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Abstract: The effects of tetracycline (TC) and copper (Cu) on the growth of water spinach and
the bacterial community structure in soil were examined in this study. The results revealed that
a single Cu treatment decreased water spinach development more severely than TC, and that the
toxic effects of TC and Cu on water spinach were synergistic at low doses and antagonistic at
high concentrations. The single Cu treatment had the largest influence on the activities of three
antioxidant enzymes (Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT)) and the
content of Malondialdehyde (MDA) in water spinach leaves, followed by the TC and Cu composed
treatment, with the single TC treatment having the least effect. The results of 16Sr RNA sequence
analysis showed that the richness and diversity of soil bacterial communities were reduced by either
a single TC or Cu treatment. Cu had a greater effect on the composition of the microbial community
at genus level than TC. In conclusion, Cu had a greater influence on the growth of water spinach
and soil microbial community composition than TC. TC and Cu exhibited synergistic effects at
low concentrations and antagonistic effects at high concentrations on relevant indicators when Cu
concentration was fixed.

Keywords: tetracycline; copper; water spinach; antioxidant enzymes; microbial community

1. Introduction

Antibiotics are widely used in livestock farming and the aquaculture industry because
of their antibacterial and bactericidal effects [1,2]. Tetracycline constitutes a family of
broad-spectrum bacteriostatic antibiotics that are widely used in livestock and poultry
breeding and exist in large quantities in the environment [3]. China is one of the largest
antibiotics-consuming countries, producing about 210,000 tons of antibiotics annually,
nearly half of which are used in livestock and poultry breeding [4,5]. Many antibiotics
are poorly absorbed in the gut, cannot be metabolized completely, and most of them are
excreted as parent compounds or metabolites into soil and water environment [6]. In the
soil environment, a portion of antibiotics will be degraded as microbial carbon sources,
while the other portion will be absorbed into the soil, causing toxicity to surrounding
plants and animals [7–9]. Zhou et al. [10] investigated antibiotic residue in animal manure
collected in and around downtown Nanjing, China, and found that tetracycline (TC) was
present in most of the samples with a concentration of up to 1920 mg kg−1. TC inhibits
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protein synthesis in bacteria by binding to the 30S subunit A site of bacterial ribosomes in
the environment, and it also interferes with the function of ribosomes in agricultural crops
mitochondria and chloroplast organelles, thus inhibiting bacterial growth and reproduction
and affecting agricultural crops [11,12].

As an animal feed additive and agricultural fertilizer, Cu can also cause pollution of
heavy metals in the environment due to excessive practical application [13,14]. Li et al.
found that Cu concentration in about 21.02% of sampling sites exceeded the screening
value of China’s latest national standard (50 mg kg−1) by analyzing 1731 investigation sites
in Chinese farmland [15]. In China, copper in animal manure accounted for 69% of the
total input of different agricultural soil pollution sources [16]. Cu is an essential metal for
the normal growth and development of plants, but excessive Cu can be toxic to plants [17].
In the process of plant growth, Cu can affect plant growth processes by interfering with
SH groups or related enzymes involved in catalysis [18]. The toxic mechanism of Cu to
microorganisms was reflected in the combination of Cu and microbial enzyme molecules,
which would not only inhibit the growth and metabolism of microorganisms but also lead
to the change of microbial community structure [19].

Animal manure is commonly used as an organic fertilizer input to soil to improve
the nutrient properties of soils because it is rich in nitrogen, phosphorus and organic
matter [20,21], which directly contributes to the accumulation of antibiotics and heavy
metals in soils [22–24]. In recent years, the complex interaction of antibiotics and heavy
metals has gained increasing attention [25,26]. Studies have shown that the antagonistic
effect of enrofloxacin and Cu-composed treatment was higher than the synergistic effect on
soil microorganisms [27]. Combined sulfadoxine and Cu contamination exhibited higher
toxicity and reduced the biomass of soil bacteria and actinomycetes [28]. After 20 days, the
combined effect of TC (15 mg L−1) and Cu (1 mg L−1) showed a synergistic effect on the
biomass of water hyacinth [29]. The combined contamination with low concentrations of
TC (10 µmol L−1) and Cd (5 µmol L−1) promoted the growth of rice roots and showed an
antagonistic effect [30]. The studies referenced above showed that the ecological effects of
antibiotics and heavy metals on different crops and soil microorganisms when coexisting
are still controversial. Therefore, TC and Cu were selected as targeted antibiotics and heavy
metals in this study. Water spinach (Ipomoea aquatica Forskwas) was used as a test plant.
Specifically, we investigated the following: (1) the impact of TC and Cu on the growth and
physiological characteristics of water spinach through a pot experiment; (2) the effect of
TC and Cu on soil bacterial community; (3) the relationship between TC and Cu pollution
factors and microbial community structure. These findings will obtain useful information
about the harm of TC and Cu-combined pollution to crops and soil micro-ecology, and they
will provide scientific basis for solving the problem of combined soil antibiotics and heavy
metals pollution.

2. Materials and Methods
2.1. Experimental Material

Water spinach seeds were purchased from Beijing Dongsheng Seed Co., Ltd. Initially,
the seeds were soaked in a constant temperature water bath at 50 ◦C for 15–20 min, sterilized
by using solution of H2O2 at 10% (w/v) for 15 min, and slightly rinsed with distilled water.
Seeds immersed in deionized water at 30 ◦C until dewy.

Test soil was collected from the surface (0–20 cm) of a vegetable field in Panyu,
Guangzhou, Guangdong, China. After they were air dried, the soil samples were passed
through a 2 mm nylon sieve, homogenized, and used for potting experiments. The physico-
chemical properties of the test soils are shown in Table 1. TC was added by spraying with
ultrapure water, and Cu was added by spraying in the form of copper sulfate solution;
each parallel group was treated and mixed thoroughly, and the soil was placed in a place
protected from light and ventilated for 24 h after poisoning.
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Table 1. Physical and chemical properties of test soils.

Determination Index Measured Value

pH 5.44
SOM (g kg−1) 26.18
TC (mg kg−1) Not Detected
Cu (mg kg−1) 35.00

Total nitrogen (g kg−1) 0.84
Available N (A-N, mg kg−1) 181.81
Available P (A-P, mg kg−1) 87.16
Available K (A-K, mg kg−1) 514.27

2.2. Experimental Design and Treatment Plan

Pot experiments were set up using plastic pots with length 16 cm, width 16 cm, and
height 14 cm, each with a nylon screen (100 mesh) at the bottom. Soil (2.0 kg) was added to
each pot, and six seeds were sown per pot, then placed in a ventilated and cool place for
a week. They were then moved to the greenhouse, and three plants per pot were set up;
water was added regularly to keep the soil moisture at about 60% of the field water holding
capacity during the incubation period. The greenhouse temperature was 35 ◦C during the
day and 25 ◦C at night. Plants were harvested after 30 days of planting. The experimental
TC and Cu concentrations were set up based on the TC and Cu concentrations when the
pre-experimental root length inhibition rate reached 10–60% (The results are shown in
Table S1), and the design of the treatments are shown in Table 2. Each treatment was set up
with three replications, and the treatments without TC and Cu were used as control.

Table 2. Design of experimental treatment groups.

TC (mg per kg of Soil)
Cu (mg per kg of Soil)

0 100 300

0 Control Cu1 Cu3
100 TC1 TC1-Cu1 TC1-Cu3
300 TC3 TC3-Cu1 TC3-Cu3
500 TC5 TC5-Cu1 TC5-Cu3

2.3. Analytic Methods
2.3.1. Assay of Physiological and Biochemical Indexes

The activity of antioxidant enzymes, as the main substances that maintain the bal-
ance of reactive oxygen species in water spinach, can reflect the degree of stress in water
spinach in response to environmental stresses [31]. MDA is an important byproduct of
membrane lipid peroxidation. MDA content can indicate the extent of damage to plant cell
membranes [32].

The height of water spinach plants was measured every 7 days during the 30-day
incubation period. After harvesting, water spinach was washed under running water
and blotted out with absorbent paper before being divided into above-ground and below-
ground parts and weighed. After harvesting, the activity of Superoxide Dismutase (SOD),
Peroxidase (POD), Catalase (CAT) and the content of Malondialdehyde (MDA) were
measured in the leaves of water spinach using kits purchased from Beijing Ltd.

2.3.2. Soil Physical and Chemical Indicators

Soil properties, such as pH, SOC, available K (A-K), available P (A-P) were determined
with the method described by Lu [33]. Total Cu in soil was quantified by reference to
the Chinese environmental protection standard-total metal elements in soil and sediment
microwave digestion method (HJ 832-2017), using HCl-HNO3-HF digestion and a flame-
type atomic absorption spectrophotometer (TAS-990, PERSEE). National standard material
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of soil (GBW-070009) and blank test were used for quality control of the sample analysis
process, and the recovery of Cu was 90.1%~105.3%.

TC in the soil were extracted using a solid-phase extraction column (CNW HLB;
200 mg, 6 mL) according to the methods developed by Tang et al. [34]. The aqueous
concentrations of TC were determined using reversed-phase high-performance liquid
chromatography (G7111A, Aglient) and UV-visible detection at the wavelength of 350 nm,
with a symmetry C18 column (4.6 × 150 mm, 5 µm). The injection volume was 10 µL and
the mobile phase comprised a mixture of methanol and water containing 0.01 mol L−1

oxalic acid, which was maintained at a flow rate of 1 mL min−1, and the recovery of TC
was 80.6%~102.3%.

2.4. 16S rRNA Gene Analysis via Illumina High-Throughput Sequencing and Data Analysis

Total genomic DNA samples was extracted using the EZNA Gel Extraction Kit (Omega
Bio-Tek, Norcross, GA, USA), following the manufacturer’s instructions, and stored at
−20 ◦C prior to further analysis. The quantity and quality of extracted DNAs were
measured using a NanoDrop NC2000 spectrophotometer and agarose gel electrophore-
sis, respectively.

The universal bacterial primers used in this study for microbial community diver-
sity analysis (16S rRNA) were 515F (GTGCCAGCMGCCGCGGTAA) and 806R (GGAC-
TACHVGGGTWTCTAAT) for PCR amplification. The PCR components contained 5 µL
of buffer (5×), 0.25 µL of Fast pfu DNA Polymerase (5 U/µL), 2 µL (2.5 mM) of dNTPs,
1 µL (10 uM) of each Forward and Reverse primer, 1 µL of DNA Template, and 14.75 µL
of ddH2O. The reaction conditions were set as follows: 94 ◦C predenaturation for 5 min;
94 ◦C denaturation for 30 s, 25 cycles; 52 ◦C annealing for 30 s; 72 ◦C extension for 30 s,
25 cycles; and 72 ◦C extension for 10 min. Sample-specific 7-bp barcodes were incorporated
into the primers for multiplex sequencing.

The resulting samples were subjected to paired-end sequencing on the Illumina Hiseq
2500 platform. At the 97% similarity level, the sequences were grouped into multiple
OTUs based on Vsearch clustering, and the OTUs with 97% similarity were selected to
generate the expected sparse curves (Rarefaction curve). Based on the results of OTU
clustering analysis and using the software QIIME2 (2019.4), Alpha diversity analysis was
performed to calculate the richness index Chao1, the observed species, and the diversity
index Simpson and Shannon indices, respectively. In addition, the silva_132 database
was selected for comparison, and the Bayesian inference algorithm was used to perform
taxonomic analysis of species at each taxonomic level for the OTU representative sequences,
to count the community composition of each sample, and to perform statistical analysis of
the community structure of different samples at each taxonomic level.

2.5. Statistical Analysis

The information in the graphs and tables was presented as three triplicate averages
±standard deviations of each treatment. Significant differences among different treatments
were performed by SPSS 20, according to the Duncan test (p < 0.05). Microbial-community-
level data and environmental factor data were uploaded to the QIIME2 online analytic
platform for redundancy analysis (RDA) to investigate the association between soil bacterial
communities and environmental factors.

3. Results and Discussion
3.1. Effects of TC and Cu Complex Contamination on Physiological and Biochemical Indicators of
Water Spinach
3.1.1. Plant Height and Biomass of Water Spinach

The physiological state of water spinach is an intuitive presentation of its adaptive
growth in the environment, which can reflect the impact of pollution stress on plants.
The effects of TC and Cu combined pollution on the biomass and plant height of water
spinach are shown in Figure 1. It can be seen from Figure 1 that the plant height and
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biomass of water spinach were inhibited to varying degrees with the increase of TC and
Cu pollution concentrations. According to the comparison of data between groups, the
inhibition of single Cu pollution on the growth of water spinach was more obvious than
that of TC pollution. When the Cu concentration was 300 mg kg−1 the plant height and
growth of water spinach decreased by 82.13% and 89.19%, respectively. Compared with
the control, single TC stress had no significant effect on plant height and growth of water
spinach. When the concentration of Cu was 100 mg kg−1, the height of water spinach
plants in the TC1-Cu1, TC3-Cu1 and TC5-Cu1 treatment groups was significantly increased
by 17.75%, 16.36% and 7.34%, while the growth of water spinach in the corresponding
treatment groups was increased by 89.57%, 91.64% and 88.13%, respectively. This suggests
that TC could alleviate the stress of Cu on the growth of water spinach and that there
might be an antagonistic effect of TC and Cu on the growth of water spinach. The data of
TC1-Cu3, TC3-Cu3 and TC5-Cu3 treatments showed that the height of water spinach was
decreased by 83.93%, 82.13% and 79.42%, respectively, and the biomass of water spinach
was decreased by 89.57%, 91.64% and 88.13%, respectively, as compared with the control.
Indicating the high concentration of compound pollution had a significant inhibitory effect
on the growth of water spinach.
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Figure 1. Effect of TC and Cu complex pollution on height and biomass of water spinach. (A) biomass;
(B) height. (Different capital letters represents significant differences between different Cu treatment
at p < 0.05, while different lowercase letters represents TC’s.)

3.1.2. Antioxidant Enzyme Activity and MDA Content in Leaves of the Water Spinach

To explore the detoxification response of water spinach in response to TC and Cu
combined contamination, the activity of related antioxidant enzyme and the content of
MDA in the leaves of water spinach were quantified (Figure 2). The activity of POD
increased and then decreased under a single TC treatment, while the activity of POD
showed a gradual increase with a single Cu treatment. Furthermore, among the composite
pollution treatment groups, the activity of POD in all groups except the TC5-Cu3 group
showed an increasing trend with the increasing concentration of TC. The results clearly
revealed that the complex contamination could improve the activity of POD in water
spinach. It also showed that there is a certain threshold for the synergistic or antagonistic
effect of TC and Cu on the activity of POD in water spinach.

Generally, water spinach could regulate CAT activity to resist the stressful effects
of environmental pollutants. The activity of CAT in water spinach showed a trend of
increasing and then decreasing under either single TC or Cu treatment (Figure 2B). When
the concentration of Cu in the soil was 300 mg kg−1, the activity of CAT in the groups
of compound pollution treatment showed a significant decreasing with the increasing
concentration of TC, with the lowest activity of CAT in TC5-Cu3 treatment. The same trend
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was observed at the concentration of 100 mg kg−1 and below of Cu in soil, implying that
TC and Cu showed synergistic effects at low concentrations and antagonistic effects at high
concentrations on the toxicity of water spinach. The trend of SOD activity in Figure 2C is
similar to that in Figure 2B, which also supports the above conclusion. Gao [35] also found
that the toxicity of TC and Pb, sulfadiazine and Cu to microcystis aeruginosa would show
synergism effects at low concentrations and antagonism effects at high concentrations.
For the content of MDA, both single TC or Cu treatments showed an increasing trend
(Figure 2D), indicating that both single TC or Cu treatments increased the toxicity on
water spinach. The content of MDA decreased with increasing addition of TC when
the concentration of Cu was 300 mg kg−1, which further demonstrated that TC and Cu
compound pollution had some antagonistic effects on the growth of water spinach.
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Figure 2. Impact of TC and Cu pollution on antioxidant enzyme activity and MDA of water spinach.
(A) POD; (B) CAT; (C) SOD; (D) MDA. (Different capital letters indicate significant differences
between different Cu treatment at p < 0.05, while different lowercase letters indicate different TC’s.)

The above results indicated that TC and Cu-combined pollution had a stimulating
effect on both the activity of antioxidant enzyme and the content of MDA in water spinach.
Two-way ANOVA analysis revealed that both TC and Cu had an effect on activity of
antioxidant enzyme and content of MDA in water spinach (Table 3). On the whole, the
main factor affecting the antioxidant enzyme activity of water spinach was Cu, followed by
TC-Cu interaction, with TC having the smallest effect. The results of the ANOVA on MDA
were consistent with the above. It indicated that the stress effect of single Cu on water
spinach was higher than that of single TC and complex contamination.
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Table 3. Two-way ANOVA of TC and Cu on antioxidant enzyme activity and MDA in water spinach.

Factor
TC Cu TC × Cu

F P F P F P

CAT 7.988 0.001 * 24.045 0.000 * 11.443 0.000 *
POD 24.433 0.000 * 32.009 0.000 * 21.053 0.000 *
SOD 1.079 0.377 18.476 0.000 * 7.370 0.000 *
MDA 9.378 0.000 * 56.168 0.000 * 41.781 0.000 *

* Represents significance, p < 0.05.

3.2. Effect of TC and Cu Composed Pollution on Soil Bacterial Community
3.2.1. Alpha Diversity of Soil Bacterial Communities

A total of 237 phyla, 627 orders, 1322 orders, 1904 families, 2341 genera and 416 species
were observed by sequencing analysis in 36 soil samples, meeting the requirements for
analysis such as Alpha diversity and community structure composition in this research.
The indexes of alpha diversity of soil bacterial communities under TC and Cu composed
contamination are presented in Figure 3.
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tion. Different letters indicate significant difference between different treatments (p < 0.05).

In the single Cu treatments, Chao1, Observed species, Shannon and Simpson indexes
showed a decreasing trend with increasing concentrations of Cu, indicating that high
concentration of Cu resulted in a significant decrease in soil bacterial community richness.
The same can be shown for the decrease in richness of bacterial community in soil due to
the addition of high concentration of TC. Cao et al. [36] found that Cu at a concentration
of 450 mg kg−1 significantly reduced the richness and diversity of bacterial communities.
Zheng et al. [37] found a similar effect of TC on soil microbial communities. It was consis-
tent with the findings of this research. In the composed treatment groups, when the TC
concentration was 100 mg kg−1, the indexes of Chao1, Observed species, Shannon and
Simpson showed a trend of increasing and then decreasing with the increasing concentra-
tion of Cu, which was consistent with the trend of growth of water spinach. Furthermore,
as a whole, except for the TC5-Cu3 group, the Observed species and Chao1 indices of the
remaining groups showed different degrees of decrease, which indicated that the species
richness of the TC5-Cu3 treatment group did not differ much from that of the control group,
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and to some extent, it indicated the antagonistic effect of TC and Cu at high concentrations.
In addition, there was a significant decrease in Observed species and Chao1 indexes in all
treatment groups except the TC5-Cu3 group, which not only indicated that the microbial
richness of the TC5-Cu3 treatment group was not significantly different from the control
group but also reinforced the antagonistic effect of TC and Cu at high concentrations.

3.2.2. Taxonomic Composition of Soil Bacterial Communities

Relative abundance map of soil bacterial communities at the phylum level (Figure 4)
showed that there were nine dominant phyla accounting for more than 1%, namely Pro-
teobacteria (26.49–39.80%), Patescibacteria (6.84–23.8%), Chloroflexi (13.67–20.70%), Actinobac-
teria (14.7–17.42%), Acidobacteria (5.03–10.76%), Gemmatimonadetes (2.94–10.88%), Plancto-
mycetes (1.17–2.09%), Firmicutes (1.15–2.76%) and Bacteroides(0.69–2.14%). In the single Cu
treatments, the relative abundance of Patescibacteria and Nitrospirae decreased and that of
Acidobacteria and Gemmatimonadetes increased with increasing concentration of Cu. Addi-
tionally, the relative abundance of Proteobacteria in the Cu3 treatment increased by 12.93%
compared with the control group. Proteobacteria and Acidobacteria have been reported
as phylum of the heavy metal tolerant bacteria [38,39]. In the single TC treatments, the
percentage of Patescibacteria and Bacteroidetes decreased as the TC concentration increased,
and the percentage of Actinobacteria in the TC5 treatment increased by 1.17% compared to
the control. In the complex treatments, Bacteroidetes in the TC1-Cu1 treatment increased by
1.07% compared to the control, and the relative abundance of Bacteroidetes was the highest
among all groups. Actinobacteria and Gemmatimonadetes in TC5-Cu3 treatment increased
by 2.01% and 5.53%, respectively, compared to the control. The relative abundance of
Actinobacteria and Gemmatimonadetes increased by 2.01% and 5.53%, respectively, and the
relative abundance of the two bacteria was the highest among all treatment groups.
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Cu contamination.

Relative abundance map of soil bacterial communities at the genus level (Figure 5)
revealed that the observed dominant genus mainly included Saccharimonadales, JG30-KF-
AS9, Mizugakiibacter, Chujaibacter, Gemmatirosa, Acidipila, Halomonas, Sphingomonas, Dyella
and Acidibacter. Reddy et al. [40] considered Acidibacter as the dominant genus at the genus
level in Ganges water, in India, contaminated with antibiotics and heavy metals, which
were consistent with the findings of the present research. In the single TC treatments, the
relative abundance of JG30-KF-AS9, Acidibacter and Mizugakiibacter was higher in TC1,
TC3 and TC5 treatment groups than in the control soil, and the relative abundance of
Chujaibacter and Gemmatirosa were both higher in the single Cu treatments than in the
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control group, and the relative abundance of Mizugakiibacter was lower than the control.
This might be due to the fact that Chujaibacter and related Metallibacterium scheffleri belong to
the genus of metal metabolizing bacteria [41,42]. The relative abundance of Mizugakiibacter
and Saccharimonadales was lower and that of Dyella was higher in the complex treatments
compared to the control group. The relative abundance of JG30-KF-AS9 was higher than
that of the single TC or Cu treatments and higher than that of the control group.
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3.2.3. Clustering and Correlation Analysis between Treatment Groups and Soil Microbial
Communities at the Genus Level

The clustering heat maps of microbial at genus level with treatment groups are illus-
trated in Figure 6. TC3, Control and TC1 treatments as one cluster, TC5 and TC5-Cu1 as
another cluster, which indicated that the effect of TC on the soil microbial structure at genus
is negligible up to 300 mg kg−1, but TC at high concentrations (500 mg kg−1) could change
the microbial communities. As shown by the clustering of TC3-Cu1, TC1-Cu1 and Cu1
treatments into one cluster and TC3-Cu3, TC1-Cu3 and Cu3 treatments into another cluster,
the composition of bacterial community at the genus level at the same concentration of
Cu was similar. Indicating that the composition of bacterial community at the genus was
dominated by Cu. The community structure of soil bacteria at the genus level is hardly
altered by TC at the experimental concentration level. This is consistent with the fact
mentioned above that TC exerts a synergistic effect on water spinach at low concentrations
and an antagonistic effect at high concentrations under the fixed concentration of Cu. The
TC5-Cu3 group, as a single cluster, had more dominant genera showing strong correlation
compared to the Cu3-related treatments, such as Acidothermus, Streptomyces, Acidibacter,
Chujaibacter, Gemmatirosa, and Subgroup_6 genera. In addition, TC5 and TC5-Cu1 treatment
were clustered together, further confirming that high concentrations of TC could alter the
composition of bacterial community at genus level. In summary, Cu had a greater impact
on the composition of microbial community than TC, and TC had a negligible effect on
community composition at the genus level at low concentrations and a greater effect at
high concentrations.
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3.2.4. Redundancy Analysis

The redundancy analysis (RDA) of bacteria community structure at genus level and
environmental factors is shown in Figure 7. Both TC and Cu could change the structure of
bacteria community. Cu had the greatest impact on the TC5-Cu3 and TC1-Cu3 treatments;
TC had the greatest effect on the TC3-Cu1 and TC5-Cu1 treatments. Furthermore, the
genera with strong positive correlations with TC were JG30-KF-AS9 and Acidibacter; the
genera with strong negative correlation were Halomonas and Dyella. The genera with strong
positive correlation with Cu were Chujaibacter and Gemmatirosa, and the genera with strong
negative correlation were Saccharimonadales and Mizugakiibacter.

Saccharimonadales were associated with nitrogen cycling and were the dominant genus
at higher phosphorus concentrations [43,44]. In this research, abundance of Saccharimon-
adales was positively correlated with biomass of water spinach and negatively correlated
with the concentration of Cu. When the concentration of Cu was 300 mg kg−1, the relative
abundance of Saccharimonadales and the biomass of water spinach decreased significantly,
which indicated that Saccharimonadales could not adapt to the stress of high concentration
of Cu. The relative abundance of Mizugakiibacter in single Cu treatment in this research
was lower than control soil, which is consistent with the previous finding. Xie et al. [45]
found that the relative abundance of Mizugakiibacter in soil under high Cd stress was
lower than the control. It was still unclear about the ecological functions of Mizugakiibacter,
but some studies have found that Mizugakiibacter could reduce the occurrence of plant
diseases [46]. JG30-KF-AS9 belongs to the Ktedonobacteria class, which is anaerobic and
antibiotic-resistant and may have some degradation effect on organic pollutants in soil [47].
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4. Conclusions

In conclusion, we explored the effects of single and combined pollution by TC and Cu
on the growth of water spinach, and the structure of soil microbial community were studied
by pot experiment. First, the inhibition of physicochemical indicators of water spinach
by single Cu treatments was more significant than TC treatments, and the toxic effects of
TC and Cu on water spinach showed synergism at low concentrations and antagonism at
high concentrations. In this study, Cu had the greatest effect on the stress of water spinach,
followed by TC-Cu interaction, and TC had the least effect. Second, both single TC and Cu
treatments reduced species richness and diversity in the soil. The results of cluster heat
map analysis showed that Cu had a greater effect on the composition of the genus level
microbial community than TC, and TC (either single or combined) had a negligible effect
on community composition at the genus level at low concentrations, and a greater effect
at high concentrations. Finally, RDA analysis showed that both TC and Cu had effects on
bacterial community structure, where the genus with strong positive correlation with TC
were JG30-KF-AS9 and Acidibacter, Chujaibacter and Gemmatirosa were the genus with strong
positive correlation with Cu.

Supplementary Materials: The following supporting information can be download at: https://www.
mdpi.com/article/10.3390/pr10061135/s1, Table S1: The effects of single and combined addition of
TC and Cu on seed root length.
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