model material), PLA (support material, the
unit cost is 5.64 × 10−5 USD/mm3), and X350 (FDM machine). Some process variables
are adapted or cited from [68] and are listed as follows: layer thickness is 0.2 mm; filling
density is 100%; wall thickness is 1 mm; printing temperature is 260 ◦C; infilling pattern is
a zigzag pattern. Before the actual part build, part orientation on each part is needed to be
carried out. Further assume that support volume, build time, part cost, volumetric error,
and surface roughness are the considered orientation factors and the importance degrees of
these factors are the same as they are in [60].

Figure 7. STL models of six FDM parts.

Based on the conditions above, the build orientation of each part can be determined
using the developed approach. As an example, the build orientation of Part 1 is determined
via the following three steps:

• Generate alternative orientations. The STL model of Part 1 was imported into the
developed approach and a set of instances and assertions, as shown in Figure 8, were
generated in the DL ontology. After executing the DL ontology-supported alternative
orientation generation procedure, six alternative build orientations, as shown in
Figure 9, were generated in the DL ontology.

Figure 8. Instances and assertions generated after importing the STL model of Part 1.
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Figure 9. Generated alternative build orientations for Part 1.
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• Predict factor values. The values of support volume, build time, part cost, volumetric
error, and surface roughness under the six alternative build orientations of Part 1,
as listed in Figure 10, were generated in the DL ontology after executing the DL
ontology-supported factor value prediction procedure.

Figure 10. Predicted factor values under the six alternative orientations of Part 1.

• Select an optimal orientation. An optimal build orientation, as depicted in Figure 11,
was generated in the DL ontology after executing the DL ontology-supported optimal
orientation selection.

Figure 11. Generated optimal build orientation for Part 1.

Similarly, the build orientation of each of the remaining parts can also be determined
via the three steps above. The determined optimal build orientations for the six FDM parts
and corresponding predicted factor values are listed in Table 1.
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Table 1. Determined optimal orientations for the six parts and corresponding predicted factor values.

Part Determined Optimal Orientation Vs (mm3) Tb (min) Cp (USD) Ev (mm3) Rs (µm)

Part 1 O1 = (00.0000, 00.0000,+1.0000) 281.4509 10.0000 3.2135 16.2328 11.2300
Part 2 O2 = (00.0000, 00.0000,−1.0000) 14,488.7291 167.8891 54.5833 335.9018 10.8100
Part 3 O7 = (+0.7071,+0.7071, 00.0000) 27,285.4470 200.7873 65.8179 795.8976 11.5600
Part 4 O1 = (00.0000, 00.0000,+1.0000) 11,624.9017 22.0366 7.7096 24.0461 12.6500
Part 5 O19 = (−0.7191,−0.6812,+0.1376) 17,381.8742 98.0453 32.3587 398.0114 12.7100
Part 6 O15 = (−0.1258,−0.1441,−0.9815) 13,317.6492 78.4873 25.8674 169.3187 12.7700

4.2. Validation of the Approach
4.2.1. Demonstration of Effectiveness

In general, the effectiveness of a part orientation approach can be measured by the
optimisation degree of the factor values in the optimal build orientation determined by this
approach [60]. To demonstrate the effectiveness of the proposed approach, a theoretical
comparison and an actual comparison between the approach and a one-step approach
based on a genetic algorithm (GA) (the reason for choosing a GA-based approach is that it
is the most representative and the GA is the most used search algorithm in existing one-step
approaches) were carried out. These comparisons use the six FDM parts in Figure 7 as a
benchmark. For fair comparison, both approaches consider the same orientation factors (i.e.,
support volume, build time, part cost, volumetric error, and surface roughness), and use
the same prediction models (i.e., the predictions models from Equation (7) to Equation (11)),
and have the same other input conditions. The details and results of the two comparisons
are explained as follows:

• Effectiveness comparison based on theoretical predictions. The results of this com-
parison are listed in Table 2. As can be seen from the table, the proposed approach
has 20 better values, while the GA-based approach has 10 better values. Therefore,
the proposed approach is theoretically at least as effective as the GA-based approach.

Table 2. Results of the effectiveness comparison based on theoretical predictions.

Part Orientation Approach Optimal Build Orientation Vs (mm3)
Tb

(min)
Cp

(USD)
Ev

(mm3) Rs (µm)

Part 1 The proposed approach (00.0000, 00.0000,+1.0000) 281.4509 10.0000 3.2135 16.2328 11.2300
The GA-based approach (−0.0523,−1.223,+0.9986) 380.4902 12.0175 3.8369 17.0017 12.6243

Part 2 The proposed approach (00.0000, 00.0000,−1.0000) 14,488.7291 167.8891 54.5833 335.9018 10.8100
The GA-based approach (00.0000,+0.7314,+0.6820) 15,345.2464 142.3677 45.5821 611.8281 11.4763

Part 3 The proposed approach (+0.7071,+0.7071, 00.0000) 27,285.4470 200.7873 65.8179 795.8976 11.5600
The GA-based approach (−0.7547,+0.4639,+0.4639) 142,342.1215 145.3481 47.9687 1021.9427 11.7587

Part 4 The proposed approach (00.0000, 00.0000,+1.0000) 11,624.9017 22.0366 7.7096 24.0461 12.6500
The GA-based approach (−0.5592,−0.1297,+0.8244) 45,665.3170 25.3809 8.6091 21.8736 12.7472

Part 5 The proposed approach (−0.7191,−0.6812,+0.1376) 17,381.8742 98.0453 32.3587 398.0114 12.7100
The GA-based approach (+0.0872,+0.0695,+0.9938) 19,553.1328 118.1148 38.0363 290.0652 12.7550

Part 6 The proposed approach (−0.1258,−0.1441,−0.9815) 13,317.6492 78.4873 25.8674 169.3187 12.7700
The GA-based approach (+0.0872,+0.0695,+0.9938) 24,421.9649 68.0782 22.1701 146.8268 12.7515

Note: Each value in bold is better than its comparison value.

• Effectiveness comparison based on printing experiments. Each of the six parts was
respectively printed using the optimal orientations determined by the GA-based
approach and the proposed approach. In addition to the build orientation, the FDM
material, FDM machine, process variables, and all other conditions are the same for
each part. A picture of the 12 printed parts is given in Figure 12. After a part was
printed, its support structure was removed and weighed to calculate the actual support
volume. The actual build time of each printed part is obtained by automatic timing of
the FDM machine. The actual build cost of each printed part is calculated from the
build time and printing unit price. The actual volumetric error of each printed part
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was calculated via the volume of the part without support structure and the volume of
the STL model of the part. The surface roughness of each printed part was measured
by the TR210 portable surface roughness tester. During the measurement three points
were randomly selected on each feature of the part and the surface roughness was
measured in four different directions. The surface roughness of the pars was obtained
via averaging all measurement values. The results of this comparison are listed in
Table 3. It can be seen from the table that the proposed approach has 24 better values
and the GA-based approach has 6 better values. Based on this, the proposed approach
is at least as effective as the GA-based approach in practice.

Figure 12. Twelve printed parts. (a) A part printed in the optimal orientation determined by the pro-
posed approach. (b) A part printed in the optimal orientation determined by the GA-based approach.

Table 3. Results of the effectiveness comparison based on printing experiments.

Part Orientation Approach The Used Build Orientation Vs (mm3)
Tb

(min)
Cp

(USD)
Ev

(mm3)
Rs

(µm)

Part 1 The proposed approach (00.0000, 00.0000,+1.0000) 111.2000 25.6667 2.7799 4.3560 11.3110
The GA-based approach (−0.0523,−1.223,+0.9986) 362.4000 29.7000 2.9858 26.0440 12.5540

Part 2 The proposed approach (00.0000, 00.0000,−1.0000) 3500.8000 241.0000 25.7761 245.6781 11.5880
The GA-based approach (00.0000,+0.7314,+0.6820) 8259.2000 285.1333 30.9731 288.8781 11.7840

Part 3 The proposed approach (+0.7071,+0.7071, 00.0000) 8086.4000 381.6667 45.1373 665.6388 11.7540
The GA-based approach (−0.7547,+0.4639,+0.4639) 9196.8000 387.1333 46.0985 645.6388 11.8700

Part 4 The proposed approach (00.0000, 00.0000,+1.0000) 1148.8000 50.3667 7.0075 130.1870 12.2670
The GA-based approach (−0.5592,−0.1297,+0.8244) 3625.6000 55.1667 7.4993 222.1870 12.9810

Part 5 The proposed approach (−0.7191,−0.6812,+0.1376) 2787.2000 211.6000 32.8478 235.5749 12.3870
The GA-based approach (+0.0872,+0.0695,+0.9938) 2499.2000 211.8667 32.7642 285.1749 12.7190

Part 6 The proposed approach (−0.1258,−0.1441,−0.9815) 2115.2000 95.0000 7.0000 43.7115 12.0740
The GA-based approach (+0.0872,+0.0695,+0.9938) 1632.0000 90.7333 6.5791 44.5115 12.7480

Note: Each value in bold is better than its comparison value.

4.2.2. Demonstration of Efficiency

The efficiency of a part orientation approach can be measured by the time it takes
to generate an optimal build orientation. To demonstrate the efficiency of the proposed
approach, a comparison of the time spent on part orientation between the proposed ap-
proach and the GA-based approach was carried out. This comparison also uses the six
FDM parts in Figure 7 as a benchmark. For fair comparison, both approaches consider the
same orientation factors, use the same prediction models, and have the same other input
conditions. The results of the comparison are depicted in Figure 13. It is obvious that the
proposed approach is more efficient than the GA-based approach.
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Figure 13. Results of the efficiency comparison.

4.3. Illustration of the Advantages

A prominent feature of a DL ontology is that it can explicitly represent the semantics of
the data and knowledge. Benefiting from this feature, the proposed DL ontology-supported
approach has advantages in supporting automatic consistency checking, knowledge rea-
soning, and semantic query and providing a mechanism to facilitate further reuse of the
data and knowledge. The first advantage has been well illustrated via a few examples
in [30]. The second advantage is explained and illustrated below.

In the proposed approach, FDM part orientation data and knowledge are encoded in
OWL/XML (web ontology language/extensible markup language) syntax and stored in an
OWL file, which makes them human-readable, human-interpretable, computer-readable,
computer-interpretable, and easy to extend and reuse. For example, encoding of the
generated optimal build orientation for Part 1 in Figure 11 is depicted in Figure 14. It is easy
to read and interpret by humans from the figure that ooForPart1 is an OptimalOrientation;
ooForPart1 is the same as o1ForPart1; ooForPart1 is described by uv1ForPart1; uv1ForPart1
has an X component of 0.0, a Y component of 0.0, and a Z component of 1.0; Part 1 built using
ooForPart1 has a predicted part cost of USD 3.2135, a predicted volumetric error of 16.2328
mm3, a predicted surface roughness of 11.23 µm, a predicted build time of 10.0 min, and a
predicted support volume of 281.4509 mm3. Since these data and knowledge are encoded in
OWL/XML syntax, they are also easy to read and interpret in any software tools that support
this format. This feature makes the developed DL ontology easy to extend and reuse.

Figure 14. Encoding of the generated optimal orientation for Part 1.
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5. Conclusions

In this paper, a DL ontology-supported approach for FDM part orientation is proposed.
A set of top-level DL concepts, relations, and axioms are created to capture and represent
the data and knowledge in general FDM part orientation activity. Based on this, a procedure
of DL ontology-supported alternative orientation generation, a procedure of DL ontology-
supported factor value prediction, and a procedure of DL ontology-supported optimal
orientation selection are developed. The paper also documents an illustration of the
application of the proposed approach and demonstrations of the effectiveness, efficiency,
and advantages of the approach. The demonstration results show that the proposed
approach is both effective and efficient and provides a semantic enrichment model for FDM
part orientation data and knowledge to enable automatic checking, reasoning, and query
and further reuse.

Future work will aim especially at extending the proposed approach to consider the
orientation factors related to part properties. From the overall value chain, the properties
of an FDM part (e.g., hardness, elongation, tensile strength, and fatigue performance)
are usually more important than support volume, build time, part cost, volumetric error,
and surface roughness. However part property factors are not considered in the proposed
approach. This is generally unacceptable for practical applications, since satisfying certain
quality requirements is the most fundamental condition for them and the orientation factors
related to part properties are critical indicators of part quality. In the next research work,
the approach would be extended to consider part property factors once suitable prediction
models are available. Further, it would be interesting to extend the approach to the entire
FDM part realisation process.
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