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Abstract: A modification of the ABTS• decolorization assay for plate readers is presented. In our
modification, 200 µL of ABTS solution of absorbance 1.0 at 734 nm was added with an antioxidant
and decreased absorbance resulted. For comparison of antioxidant activities in the kinetic assay of
absorbance decrease, concentration dependence of absorbance decrease and of area under curve
are recommended. “Fast” and “slow” antioxidants were distinguished: while the reactions of “fast”
antioxidants ABTS• were completed within seconds, the reactions of “slow” antioxidants were
not finished after 6 min. We recommend reaction time of 60 min for assays of such antioxidants,
blood plasma and plant extracts. Sub-additive interactions between some antioxidants (ascorbate and
Trolox, hispidulin and Trolox, and glutathione and ascorbate) were found in the ABTS• decolorization;
possible reasons for such interactions are discussed.

Keywords: ABTS• decolorization; antioxidant; antioxidant capacity; free radical

1. Introduction

The interest in antioxidants observed in recent decades has resulted in proposals for
several simple methods of estimating antioxidant activities of individual compounds and
antioxidant capacities of complex antioxidant mixtures, such as body fluids, beverages
and food samples [1–5]. While the clinical relevance of “total antioxidant capacity” (TAC)
of body fluids is not always straightforward [6–8], TAC assays measuring the sum of
antioxidant activities of food products have become very popular. Databases have been
constructed allowing the evaluation of TAC of diet components and meals [9–12] although
doubts have been raised whether the TAC values of foods can be translated to health effects
provided by the food [11,12].

One group of methods assessing antioxidant activity and capacity is based on the
reduction of the relatively stable ABTS• radical formed by one-electron oxidation of 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Figure 1). The ABTS• radical
absorbs visible light, its solutions being bluish green, and changes in the ABTS• concen-
tration can be easily quantified by absorbance measurements. ABTS• can be generated
in various ways. Oxidation of ABTS by hydrogen peroxide catalyzed by myoglobin in
a pseudoperoxidase reaction [5] was the basis of a commercial “ABTS Antioxidant As-
say Kit”. A convenient ingenious modification of this method, using ABTS• pre-formed
by ABTS oxidation with a substoichiometric amount of potassium persulfate, was pro-
posed by Re et al. [13] over 20 years ago. This modification (“an improved ABTS radical
cation decolorization assay”) has become one of the most frequently used methods for
estimating of total antioxidant activity. According to Web of Science, this paper has been
cited 14,883 times, according to Scopus 15,913 times, and according to Google Scholar
24,373 times (data for 28 June 2022), and we are aware of papers in which this method was
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used but Re et al. [13] was not cited. The popularity of the “improved ABTS radical cation
decolorization assay” is due to its simplicity, low cost and low instrument requirement,
and to the promiscuous reactivity of ABTS•, allowing its broad application. It should be
mentioned that, as pointed out by certain authors [14], the commonly used term “ABTS
cation radical” is at least questionable. ABTS, the substrate for ABTS• formation, is a
dianion and ABTS•, simply being less charged than ABTS, is still a net anion (monoanion),
bearing two negative charges and one positive charge (Figure 1). Therefore, the symbol
ABTS• and not ABTS•+ will be used in this paper.
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The antioxidant activity measured by ABTS• reduction is usually referred to that of
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) as a standard antioxidant.
It allows expression of results in Trolox equivalents (TE), which is a quite useful way com-
paring antioxidant activities, and is universally valid as the antioxidant activity determined
by this assay is proportional to the concentration or volume of a sample. For this reason,
the assay based on ABTS• reduction is often referred to as assessment of “Trolox Equivalent
Antioxidant Capacity” (TEAC), although there are no substantial reasons for restricting
this term to the ABTS• assays only.

Originally, the “improved ABTS radical cation decolorization assay” was proposed
for a spectrophotometer, but nowadays plate readers are more commonly used. In this
study, we present a modification of the method for use with a plate reader. There are
several facets of the ABTS• decolorization method that require closer insight. They include
the dependence of the ABTS• decolorization on pH and ionic strength, the rate of ABTS•

reactions with various substances, and interactions between antioxidants in the ABTS•

decolorization reaction. These questions are addressed in the present study.

2. Materials and Methods
2.1. Reagents, Materials and Equipment

All the reagents used were obtained from Merck (Poznań, Poland) except for phosphate-
buffered saline (PBS) purchased from Lab Empire (Rzeszów, Poland). Extract of Boletus
edulis was prepared by homogenization of the fresh fruiting bodies in 10 mM buffer, pH 7.4
(1:4, w/v) and centrifugation (10 min, 12,100× g). The supernatant diluted 10 times was
used for the reaction with ABTS•. Human blood plasma obtained from blood anticoagu-
lated with citrate was diluted 5 times for the measurements. Absorbance measurements
were carried out using a Spark multimode microplate reader (Tecan Group Ltd., Mannedorf,
Switzerland).

2.2. Modified ABTS• Decolorization Assay

The stock ABTS• solution was obtained by oxidation of 7 mM 2,2′-azinobis(3-ethylbenz
othiazoline-6-sulfonic acid) diammonium salt with 2.45 mM (final) potassium persul-
fate [13]. In our modification of the ABTS• decolorization assay, we diluted the stock ABTS•

solution with PBS, pH 7.4 (unless stated otherwise), to a concentration providing absorbance
of a 200-µL aliquot of 1.0 at the wavelength of 734 nm in one well of a Greiner 96-well plate.
The optical path of such an aliquot is 6.125 mm and the ABTS• concentration of the solution
is 106.7 µM, assuming a micromolar absorption coefficient of 0.015 µM−1 cm−1 [15,16]. A
200 µL volume of this solution contains 21.34 nmoles of ABTS•.
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2.3. EPR Measurements

Electron paramagnetic resonance (ESR) measurements were performed in a Bruker
multifrequency and multiresonance FT-EPR ELEXSYS E580 spectrometer (Bruker Analytis-
che Messtechnik, Rheinstetten, Germany) operating at the X-band (9.837530 GHz). The
following settings were used: central field, 3505.6 G; modulation amplitude, 1 G; modu-
lation frequency, 100 kHz; microwave power, 94.64 mW; power attenuation, 10 dB; scan
range, 80 G; conversion time, 25 ms; and sweep time, 25.6 s.

2.4. Statistical Analysis and Data Presentation

All measurements were performed in triplicate and repeated at least three times on
different preparations. Statistical significance of differences was evaluated using the paired
Student’s t-test. p-values of <0.05 were considered significant.

The magnitude of absorbance decrease (initial value of 1.0 minus the actual absorbance)
is presented in the plots. Such plots allow for an easier estimation of the percentage of
decolorization and show the reaction progress in positive values.

3. Results and Discussion
3.1. The Modified ABTS• Decolorization Assay

Our modification of the method presented by Re et al. [13] employs a higher initial
concentration of ABTS• (106.7 µM) than that used in the original version of the method
(46.7 µM). As the light path is shorter in a well containing a 200-µL sample on the multiwell
plate than it is in a standard cuvette, the increased ABTS• concentration prevents a decrease
in the accuracy of the absorption measurements. The modified assay allows the use of
higher volumes or concentrations of extracts or pure compounds. The use of a plate reader
allows simultaneous analysis of a larger number of samples. A small disadvantage is the
somewhat longer lag period between the mixing of a sample with the ABTS• solution
and starting the measurement, so we routinely filled only one row of wells in a single
measurement or used a multichannel pipette.

3.2. pH Dependence of ABTS• Reactivity

Using a series of 0.1 M buffers (phosphate, pH 7.4 and 6.0; acetate, pH 5.0 and 6.0;
glycine/HCl, pH 3.0, phosphate/HCl, pH 2.0), we studied the pH dependence of ABTS•

self-decay, and its reaction with Trolox in the pH range of 2.0–7.4.
The self-decay of ABTS• was lower at lower pH (Figure 2), confirming the reported

higher stability of ABTS• under acidic conditions [17].
The reaction of ABTS• with the standard antioxidant Trolox is believed to proceed in

two steps (Reactions (1) and (2)):

ABTS• + Trolox-OH→ ABTS + Trolox-O• + H+ (1)

ABTS• + Trolox-O• → ABTS + Trolox = O (2)

where Trolox-OH, Trolox-O• and Trolox = O represent Trolox phenol, Trolox semiquinone
radical and Trolox quinone, respectively (Figure 3).

Lowered pH did not affect significantly the reaction of ABTS• with Trolox; there was a
tendency for somewhat lower reactivity when pH was lowered but the differences were not
statistically significant (Figure 4). A modification has been proposed for the original method
presented by Re et al. [13], in which the assay was run at pH 5.8. The author claimed higher
stability for ABTS• prepared at pH 3.6 [17]. In our opinion, however, the measurement
of antioxidant reaction at physiological pH optimally reflects its reactivity in vivo and
prevents undesired reactions (e.g., precipitation) among components of complex samples.
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3.3. Effect of Ionic Strength of the Reactivity of ABTS•

In order to check the effect of ionic strength on the reactivity of ABTS•, we monitored
the reactions of ABTS• with Trolox and blood plasma in sodium phosphate buffer, pH 7.4,
at various concentrations from 10 to 500 mM. The self-decay of ABTS• showed a small
decrease with increasing ionic strength (Figure 5), while the reactions with Trolox (Figure 6)
and with blood plasma (Figure 7) were moderately inhibited by increasing ionic strength.
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Figure 7. Effect of ionic strength on the reaction of ABTS• with human blood plasma. Decrease
of ABTS• absorbance was monitored in phosphate buffer, pH 7.4, at various concentrations
(10–500 mM).

3.4. ABTS• Self-Quenching

In the absence of added reductants, absorbance of ABTS• solutions decreased slowly.
The self-decay of ABTS• could be expected to be due mainly to disproportionation of
ABTS• radicals to ABTS and ABTS biradical

ABTS• + ABTS• → ABTS + ABTS2• (3)

However, this was not the case since the ABTS biradical absorbed light with a maxi-
mum in the range of 513–520 nm [15] and upon ABTS• decomposition we did not observe
the appearance of an absorption peak in this range. Rather, formation of degradation
products which do not absorb in the visible range [18] probably occurred.

Even this reaction is not simple and does not follow second-order kinetics (not shown).
Moreover, the rate of absorbance decrease was not proportional to the initial concentration
of ABTS• (Figure 8).
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A correction for ABTS• self-decay should be done when studying slowly reacting
antioxidants, and it should take into account the decrease of ABTS• concentration during
the course of reaction. However, the lack of linear dependence of the decay rate on the
concentration of ABTS• makes this task non-trivial.

3.5. “Slow” and “Fast” Antioxidants

In previous studies, we observed that while some antioxidants reacted almost instan-
taneously with ABTS• (within less of a second or few seconds), others required more time,
with reactions proceeding over a time scale of minutes. In order to obtain a more detailed
view of this problem, we studied the reactions of various antioxidants with ABTS• over
a prolonged time, up to 180 min. The results, presented in Table 1, point to long reaction
times of various antioxidants in the reduction assay. In this experiment, concentrations of
antioxidants were chosen that provided final ABTS• reduction in the range of 80–95% after
180 min.

Table 1. Time course of ABTS• reduction by various antioxidants. Initial value of absorbance: 1.0 in
all cases.

Compound A0.25 min A6 min A30 min A60 min A120 min A180 min t1/2

ABTS• only 0.999 0.025 0.064 0.101 0.142 0.171 -
Ascorbic acid, 10 nmol 0.843 0.853 0.865 0.877 0.896 0.908 ca 9 s

Caffeic acid, 7 nmol 0.458 0.492 0.550 0.646 0.789 0.878 9.84 min
Capsaicin, 10 nmol 0.386 0.549 0.628 0.669 0.702 0.730 3.03 min
Capsaicin, 14 nmol 0.444 0.639 0.770 0.823 0.891 0.911 1.14 min
Carnosine, 50 nmol 0.225 0.399 0.674 0.836 0.904 0.941 12.51 min
Cyanidin, 10 nmol 0.374 0.594 0.767 0.842 0.891 0.910 2.07 min
Cysteine, 24 nmol 0.448 0.556 0.708 0.767 0.803 0.824 2.65 m

EGCG, 2 nmol 0.506 0.654 0.768 0.830 0.887 0.921 ca 15 s
Ergothionein, 50 nmol 0.504 0.574 0.707 0.834 0.954 0.955 ca 15 s
Ethoxyquin, 22 nmol 0.648 0.684 0.713 0.737 0.801 0.826 ca 12 s
Ferulic acid, 10 nmol 0.653 0.768 0.800 0.821 0.840 0.858 ca 11 s
Gallic acid, 3 nmol 0.561 0.699 0.791 0.844 0.880 0.900 ca 13 s
Genistein, 6 nmol 0.471 0.745 0.867 0.873 0.939 0.941 ca 24 s

Glutathione, 10 nmol 0.505 0.627 0.797 0.854 0.885 0.901 ca 15 s
Histidine, 6.5 µmol 0.167 0.411 0.698 0.866 0.887 0.948 10.73 min
Mohr salt, 32 nmol 0.693 0.742 0.770 0.793 0.799 0.804 ca 11 s

Trolox, 10 nmol 0.947 0.947 0.948 0.948 0.948 0.948 Fast reaction
Tryptophan, 10 nmol 0.324 0.730 0.856 0.886 0.942 0.948 55 s

Tyrosine, 10 nmol 0.202 0.662 0.826 0.863 0.930 0.940 2.50 min

EGCG, epigallocatechin gallate; Fast reaction, completed before starting the measurement (ca 15 s). Stoichiometry
of ABTS• reduction by Trolox: 1.90 mol ABTS•/mol Trolox.

Ilyasov et al. distinguished three classes of antioxidants with respect to the rate of
reaction with ABTS•, on the basis of kinetic measurements and a visual- spectrophoto-
metric titration assay. The group of fast-reacting antioxidants consisted of Trolox and
α-tocopherol, the slow-reacting group included naringenin and apigenin, while the group
of moderate-reacting antioxidants contained dihydroquercetin, quercetin, rutin, morin, and
glutathione [19]. A group of antioxidants reacting at an intermediate rate could be also
distinguished on the basis of our results (Table 1). However, since we used various con-
centrations of antioxidants in order to provide comparable final percentages of reduction,
and reaction half-times depended on antioxidant concentration, that classification would
be arbitrary. Moreover, the time course of reactions was different for various antioxidants:
some antioxidants of relatively short half-time continued to react for a long time. The data
summarized in Table 1 indicate that most of common antioxidants are “slow” antioxidants,
which must be taken into account when setting the time of the assay. Generally, the fast re-
actions with ABTS• were ascribed to single electron transfer (SET) reactions, and slow ones
to hydrogen atom transfer (HAT) reactions. However, steric hindrance may slow down SET
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reactions, and mixed reactions can occur, including HAT reactions at low concentrations of
a reductant and SET reactions dominating at high concentrations [20,21].

It is evident from Table 1 that for most antioxidants, the reduction was not complete
after 6 min, and in many cases not even after 30 min. A time of 60 min allowed a reasonable
estimation of total reduction of ABTS• by “slowly reacting” antioxidants. Even this time
was not sufficient to complete the reactions of certain slow antioxidants (e.g., the extent of
reaction after 60 min was 94%, 93% and 90% of that after 180 min for gallic acid, glutathione
and EGCG, respectively), but the time of 60 min seems to be a reasonable compromise
between obtaining maximum accuracy of measurement and the convenience of the assay.

Various authors have used different times in ABTS• decolorization assay. Some
authors [22–25] employed the reaction time of 6 min, as proposed by Re et al. [13], but
others used shorter or longer reaction times. For example, in the analysis of fruit extracts,
reaction times of 2 min [26], 5 min [27] 10 min [28,29], 15 min [30] 20 min [31], 30 min [32],
60 min [33], up to 90 min [34], 120 min [35] and 300 min [36] have been employed. Some
authors measured ABTS decolorization immediately (“without incubation time”) [37],
while there are other papers which do not report the reaction time. Although comparisons
between various matrices within a study are fully legitimate, comparison of data obtained
with different reaction times is hardly possible. Magalhães et al. proposed a “kinetic
matching approach” for ABTS• assay. This approach is based on selecting a standard
compound that presents a kinetic profile similar to the sample. It allows prediction of a
sample’s total reactivity on the basis of a short (5–15 min) time measurement [36]. However,
because various antioxidants that may be present in a sample show different time courses
in their reactions with ABTS•, the validity of such predictions may be limited.

Taking into account the long reaction times of some “slow” antioxidants, the 60 min
assay time can provide more accurate estimates of their reactivities than a short-time assay.
E.g., comparison of reactivities of capsaicin and Trolox, shown in Table 1, provides the
capsaicin reactivities of 0.71 and 0.74 mol TE/mol for reaction times of 60 and 180 min,
respectively, while a value of 0.029 was reported on the basis of 6 min reactivity [38]. Simi-
larly, we found genistein reactivity of 0.92 and 0.99 mol TE/mol, respectively, while a value
reported from 5 min measurement was 0.45 mol TE/mol [39]. Immediate measurement of
the reactivity of gallic acid with ABTS• brought a value of 0.85 mol TE/mol [40], while our
results corresponded to values of 2.97 and 3.16 TE/mol after 60 and 180 min, respectively.

3.6. Alternative Parameters to Measure Antioxidant Activity

A simple and straightforward way to determine antioxidant activity is to measure
the decrease of ABTS• absorbance after a specified time; 6 min as recommended by Re
et al. [13] or a different time, as used by some authors (we would recommend 60 min for
“slow” antioxidants, blood plasma or plant extracts). However, other parameters can also
be used.

One such parameter is the dependence of the slope of the ABTS• absorbance decrease
on the concentration of a compound or the amount of an extract. Comparison of such a slope
with the slope obtained for Trolox or another standard antioxidant allows determination of
Trolox equivalent antioxidant activity (mol TE/mol of a compound) or Trolox equivalent
antioxidant capacity (mol TE/l of extract or mol TE/kg material). This approach partly
compensates the effects of errors of individual measurements (Figure 9 top; Table 2).

Another approach is based on the comparison of “area under curve” i.e., the sum of
ABTS• absorbance values read in successive measurements during the course of reduction,
if the measurements are taken in the kinetic loop mode (Figure 9 bottom, Table 2). This
approach is less dependent on errors of individual measurements. It is a standard method
in the quantification of “oxygen radical absorbance capacity” (ORAC) [9,41,42]. As shown
in Table 2, the two approaches brought concordant results.
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Figure 9. Concentration dependence of ABTS• reduction by ascorbic acid and Trolox (absorbance
decrease and AUC after 6 min; absorbance measured every 30 s).

Table 2. Antioxidant activity of ascorbic acid with respect to Trolox, based on the decrease of
absorbance and slope of dependence of absorbance decrease on the amount of compound.

Parameter Amount
[nmol] Trolox Ascorbic Acid Ratio of Absorbance

Decrease = Activity Ratio

Absorbance
decrease

0 0 0 -
0.5 0.043 0.042 0.977
1.0 0.079 0.094 1.190
1.5 0.124 0.115 0.927
2.0 0.159 0.170 1.069
2.5 0.199 0.222 1.116

Mean 1.056 ± 0.105
Slope of absorbance

decrease 0.07947 ± 0.00110 0.08313 ± 0.00414 1.046 ± 0.043

Slope AUC −1.2154 ± 0.0212 −1.26113 ± 0.0346 1.041 ± 0.040

The agreement between the calculations based on the dependence of absorbance
decrease and AUC on the extract volume was confirmed for the measurement of the
antioxidant capacity of Boletus edulis extract. In this case ABTS• reduction was monitored
up to 60 min and was significantly different for 6 and 60 min (Figure 10; Table 3).
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Figure 10. Dependence of absorbance decrease and AUC on the volume of Boletus extract after 6 min
and after 60 min. Measurements were taken every 30 s.

Table 3. Calculation of the antioxidant capacity of Boletus extract, based on the dependence of
absorbance decrease and AUC on extract volume.

Parameter Trolox
[nmol−1]

Boletus Extract
[µL−1]

Antioxidant Capacity
[nmol TE/µL]

6 min

Slope of the line of
dependence of

absorbance decrease
on the concentration

or volume

0.07947 ± 0.00110 0.02797 ± 0.00029 0.352 ± 0.006

Slope of the line of
dependence of AUC
on the concentration

or volume

−1.2154 ± 0.0212 −0.42900 ±
0.00787 0.353 ± 0.068

60 min

Slope of the line of
dependence of

absorbance decrease
on the concentration

or volume

0.07947 ± 0.00110 0.04414 ± 0.00611 0.555 ± 0.077

Slope of the line of
dependence of AUC
on the concentration

or volume

−12.547 ± 0.17923 −6.8960 ± 0.0983 0.545 ± 0.008
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3.7. Reactivity of ABTS•

ABTS• reacts with many substances, its reactivity being higher than that of DPPH
and Fe3+ in the FRAP assay. For example, we found that the reactivity of hispidulin with
ABTS• was 2.82 mol TE/mol hispidulin, while its reactivity with DPPH and Fe3+ (FRAP
assay) was negligible (0.019 and 0.09 mol TE/mol hispidulin, respectively) [43]. Similarly,
capsaicin showed a reactivity with ABTS• of 0.74 (Table 1), a reactivity in the FRAP assay
of 1.103 mol TE/mol, and only 0.079 mol TE/mol with DPPH (submitted).

The thermodynamic condition for a reduction reaction to occur requires lower redox
potential of a reductant than that of an oxidant. Thus, ABTS• can be reduced by compounds
of one-electron redox potential lower than of the ABTS•/ABTS redox couple (standard
redox potential Eo′ of 0.68 V). This value is similar to the redox potential of the Fe3+/Fe2+

couple (Eo′ of 0.70 V) [44] and much higher than that of the DPPH•/DPPH2 redox couple,
for which the cathodic and anodic peaks the in electrochemical reduction of DPPH are
251 mV and 310 mV, respectively [45]. Thus, some compounds are unable to reduce
DPPH but able to reduce ABTS• or Fe3+ if their one-electron redox potential is higher than
that of DPPH but lower than 0.68. There are no good reasons to assume that the “more
selective” DPPH reduction test is more biologically relevant than the “more promiscuous”
ABTS• reduction test, since the most relevant biological oxidants have one-electron redox
potentials higher than that of the ABTS•/ABTS redox couple (HO•, H+/H2O, Eo′ of 2.31 V;
RO•, H+/ROOH, Eo′ of 1.60 V; allyl•, H+/allyl-H, Eo′ of 0.96 V; O2

−•, 2 H+/H2O2, Eo′

of 0.94 V; RS•/RSH−, Eo′ of 0.92 V) [46]. By steric hindrance, this affects the possibility
and rate of reaction with DPPH and ABTS•, so the reactivity is impossible to predict on a
thermodynamic basis alone.

3.8. ABTS• Reduction Generates Free Radicals of Reducing Compounds

An obvious consequence of one-electron reaction with the ABTS• radical is the for-
mation of a free radical of the reducing compound, which further reacts to form a fully
oxidized non-radical form of this compound. When using excess reducing compound
with respect to ABTS• (mixing ca 3.5 mM ABTS• solution with an equal volume of 5 mM
Trolox or ascorbic acid) and immediately measuring ESR spectra, free radicals of Trolox
and ascorbate were detected (Figure 11).
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3.9. Interaction between Antioxidants

Interactions between low-molecular antioxidants leading to subadditive behavior
in antioxidant activity assays have been reported [47–49]. In this study, we checked the
interactions between Trolox, ascorbate and hispidulin as model compounds by comparing
ABTS• reduction by single antioxidants and their combination (slopes of the lines of
concentration dependence of absorbance decrease or AUC).

Interaction coefficient (IC) (expressed in %) was calculated as

IC = 100% × [(Calculated sum of values for a chosen parameter) − (Value of the parameter
measured for the sum of compounds)]/(Calculated sum of values for the parameter)
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So defined interaction coefficient (IC) has positive values if the interaction between
antioxidants is subadditive (antagonistic), zero if the interaction is additive, and negative
values if the interaction is superadditive (synergistic). Statistically significant subadditive
interactions in ABTS• decolorization were found to occur between ascorbic acid and Trolox,
hispidulin and Trolox, and glutathione and ascorbic acid, but not between glutathione and
Trolox, nor hispidulin and ascorbic acid. The interactions were observed when studying
concentration dependence of absorbance decrease and AUC (Table 4).

Table 4. Interaction between compounds in the ABTS• decolorization assay as estimated by concen-
tration dependence of absorbance decrease after 1 min and concentration dependence of AUC after
60 min. IC, interaction coefficient.

Concentration
Dependence of:

Compound 1
[nmol−1]

Compound 2
[nmol−1]

Calculated Sum
[nmol−1]

Value Measured for
Sum of Compounds

>[nmol−1]
IC [%]

Absorbance
decrease 1 min

Ascorbic acid
0.1107 ± 0.0188

Trolox
0.1058 ± 0.0158 0.2165 ± 0.0246 0.0927 ± 0.0157 *** 57.2

AUC 60 min Ascorbic acid
−10.207 ± 0.304

Trolox
−9.664 ± 0.265 −19.871 ± 0.812 −7.916 ± 0.458 *** 60.2

Absorbance
decrease 1 min

Glutathione
0.0931 ± 0.0265

Ascorbic acid
0.1079 ± 0.0047 0.2010 ± 0.0269 0.1086 ± 0.0017 ** 46.0

AUC 60 min Glutathione
−14.172 ± 2.932

Ascorbic acid
−10.312 ± 0.344 −24.484 ± 2.952 −16.477 ± 0.917 ** 32.7

Absorbance
decrease 1 min

Glutathione
0.09376 ± 0.00490

Trolox
0.10623 ± 0.00475 0.1999 ± 0.0068 0.2198 ± 0.0161 NS −0.1

AUC 60 min Glutathione
−14.708 ± 1.353

Trolox
−9.613 ± 0.530 −24.321 ± 1.453 −24.977 ± 2.336 NS −0.3

Absorbance
decrease 1 min

Hispidulin
0.22107 ± 0.03192

Trolox
0.10626 ± 0.00201 0.3273 ± 0.0320 0.1728 ± 0.0318 ** 47.2

AUC 60 min Hispidulin
−22.804 ± 2.104

Trolox
−9.670 ± 0.723 −32.474 ± 2.225 −25.455 ± 2.885 * 21.6

Absorbance
decrease 1 min

Hispidulin
0.22764 ± 0.004037

Ascorbic acid
0.10942 ± 0.004084 0.3371 ± 0.0057 0.3287 ± 0.0074 NS 2.5

AUC 60 min Hispidulin
−16.920 ± 1.372

Ascorbic acid
−8.060 ± 0.541 −24.980 ± 1.475 −25.137 ± 2.062 NS −0.01

* p < 0.05, ** p < 0.01, *** p < 0.001, NS not significant (measured parameter vs. parameter calculated as a sum of
parameters for individual compounds).

These subadditive effects in ABTS• scavenging might be ascribed to the reported
interactions between vitamin E and ascorbate, vitamin E and flavonoids [50,51], and
ascorbate and glutathione [52,53]. These interactions were postulated to consist in the
reduction of tocopheryl radicals by ascorbate or flavonoids, and reduction of ascorbate
free radical and ascorbate by glutathione. However, such reactions are unlikely to account
for the subadditive effect in ABTS• decolorization, because reduction of a radical by a
non-radical molecule leads to formation of a new free radical, leaving the number of
radicals in the system unchanged. The apparent mechanism of subadditive interactions
between antioxidants in ABTS• scavenging should involve reactions between radicals of
antioxidants, formed upon reaction with ABTS•, involving or not involving ABTS•, i.e., a
significant contribution of Reactions (6)–(8) in the set of reactions proceeding in a sample:

Ant1 + ABTS• → ABTS + Ant1
• (4)

Ant2 + ABTS• → ABTS + Ant2
• (5)

Ant1
• + ABTS• → non-radical products (6)

Ant2
• + ABTS• → non-radical products (7)

Ant1
• + Ant2

• → non-radical products (8)
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The non-radical products formed in this reaction are mostly reduced ABTS and the
oxidized form of an antioxidant. However, adducts of Ant• and ABTS• can be also formed,
and their formation (6) and (7) and further reactions (9) between these adducts and Ant• [54]
may affect the stoichiometry of ABTS• reduction:

Ant-ABTS + Ant• → Ant-Ant + ABTS• (9)

In some cases, the product(s) of the reaction of an antioxidant with ABTS• may itself
be reactive; such a situation was reported for chrysin [16]. In studies of single compounds
such a situation would lead to a higher apparent reactivity of the parent compound, but
in a mixture of compounds it can contribute to a synergic effect of antioxidant interaction,
e.g., initiating one-electron reactions with another antioxidant, thus increasing the quantity
of radicals in the system:

Ant1 + Ant2 → Ant1
• + Ant2

• (10)

However, the situation may be more complex as ABTS•may also undergo self-cleavage
and degradation [14,18], so Reactions (4)–(10) do not account for all the reactions occurring
in the system. There are further reasons that account for deviations of stoichiometry in the
ABTS• decolorization assay.

Non-additivity effects in the binary mixtures of flavonoids with Trolox and ascorbic
acid were revealed by ORAC and square-wave voltammetry methods. In mixtures of
O-glucosylated flavonoids with Trolox or ascorbic acid, a negative non-additive effect
(antagonism) was seen for quercetin and morin, while a synergistic interaction was found
for rutin and naringin [48]. Synergistic and antagonistic interactions between components
of Gingko biloba leaf extracts have been reported using the ABTS• reduction assay [49].
Thus, it cannot always be expected that ABTS• reduction by a summed compound will be
equal to the sum of ABTS• reductions by individual compounds, and ABTS• reduction by
a complex extract does not necessarily reflect the sum of the ABTS•-reducing abilities of its
components.

4. Conclusions

A modification of the ABTS• decolorization assay for use with plate readers is pre-
sented. The assay is applicable in a broad pH range (2.0–7.4). Increase in ionic strength
decreases ABTS• reactivity. Reactions of “fast” antioxidants with ABTS• are completed
within seconds, while the reactions of “slow” antioxidants are not finished after 6 min (as
proposed in the original method); we suggest a reaction time of 60 min for assays including
antioxidants, blood plasma and plant extracts. For comparison of antioxidant activities
in a kinetic assay, as well as direct decrease of absorbance, concentration dependence of
absorbance decrease or of AUC is recommended.
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