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Abstract: The multiaxial Mises-Schleicher and Drucker-Prager unified (MSDP,,) criterion has been
shown to exhibit several specific features compared to other yield and failure criteria, including a
nonlinear mean stress dependency, influence of the Lode angle, use of independent uniaxial compres-
sive and tensile strength values and absence of an apex (singularity) on the envelope surface in the
negative stress quadrant. However, MSDP,, has been seldom used in practice to solve geotechnical
and geomechanical engineering problems mainly because it had not yet been fully implemented
into three-dimensional (3D) numerical codes. To fill this gap, a 3D elastoplastic MSDP,, formulation
is developed and implemented into FLAC3D. The proposed MSDP,, elastic-perfectly plastic (EPP)
constitutive model is then validated against existing analytical solutions developed for calculating the
stress and displacement distributions around cylindrical openings. The FLAC3D MSDP,,-EPP model
is then applied to evaluate the vertical and horizontal stress distributions in a three-dimensional ver-
tical backfilled stope. The numerical results obtained with the MSDP,-EPP model are compared with
those obtained with the Mohr-Coulomb EPP model, to highlight key features of the new formulation.

Keywords: 3D nonlinear yield criterion; elastoplastic model; numerical modeling; circular opening;
backfill; FLAC3D

1. Introduction

Elastoplastic constitutive models are widely used in geotechnical engineering to assess
the mechanical response of geomaterials. The elastoplastic framework typically involves
a yield criterion, a flow rule (with a plastic potential) and, in some cases, a hardening
or softening function. Over the years, many elastoplastic constitutive models have been
proposed and applied to analyze the complex mechanical responses of rocks and soils; the
main ones are included in state-of-the-art review publications [1-9].

Elastic-perfectly plastic (EPP) models, with a fixed yield surface, are probably the most
often used in practice to solve engineering problems involving geomaterials, due in a large
part to their relative simplicity and ease of application. Several EPP models with different
plastic (yield) criteria, such as Mohr-Coulomb (MC), Drucker-Prager (DP) and Hoek-Brown
(HB), have already been built in commercial codes and applied in geotechnical engineering.
In these models, the plastic criterion F is used to determine the limit of the stress state
associated with plastic behavior. Criterion F also defines the plastic potential Q when
an associated flow rule is used, while it can serve as a basis for Q (#F) in the case of a
non-associated flow rule [9,10].

In addition to those mentioned above, a large number (>100) of failure and yield crite-
ria have been proposed over the years [11-14], each having its advantages and limitations.
The most commonly used criteria for soil and rock, MC and HB, are generally expressed
with only two principal stresses and thus neglect the effect of the intermediate principal
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stress. A few well-known 3D criteria (e.g., DP) simplify the effect of the stress geometry by
neglecting the influence of the Lode angle (defined below). The open surface defined by
function F in the principal stress space along the hydrostatic axis is another limitation of
many existing criteria, which cannot describe the volumetric yield behavior of geomaterials
under high mean stresses [14-16].

Initially proposed for intact rocks [17,18] and later modified and extended for vari-
ous geomaterials including rock and rock mass, concrete and mine backfill [19-22], the
multiaxial Mises-Schleicher and Drucker-Prager unified (MSDP,,) criterion takes into ac-
count the effect of the three principal stresses, with a nonlinear (rounded) surface on
the negative side of the mean stress axis and a cap on the positive (compressive) side.
The MSDP,, criterion exhibits four essential characteristics to define yielding or failure of
cohesive/cemented geomaterials:

(i) anonlinear mean stress dependency;

(if) influence of the Lode angle to distinguish triaxial compression and extension behavior;
(iii) independence of the uniaxial compressive and tensile strengths;

(iv) absence of an apex (singularity) on the surface in the negative stress quadrant.

Additional features of MSDP,, will be presented in the next section, after recalling the
criterion basic formulation. Its applicability to describe the failure and yielding of a large
variety of materials has been demonstrated by Aubertin et al. [20,21], Li et al. [14,22,23]
and Aubertin and Li [12].

Despite its advantageous features, the practical use of the MSDP,, criterion has been
limited because it was only partially implemented in a numerical code. The implementation
has been done within the 2D finite difference code FLAC through its user-defined model
option with an external language, called “FISH” [24]. The ensuing FLAC2D MSDP,,-EPP
model can be used to analyze geotechnical problems under plane strain conditions only.
Some of the key features and advantages of MSDP,, thus cannot be exploited, particularly
when facing three-dimensional problems. In addition, the implementation of the MSDP,,-
EPP model in FLAC2D (presented by Li et al. [24]) was based on an associated flow rule,
which tends to overestimate the volumetric strains of geomaterial (and the related mean
stresses). Moreover, the implementation of user-defined models in FLAC with the “FISH”
language is no longer recommended by Itasca [25]. There is thus a need to implement a
more complete 3D version of the MSDP,-EPP model, with a non-associated flow rule, in
FLAC3D, a commercial code widely applied for the solution of three-dimensional problems
in geotechnical engineering [26-30].

In this paper, the three-dimensional MSDP,,-EPP model is formulated in terms of stress
and strain increments, following the guidelines provided by Itasca [26] as well as Desai and
Siwardane [1] and Chen and Baladi [2]. Its implementation in FLAC3D is done through its
user-defined model option with the programing language C++. The model is then compiled
into a DLL (dynamic link library) module that can be loaded and run as a built-in plug-in
of FLAC3D. The FLAC3D MSDP,,-EPP model is partially validated against some existing
analytical solutions developed for evaluating the stresses and displacements distributions
around cylindrical openings in plane strain. The new 3D model is applied to evaluate the
vertical and horizontal stress distributions in three-dimensional backfilled stopes, which
are compared to those obtained with the commonly used Mohr-Coulomb EPP (MC-EPP)
model. The results comparison highlights some of the new model’s distinctive features
such as a better fit to the yield (failure) surface for a wide range of geomaterials and a more
representative volumetric yield behavior at relatively high mean stress.

2. The MSDP,, Nonlinear Multiaxial Criterion

The general form of a plastic (yield) criterion for isotropic materials can be expressed
in terms of commonly used stress invariants [1,31,32]:

F(L, J2, J3) = const (1)
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where I is the is the first invariant of the stress tensor aij; 2 and /3 are respectively the
second and third invariants of the deviator stress tensor S;; = 0;;—pd;;; ;; is the Kronecker
delta (6;; =1ifi=jand 6; =0ifi # J); the mean stress p is defined as follows:

P=3 )

The three invariants I, [, and J3 can be expressed using the general stress ten-
sor components [1,8], or in terms of the major (¢1), intermediate () and minor (¢3)
principal stresses:

L=04+0+03 3)
= % {(01 — ) 4 (0 — 03)* + (03 — 01)2] 4)
Js = (01 —p)(o2—p)(oz —p) ®)

The MSDP,, criterion can then be written as
F=),~FF;=0 ()

where Fj is associated with the nonlinear surface for conventional triaxial compression
condition (01 > 0y = 03), while F defines the surface in the 7-plane. These two functions
are usually expressed as follows [21]:

] @)

K= [a2(112 - 2a111> a2 —a3(l — )2

Fr— b ®)

[62 + (1 — b2) sin?(45° — 1.50)] "/

The Macaulay brackets (x) (= (x + | x1)/2, where x is a variable) are used in Equation (7)
to avoid a negative term; « (taken from the DP criterion), a; and a, are material parameters
related to shear failure or yielding:

B 2sin¢
‘= V3(3 —sin¢) ©)

_ Co—To C(%_ (%)2

- 1
“ 2 6a2(Co + Tp) (10)
1/2
Cot <%) 21 Co Ty 11
ap = m - 010 (11)

where ¢ is internal friction angle, Cy is uniaxial compressive strength (UCS), T is uniaxial
tensile strength (UTS, positive value) and b is a shape parameter defining the surface in the
rt-plane. Material parameter a3 is related to the volumetric yield (cap) surface:

_ a?(If, —2mby,) + a3
az = > (12)
(Iln - Ic)

where I; is the I; value where the cap starts and Iy, is I; value where it intersects the
hydrostatic axis (o1 = 0, = 073) in the principal stress space.
The Lode angle 6 is defined as

0= lsirf1 3v3Js

37 2k

,—30° <0 <30° (13)
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From this definition, one can deduce 6 = 30° for conventional triaxial (axisymmetric)
compression (CTC, with o7 > 03 = ¢3) and § = —30° for reduced triaxial (axisymmetric)
extension (RTE, with o; = 0 > 03). Under CTC testing conditions, 6 = 30° and the commonly
defined deviatoric stress g = (3] I2=01 — 03

Figure 1 shows a typical representation of the MSDP,, criterion in the I;—J,!/? plane
(Figure 1a) and 7r-plane (Figure 1b). In the I;-J,'/? plane, the MSDP,, envelope can be
decomposed into two main parts. In the first part when I; < I, J,'/? increases nonlinearly
with I;. In the second part when I; > I, the cap controls the yield surface and J,!/? tends
to decrease with an increasing I;. For dense geomaterials such as hard rocks, the values
of I and I, can be very high so the cap can be neglected for most applications; this is
not the case however for porous materials such as soils, backfills and some weak rocks.
In the 7r-plane, the usual shape of the MSDP,, envelope defined above by Equation (8)
depends on the value of parameter b. The typical value of b goes from 1 to about 0.7 and
the corresponding envelope evolves from a circle (for b = 1) to a rounded triangle (b < 1) in
the rt-plane, as shown in Figure 1b.

(b) o
(a) o2

No cap (high /)

Cap (low /)

Figure 1. MSDP,, failure surface in the (a) L-J,1/2 plane and (b) m-plane (01 *, 03 *, 03 * are the
projections of the principal stress axes in the 7r-plane).

The main characteristics of the MSDP,, criterion can be summarized as follows:

e Atlow mean stress, the criterion reduces to the Mises-Schleicher criterion (for b = 1).
As the mean stress increases, the MSDP,, surface in the I;—J,1/2 plane becomes linear
with a slope angle « (Figure 1a), similarly to the DP criterion (for b =1).

e  The MSDP, surface has no sharp apex (corner) for negative I values. This curved
shape produces a natural tension cut-off that is physically and experimentally more
representative than many other criteria. It is also advantageous from a numerical
point of view because no extra algorithm operation is needed to handle the corner or
apex [2,33-35].

e  The rounded surface depends on the Lode angle 6 so it can take into account the effect
of the loading geometry in the 7-plane (again without corners).

e  The limiting pressures for the cap onset I and closure I, can be determined explicitly
from experimental testing. The cap curvature can also be related to experimental data
and then used to define the volumetric strain (through the plastic potential Q).

o  The criterion becomes insensitive to the mean stress when « = 0 or ¢ = 0°; unconsolidated-
undrained (UU) conditions can thus be simulated.

e  The criterion can be applied to a wide variety of geomaterials, from low porosity
rocks, to stiff soils and to high porosity materials (e.g., porous rocks, loose soils and
backfill); it has also been applied to other types of engineering materials such as metals
and ceramics.

Additional details can be found in Aubertin et al. [20,21], Aubertin and Li [12] and
Li et al. [23].
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3. Implementation of the Multiaxial MSDP,,-EPP Model in FLAC3D

The constitutive model formulation in FLAC3D can be expressed in terms of the
principal stresses 01, 03, 03 and the principal strains ¢3, €, €3, using procedures described
by Itasca [25]. The total strain increment Ag; can be divided into elastic Ag;® and plastic Ag;?
strain increments (withi=1, 2, 3)

Ae; = A€ + Ael (14)

The principal stress increments associated with the elastic strain increments can then
be expressed as follows:

Aoy = S1(A€f, Aeh, Ael) = B1A€S + By (Aeh + Ael)
Aoy = Sy (A€, AeS, AeG) = B1A€S + B (AS + AeY) (15)
Aoz = S3(Ae5, Aeh, Ae§) = B1AeS + B (Aes + Aeh)

where 51, Sy, S3 are linear functions for the Hooke’s law; 1 and f; are material parameters
(constants) defined in terms of the isotropic shear modulus G and bulk modulus K,

,31 =K+ éG
16
oK. ic (16)
The plastic strain increment is given by the flow rule
Ae’ = A 9Q (17)

i 80'1'

where 07; is the current stress state component (or initial stress state); A is plastic coefficient;
Q is the plastic potential (function), defined as follows

Q=] CRF2 (18)

where coefficient ¢ serves to control the plastic deviatoric and volumetric strain components.
When ¢ = 1, the plastic potential function is the same as the yield criterion (Q = F) so the
flow rule is associated. When ¢ < 1 (very small value), the plastic potential leads to
quasi-isovolumetric plastic strains, typical of critical state [15,36].

Combining Equations (14) and (17) leads to

0Q
Aei = Agj — Aa—o_i (19)
Substituting Equation (19) into Equation (15) gives
_c (9Q 9Q 9Q
Ao; = Si(Ae1, Aey, Aez) — AS; (8(71' 30, 303 (20)

Under varying stress conditions, the new stress state o, corresponding to the total
strain increment Ag; is expressed by

N =0, + Ac; (21)

In the user-defined model, the induced (postulated) elastic stresses o are obtained
by adding a “trial” stress increment to the current (initial) stress state ;. The “trial” stress
increment is computed by using the incremental form of Hooke’s law and the total strain
increment Ag;. The induced elastic stresses ;! can be expressed as follows:

ol = 07+ S;(Aeq, Aey, Ae3) (22)
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Substituting Equations (20) and (22) into Equation (21) leads to

o =af - )‘St(aQ °9 aQ) (23)

901" 90y 303

Equation (23) is called the plastic correction in FLAC3D.

The induced elastic stresses are initially taken as the new stress state and then adjusted
if required. When the new stress state is within the elastic domain (i.e., F < 0), the new
stress state is updated by directly using the incremental expression of Hooke’s law. When
the new stress state would lead to F > 0, the plastic coefficient A is calculated from the
MSDP,, yield criterion to bring the new stress state o;" determined by Equation (23) on the
yield surface (F = 0), which results in

2 2
Flo,of, ol ) =1 = (RY) (F¥) =0 (24)
Substituting Equation (23) into Equation (24) gives the quadratic equation:
AAN> +BA4+C=0 (25)

The correct value of A corresponds to the root with smaller absolute value of the
two obtained after solving Equation (25).

Since Fj includes two pieces and depends on the value of I;, the expressions of A, B
and C in Equation (25) depend on whether (or not) I; < I.. Hereafter, their expressions
are introduced with “s” denoting a shear response (for I; < I;) and “v” denoting the
contribution of a volumetric response related to the cap (I; > I.).

When I; < I, Fy becomes

1/2
E = [az (112 — 2a111) + ag} (26)
The corresponding plastic potential is then expressed as
Q= )2~ §(F)°F (27)
The expressions for A®, B® and C° are given in Appendix A.
When [ > I, Fj is written as
1/2
By = [02(8 —20h) + a3 — as(h — )] (28)
and )
Q" = > — &(F) Fx (29)

The expressions for A?, B and C” are given in Appendix A.

To simplify the calculations of partial derivatives, variation of Lode angle 0 is postu-
lated to have a negligible effect on F; to obtain the new (updated) stress state (from the
induced elastic stresses). This simplification leads to the following function in the 7-plane:

b
[b2 + (1 — b2) sin?(45° — 1.50!

172
)]
with

1. 4 33
= gsinT ——=
2/(2)
The computational procedure of the MSDP,-EPP model in FLAC3D v6.0 (Itasca,
2017) starts with adding the stress components, which are computed from the incremental

oN ~ g!

(31)
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Hooke’s law by using the total strain increments to the current (initial) stress state ¢; and the
induced elastic stresses o;! are obtained (Equation (22)). Then, the o values are substituted
into the yield function F to determine if these are in the elastic domain (F < 0) or the plastic
domain (F > 0). If in the elastic domain, the new (updated) stress state oN equals to ol If
in the plastic domain, the new stress state ;" is updated by applying the plastic correction
(Equation (23)) to o;l. The “corrected” new principal stresses N, 05N and 3N can then
be used to update the stress tensor ¢;; in the system of reference axes, assuming that the
principal directions have not been affected by the occurrence of a plastic correction.
Figure 2 shows the computational scheme for the implementation of the non-associated
MSDP,-EPP model in FLAC3D 6.0 [25]. As indicated above, FLAC3D v6.0 provides the
option to load and run user-written model in DLL (dynamic link library). The implementa-
tion of the MSDP,-EPP model was hence performed by creating a user-written DLL, which
was created by compiling a program written with C++ language in Visual Studio 2017.

Initial stress state o;

Strain increment Ace;

!

Induced elastic stresses o, = o, + S, (A£1,A52,Ag3)

o =0 Calculate 4 o =o'

¢

Plastic correction

O'NZGI—ZS[EQQJ

I

Stress tensor o

Unbalanced force satisfied or
maximum iteration reached?

End

Figure 2. Computational scheme for the implementation of the non-associated MSDP,,-EPP model
in FLAC3D.
4, Validation of the FLAC3D MSDP,-EPP Model

After its implementation in FLAC3D, preliminary simulations with the user-defined
MSDP-EPP model were conducted to verify that the formulation and code programming
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were correctly done and to validate (in part) the numerical results. The main results from
this assessment are summarized here.

The first validation is made against the analytical solution for the stresses around
a cylindrical opening in a MSDP,,-EPP material developed by Li et al. [23] for the open
MSDP,, surface (without cap) and the solution of Li and Aubertin [37] with the closed
MSDP,, yield surface (with cap). It should be noted that the analytical solutions were
developed for a constant Lode angle 6 = 0°, even though the actual Lode angle tends to
vary slightly in the plastic region (between about —19° and —25°) along radial coordinate r
around the cylindrical opening, while 6 = 0° in the elastic region [23,37].

Figure 3a shows a cylindrical opening in an elastic-perfectly plastic material subjected
to a hydrostatic far-field stress Pj; an internal pressure py is applied to the wall of the
cylindrical opening (in plane strain condition). In the figure, j is the radius of the opening,
R is the radius of the interface between the plastic and elastic regions, ¢, and o are the
radial and tangential stresses respectively and r and 1 are the corresponding cylindrical
coordinates. The calculations are made for rg = 1 m, Py = 30 MPa and py = 2 MPa. The
MSDP,-EPP model parameters are given in Table 1.

o !f // [1] -
[] //
il
[[]//
lll"ll’lll%’ d «— P
s
1177
HiA05s -
%z;,w%g”gﬁf —
O ”"% - ///1/4—
% 5 o B ey e [
/ Elastic region N :::/—//'/
o T 1 |
l—
/ ' X v > ¢
@) (b)
Figure 3. (a) A cylindrical opening under far-field isotropic stresses outside and an internal pressure
applied to the inside wall, (b) a numerical model built with FLAC3D after taking advantage of the
symmetry along two axes.
Table 1. Parameters used for comparing the results obtained with the FLAC3D MSDP,,-EPP model
and analytical solutions (taken from Li and Aubertin [37]).
Parameter G (GPa) K (GPa) Co (MPa) Ty (MPa) ¢ () I. (MPa) as
With cap 20 60 7 0.2 27 10 0.06
No cap 20 60 7 0.2 27 - 0

Figure 3b shows a numerical model with domain size d x d and the boundary condi-
tions. The model built with FLAC3D takes advantage of the quarter-symmetry geometry.
The analytical solutions were developed for a plane-strain condition, so the numerical
simulations are conducted in 2D even if the MSDP,-EPP model implemented in FLAC3D
is three-dimensional. A commonly used method to do that is to isolate a thin domain in the
direction perpendicular to the axis, with the displacements fixed in the direction parallel to
the opening axis but allowed in the directions perpendicular to the axis. The thickness t of
the modeling domain is taken as one-fifth of the cylinder radius, i.e., t = 0.2 m.



Processes 2022, 10, 1130

9 of 22

A sensitivity analysis was conducted to obtain an optimal configuration of the nu-
merical model, which is based on an optimal domain size and optimal mesh. The optimal
domain corresponds to the smallest size of the model to minimize the time of calculation
and large enough to ensure stable and reliable numerical results. Similarly, an optimal mesh
size m is associated with the coarsest elements (blocs) to minimize the time of calculation,
with elements that are fine enough to ensure stable and reliable numerical results.

Figure 4 shows the variation of the radial displacements (Figure 4a) and stresses
(Figure 4b) at a reference point M (shown in Figure 2) as a function of the mesh size (for
domain size d = 10 m). In this figure, the mesh size is defined from the minimum size of
the first layer of the grid around the opening, which increases at a constant ratio from the
opening wall to the domain boundary (based on radial meshing; Itasca [25]). The results
shown in Figure 4 indicate that, for both versions of the MSDP,-EPP model (with and
without the cap), the numerical results tend to become stable once the mesh size is equal to
or smaller than 0.02 m. The optimal mesh size corresponds to m = 0.02 m.

60

35
(a) * u (without cap) (b)
£ J a4y (with caj 50
£ e *7.47”7”””77””’(”7”?)”77 © o, (without cap) . )
= “ toaa . without ca
S 25 4. = 40 o, W p) .
£ .. % o, (with cap)
8 —_ A with ca
E 2.0- a 2 30 o, ( p) .
& .., e o U Lt
T 16pf--F- St e gt T ®D ple---v-00-o_** ____ " _____2
= . | oA m A —A-A-A A _A_A_ T ____
g 10 .
o a 10 o
*e
0.5, | N peomo-naa B8
\ . . 01— e - - :
0.01 0.1 1 0.01 0.1 1
Mesh size [m] Mesh size [m]|

Figure 4. Variation of the (a) radial displacements and (b) stresses at point M (see Figure 3b) as a
function of the mesh size (with d = 10 m), obtained from the MSDP,,-EPP model with and without
the cap.

Figure 5 shows the variation of the radial displacements (Figure 5a) and stresses
(Figure 5b) as a function of the domain size (with m = 0.02 m). It can be seen that 4 =10 m
is the smallest value, which remains large enough to ensure stable and reliable numerical
results. The optimal numerical model is then constructed with m = 0.02 m and d = 10 m,
which are used to conduct the numerical simulations.

28

9
8 (a) . sy (without cap) o4 (b)
'g 4 U (with cap)
E 7- Qg -Ceeeeee -0 e - --------0----- .-
€ 8- T A
2 [+ A A —— AAhh A g — g m—— A ————A-——— =g —
E 16
5 =
g I
g 4 e . @ 12 © o, (without cap)
% 3! a., % * o, (without cap)
s T T S it D 8 & o, (with cap)
g 2_____._'_o_._.._._*___'____f____. _____ .- A zrw(withcap)
4 1 4
F =0 ODDD 0 = D e = =k == = = D = = = = Q= = = — o =
0 0 v : i T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Domain size [m] Domain size [m]

Figure 5. Variation of the (a) radial displacements and (b) stresses at point M (see Figure 3b) as a
function of domain size (with m = 0.02 m) obtained from the MSDP,-EPP model with and without
the cap.

Figure 6 shows the radial (¢,) and tangential (cy) stress distributions obtained from
the numerical modeling and analytical solution for the cases of a closed MSDP,, surface
(Figure 6a) and an open MSDP,, surface (Figure 6b). The agreements between the numerical
and analytical results are excellent in all cases. Additional calculations were also made for
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other material parameters and loading conditions (results not shown here) to help assess the
validity of the MSDP,-EPP model and its numerical implementation in FLAC3D. The good
agreements obtained between the numerical and analytical results support the validation
and indicate that the analytical solutions developed by considering a constant Lode angle
provide a good approximation of the stress distribution around a cylindrical opening.

50 60
(@ (b)
40 50+ B
N
g Ol
g 30 } g : \\\u«hk_h
@ w 30 e =
7 7 @ i o0
5 20y -
«n i c o, (analytical) » 20 & —— o, (analytical)
10 e © o, (numerical) 5 © o, (numerical)
f o, (analytical) 10+ 55 — o (analytical)
& ~oo, (numerical) ( c, (numerical)
o+ 0r —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
rim] rim]

Figure 6. Distributions of the radial and tangential stresses, obtained from the numerical simulations
and analytical solutions developed by Li and Aubertin [37] (a) for a closed MSDP,, surface (with cap)
and (b) for an open MSDP,, surface (no cap).

The second component of this validation of the FLAC3D MSDP,-EPP model is per-
formed against the analytical solution of Salengon [38,39], developed for evaluating the
distribution of stresses and radial displacements around a cylindrical opening in a MC-EPP
material (considering an associated flow rule). Parameter ¢ = 1 (associated flow rule) and
az = 0 (without cap) are thus taken for the FLAC3D MSDP,-EPP model. As the MSDP,, is
nonlinear and MC is linear in the I;—J,'/? plane, the MC strength parameters ¢ and ¢ were
chosen so the two yield surfaces would correlate to each other (as well as possible) in the
stress domain of interest around the cylindrical opening (for 50 MPa < I; < 100 MPa in
this case). The resulting MC strength parameters are ¢ = 32° and ¢ = 3.9 MPa for matching
the open MSDP,, surface with the parameters given in Table 1. The two yield surfaces in
the I;-J,'/2 plane (for 8 = 0°) are very close to each other for the stress states of interest,
as shown in Figure 7. A constant Lode angle § = 0° is again considered an acceptable
approximation for the stresses around the cylindrical opening.

354
- - --Mohr-Coulomb

30{ ¢=32°c¢=3.9MPa

= 25
o

2 20/
S 4s5]

——MSDP (no cap)
C,=7MPa, T =0.2 MPa
$=27°,b=0.75

20 0 20 40 60 80 100 120 140 160
I, [MPa]

Figure 7. The open MSDP, yield surface (no cap) and corresponding Mohr-Coulomb surface in
L],/ plane (for 6 = 0°).

Figure 8 illustrates the distributions of the stresses (Figure 8a) and radial displacements
(Figure 8b), obtained from FLAC3D MSDP,-EPP model and calculated with the analytical
solutions of Salencon [38,39]. The good agreement between the two types of solutions
indicates that the FLAC3D MSDP,-EPP model correctly represents the problem at hand.
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This (partial) validation supports the use of the FLAC3D MSDP,-EPP model to analyze the
elastoplastic response of geomaterials around underground openings.
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Figure 8. Distributions of the (a) stresses and (b) radial displacements, obtained from the numer-
ical simulation with FLAC3D MSDP,-EPP model and calculated with the analytical solutions of
Salencon [38,39].

5. Applications of the FLAC3D MSDP,-EPP Model

In order to further assess the features of the new FLAC3D MSDP,,-EPP model, sim-
ulations are conducted to analyze the mechanical response of cemented backfill in a 3D
vertical mine stope.

Backfill is commonly used in underground mine excavations to ensure safe working
conditions and improve ore recovery. Underground backfilling is also gaining momentum
as a mine waste management approach [40]. Evaluating the stresses in backfilled stopes is
of great importance and interest for underground mine stability. Until recently however,
most of the numerical analyses were done under plane strain (2D) conditions. Only a
few investigations have included 3D numerical analyses with the Mohr-Coulomb EPP
model [27-29,41-43].

Figure 9 shows the conceptual model of a three-dimensional vertical mine stope in a
semi-infinite rock mass before (Figure 9a) and after (Figure 9b) the addition of backfill. This
stope is located at a depth of 500 m below the ground surface. It is excavated to a height of
45 m; the width is 6 m in the two horizontal directions (Figure 9a). After excavation, the
stope is filled by a cemented (cohesive) backfill to a final height of 44.5 m, leaving a void
space of 0.5 m at the top (Figure 9b). The stress distribution in the backfill and surround
rock mass then depends on the fill settlement under its own weight and interaction with
the rock walls. The stability of the rock walls of the empty stope is first evaluated using
both MSDP,-EPP and MC-EPP models, respectively.

Figure 10 shows the corresponding numerical model of the stope, built by FLAC3D
after excavation, before backfilling. Half of the stope is modelled to take advantage of the
symmetric geometry. As indicated in the figure, the boundary conditions applied to the
model domain are defined with a free surface on the top boundary and a fixed surface at the
base. The conditions imposed along the four external vertical surfaces allow displacements
within their respective plane, but not in the perpendicular direction. The rock mass is
considered homogeneous, isotropic and perfectly elastoplastic; it is characterized by the fol-
lowing properties: E, = 30 GPa (Young’s modulus), v, = 0.3 (Poisson’s ratio), 7, = 27 kN/ m3
(unit weight). These parameters are used for both of the MC-EPP (with a tension cut-off
at Tp) and MSDP,-EPP models. The strength parameters are ¢ = 32°, c = 3.9 MPa and
T = 0.2 MPa for the MC criterion and ¢ = 27°, Cy =7 MPa, Ty = 0.2 MPa and a3 = 0 for the
open MSDP,, criterion. The rock mass is subjected to three-dimensional in-situ stresses, in-
cluding the vertical in-situ stress o, (z-direction) generated by the overburden (i.e., oy = 7, h;
h is the depth below ground surface), maximum horizontal in-situ stress in the x-direction
oy taken as two times the vertical in-situ stress (i.e., oy = 20;) and minimum horizontal
in-situ stress in the y-direction 0y, (varying values in the different simulations).
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Figure 9. Conceptual model of a three-dimensional vertical stope in rock mass (a) before and (b) after
being backfilled.
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Figure 10. A three-dimensional numerical model of the vertical stope in rock mass built by FLAC3D.

Sensitivity analyses are performed to ensure stable and reliable numerical results and
obtain optimal numerical model for each case. For a numerical model such as the one
shown in Figure 10, the sensitivity analysis gives the optimal mesh m and optimal domain
size d.

The procedure is illustrated in Figure 11, which shows the variation of vertical dis-
placement (z-direction) and horizontal stress oy, at a reference point N (at the center of
the stope base, see Figs. 9a and 10) as a function of the mesh size (with d = 500 m) for
simulations conducted with the MSDP,-EPP model, for an in-situ stress state 0y, = oy = 207.
The results indicate that stable numerical results are achieved with m = 0.5 m. Figure 12
shows the variation of the vertical displacement (z-direction) and oy as a function of the
domain size (with m = 0.5 m). It is seen that the numerical results become stable when the
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domain size d is equal to or larger than 500 m. The results thus indicate that the optimal
numerical model has a mesh size of 0.5 m and a domain size of 500 m.
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Figure 11. Variation of the (a) vertical displacement (z-direction) and (b) horizontal stress oy at point
N (see Figures 9a and 10) as a function of the mesh size m (for d = 500 m).
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Figure 12. Variation of the (a) vertical displacement (z-direction) and (b) horizontal stress oy, at point
N (see Figures 9a and 10) as a function of the domain size d (for m = 0.5 m).

Figure 13 shows the yielded areas around the stope along a vertical cross cut section
in the xz symmetric plane, obtained from the numerical simulations conducted with the
MSDP,-EPP and MC-EPP models, respectively. The results have been obtained for oy,
equals to 1, 1.4 and 2 times ¢, while 0, and oy are kept unchanged. It can be seen that
the size of yielded area obtained with the MSDP,-EPP model significantly increases as
the intermediate in-situ stress oy, increases from o, to 20, indicating that the intermediate
in-situ stress plays an important role in the response and stability of openings. With the
MC-EPP model however, the yielded area stays almost unchanged when ¢}, increases from
0, to 20, because the MC criterion is based on the 2D formulation and thus fails to consider
explicitly the effect of the intermediate principal stress in the 3D extension used in FLAC3D.
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Figure 13. Yielded areas around the stope along a vertical cross cut section in the xz symmetric plane,
obtained from the numerical simulations with the MSDP,,-EPP and MC-EPP models, respectively,
considering (a) o, = 0y, (b) 0y, = 1.40 and (c) 0y, = 207.

Figure 14 shows the corresponding numerical model after the placement of backfill in
the stope, built with FLAC3D. As was the case for the numerical model shown in Figure 10,
half of the stope is modelled to take advantage of the symmetric geometry. The boundary
conditions are defined by a free top boundary surface, a fixed bottom boundary surface
and four vertical external surfaces whose displacements are allowed within their respective
plane, but not allowed in the direction perpendicular to that plane. The stope backfilling is
performed in multiple layers after the convergence of the rock walls has been completed.
The thickness of each layer is 5 m (except for the top layer having a thickness of 4.5 m).
A mesh size m of 0.5 m is used for the backfill; the domain size d = 500 m, determined
for the rock wall stability analysis shown in Figure 10, is also used here. As the backfill
is placed in the open stope after all the elastic and plastic strains have been released, the
mechanical response of the backfill is almost independent on the in-situ stresses and rock
model. The rock mass is thus considered homogeneous, isotropic and linearly elastic
(without yield), characterized by E, = 30 GPa, v, = 0.3 and 7, = 27 kN/ m3. The vertical
in-situ stress o, is generated by the overburden and the horizontal in-situ stress is isotropic,
with 0y, = 0 = 20.

The stresses in the backfilled stope are evaluated using the MSDP,,-EPP and MC-EPP
models. The weakly cemented backfill is characterized by E; = 300 MPa (Young’s modulus),
vy = 0.327 (Poisson’s ratio), p, = 1800 kg/m?> (density). The MSDP,, criterion is defined by
¢ =30°, Cyg =10 kPa, Ty = 0.2 kPa, b = 0.75, I, = 100 kPa and a3 = 0.06. A value of ¢ = 0.01
is used to express the plastic potential Q for the non-associated flow rule to represent the
quasi-isovolumetric plastic strain of the backfill following settlement and mobilization of
the frictional stress along the vertical walls. The MC yield parameters were selected so
the surface would be close to the MSDP,, yield surface for comparative purposes of the
stresses obtained from numerical simulations; the corresponding MC strength parameters
are ¢; = 31°, c = 3.8 kPa and T = 0.2 kPa. A non-associated flow rule was imposed with
¢4 =0° (dilation angle). It is noted that the values of the Poisson’s ratio v, and internal
friction angle ¢ are interrelated through v, = (1 — sin¢g)/(2 — sin¢g) to ensure a consistent
at-rest earth pressure coefficient Ky [28,29,44-46]. This results in a value of Poisson’s ratio
vp = (1 — sing) / (2 — sing) = (1 — sin31°) / (2 — sin31°) = 0.327 and a Jaky’s [47] earth
pressure coefficient at rest Kp = 1 — sing = 1 — sin31° = 0.485; the same value of K is
obtained from the equation based on Poisson’s ratio. The theoretical horizontal stress due
to the overburden can then be calculated as oy, = Kyo,z.
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Figure 14. The numerical FLAC3D model of the three-dimensional vertical backfilled stope in an
elastic rock mass.

Figure 15 shows the vertical (0;;) and horizontal (o) stress distributions along the
centerline (CL) of the backfilled stope obtained with the two models. It is seen that the
general tendencies of the stress distributions obtained by numerical modeling with the
MSDP,,-EPP model and MC-EPP model are similar. The vertical and horizontal stresses
follow the overburden stresses (marked as dashed lines in Figure 15) at shallow depth,
but the overburden stresses significantly exceed the stresses in the backfill deeper in the
opening due to the well-known arching effect associated with the frictional stress transfer
along the rock walls.
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Figure 15. Stress distributions along the centerline (CL) of the backfilled stope with the MSDP,-EPP
model and the MC-EPP model obtained by FLAC3D for (a) vertical stress ¢, and (b) horizontal
stress Oyy.

The trends obtained here are consistent with those given by previous numerical simu-
lations and also by analytical solutions developed with the MC-EPP model [27,29,45,48,49].
The results shown here nonetheless indicate that the vertical and horizontal stresses ob-
tained by the MSDP,,-EPP model are smaller than those obtained by the MC-EPP model,
due to the differences in the MSDP, and MC yield surfaces. Representative field exper-
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imental data are necessary to evaluate which one is more representative of the actual
stress state.

One of the specific features of the MSDP,-EPP model is the introduction of a cap
on the yield surface, which starts at the key parameter I; (not included in other criteria
and models). As indicated above, the value of I. controls the cap position on the yield
surface, which then departs from the (quasi) linear strength increase given by the most
other models. Additional simulations were conducted to investigate the effect of I on the
stress distributions in the backfilled stope. Three values (I = 20 kPa, 30 kPa, 100 kPa) were
used with the MSDP,,-EPP model, while the other parameters were kept constant for all
cases (Ej = 300 MPa, v, = 0.327, o, = 1800 kg/m?3, ¢ = 30°, Cy = 10 kPa, Ty = 0.2 kPa, b = 0.75,
a3 =0.06 and ¢ = 0.01).

Figure 16 shows the vertical (¢;;) and horizontal (o) stress distributions along the
CL obtained for different I.. The results indicate that the vertical and horizontal stresses
along the CL decrease with an increasing I, due to the higher shear strength (larger yield
surface) of the backfill. The results also indicate that the arching effect tends to become
more significant for stronger cemented (cohesive) backfill. These calculations highlight the
importance of including the effect of the cap through I., which is a unique characteristic of
the MSDPy-EPP model.

o, [kPa] o, [kPa]
0 30 60 90 120 150 180 0 20 40 60 80 100 120
Ot==ar [y N Ot==x ey
ﬁL“i‘”‘“-»_ L»_Ai\‘\\‘
A, et > Ao TT=-o_
% f“}j# -~ 10 }AA - I,=20kPa
— jo7 ] [ o! .
3 % B O 4 1 =30kPa
= " — 5o Bo_ -
£ 5 A} 57% £ 2 5 2 2 /,=100 kPa
3 o - & o~~~ -Overburden
S b A4 s £ 4, 8
g 20 N g 30 RPN A
<3 | =20kPa & d g
@ s [=30kPa @ 9 :
40 ; - t A L‘:r 40 A )
> 1.=100 kPa bo %4 P05 $ A, o
- ---Overburden (a) (b)
50 50

Figure 16. Stress distributions along the CL of the backfilled stope obtained from the numerical
simulation conducted with the MSDP,-EPP model by considering different I, for (a) vertical stress
02 and (b) horizontal stress o yy.

To further illustrate the features of the FLAC3D MSDP,,-EPP model with associated and
non-associated flow rules, the stresses in the backfilled stope shown in Figures 9b and 14
are analyzed by considering ¢ = 1 for associated flow rule.

Figure 17 shows the vertical (0,;) and horizontal (o) stress distributions along the
CL of the backfilled stope obtained by numerical modeling with the FLAC3D MSDP,-EPP
model by considering ¢ = 1 (associated flow) and ¢ = 0.01 (non-associated flow), respec-
tively. It can be seen that the vertical stress along the CL is much lower for the associated
flow rule than that for the non-associated flow rule (Figure 17a), due to the significant
volumetric strains (dilatancy) which tend to increase the arching effect. For the same
reason, the horizontal stresses along the CL for the associated flow rule significantly exceed
the overburden horizontal stress at shallow depth between around 0 to 5 m (Figure 17b).
Similar results have been shown by Li and Aubertin [27] with the MC-EPP model for 2D
backfilled stopes. Figure 18 shows the vertical stress distribution along the CL of the 3D
backfilled stope (Figures 9b and 14) obtained by numerical modeling with the MC-EPP
model by considering a non-associated (dilation angle ¢; = 0°) and associated (¢; = ¢ = 31°)
flow rules. The results suggest once again that the numerical modeling with an associated
flow rule tends to lead an underestimation of the stresses in backfilled stopes.
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Figure 17. Stress distributions along the CL of the backfilled stope obtained from the numerical
simulation conducted with the MSDP,,-EPP model by considering the non-associated (¢ = 0.01) and
associated (¢ = 1) flow rules for (a) vertical stress ¢, and (b) horizontal stress o yy.
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Figure 18. Vertical stress o, distributions along the CL of the backfilled stope obtained from numeri-
cal simulation conducted with the MC-EPP model by considering the non-associated (dilation angle
¢4 = 0°) and associated (¢; = ¢ = 31°) flow rules; other material parameters are ¢ = 31°, c = 3.8 kPa
and Ty = 0.2 kPa.

6. Discussion

The non-associated MSDP,,-EPP model recently implemented in FLAC3D is applied
here for the analysis of underground backfilled stopes, to illustrate some of the features of
this three-dimensional nonlinear model. The MSDP,, criterion used here was previously
shown to capture the essential characteristics of yielding and failure of a large variety of
geomaterials, including soils, rocks and rockfills. The MSDP,-EPP model uses a closed
yield surface with a controllable cap at high mean stress. It employs a non-associated flow
rule to better describe the deviatoric and volumetric plastic strains. The availability of the
FLAC3D MSDP,-EPP model will favor its application to help solve various geotechnical
engineering problems such as those related to the behavior of slopes, tunnels, dams and
barricades in underground mines.

Despite the various advantages of the model, there are a few limitations with the
FLAC3D MSDP,-EPP model. For instance, the model has not yet been applied to cohesion-
less (granular) materials such as sand, rockfill, waste rock and uncemented backfill. This
can be done by expressing the MSDP,, criterion with Cy = Ty = 0 in Equations (10) and (11),
which leads to a1 = a; = 0. Equation (7) then becomes:

1/2
Fy = {02112 —a3(l — L:)Z} (32)
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This specific version of the criterion has not yet been validated in the context of the
FLAC3D MSDP,,-EPP model.

Another limitation of the model, common to all perfectly plastic models, is the absence
of strain hardening and softening in the formulation. This is acceptable for many types of
application, but not for some specific ones [3,4,8]. Additional work is considered for an
evolving yield surface in the principal stress space with the MSDP,,-EPP model.

Also, the model has not yet been validated for coupled problems involving pore water
pressures (particularly for transient conditions).

Despite such limitations, the FLAC3D MSDP,,-EPP model offers a powerful alternative
to simulate the complex mechanical response of geomaterials as a built-in model in FLAC3D
(and other commercial codes).

7. Conclusions

The non-associated MSDP,, elastic-perfectly plastic constitutive model (MSDP,,-EPP
model) has been implemented in FLAC3D with a user-written DLL under the assistance of
the C++ plug-in option. The resulting FLAC3D MSDP,,-EPP model is validated, in part, by
comparing simulation results with existing analytical solutions developed for evaluating the
stress and displacement distributions around cylindrical openings. The FLAC3D MSDP,,-
EPP model is then used to analyze a specific three-dimensional geotechnical problem,
taking into account the nonlinear stress-strain behavior, yielding and volumetric strains
associated with the cap surface and considering an associated or non-associated flow rule.
Application of the FLAC3D MSDP,,-EPP model is illustrated with simulations conducted
to analyze the stability of a 3D open stope and stress distribution in the backfilled stope.
The results were compared with those obtained with the commonly used Mohr-Coulomb
(MC-EPP) model. The numerical results obtained with the MSDP,,-EPP model indicate that
the size of yielded area around the empty stope significantly increases as the intermediate
in-situ stress increases, indicating that the intermediate in-situ stress plays an important
role in the response and stability of openings. This effect is not as clearly perceived with the
MC-EPP model, however, as the simulated yielded area stays almost unchanged when the
intermediate in-situ stresses are increased, hence showing that this model largely neglects
this aspect. Other particular features of the FLAC3D MSDP,-EPP model related to the
closed yield envelope (with a cap) are shown with the stress analysis of backfilled stopes.
These results show that when a higher mean stress is necessary to reach backfill volumetric
yield surface, defined by the closed (cap) envelope, the backfill becomes stronger, leading
to more pronounced arching effect and smaller stresses in the backfilled stope. This is a
unique characteristic obtained with numerical simulations conducted with the FLAC3D
MSDP,-EPP model. It can thus be considered as a very useful numerical tool to analyze
and solve geotechnical engineering problems. Nevertheless, improvements are still being
considered for the model to minimize its limitations. For example, the model has not
yet been applied to cohesionless (granular) materials; strain hardening and softening are
not included in the formulation; the model has not been validated for couple problems
involving pore water pressures. Work is underway to address these specific issues.

Author Contributions: F.Z.: formulation, programming, numerical modeling, literature and writing
of the original draft. L.L.: project administration, supervision and editing of the original draft. M.A.:
co-supervision and editing of the original draft. R.S.: co-supervision and editing of the original draft.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Natural Sciences and Engineering Research
Council of Canada (RGPIN89749-04, RGPIN-2018-06902, ALLRP-566888-21), Fonds de recherche du
Québec-Nature et Technologies (2017-MI-202860), Mitacs (IT12569) and industrial partners of the
Research Institute on Mines and the Environment (RIME UQAT-Polytechnique; http:/ /rime-irme.ca/
accessed on 1 May 2022). The authors are grateful for their support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.


http://rime-irme.ca/

Processes 2022, 10, 1130

19 of 22

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge the financial support from the Natural Sciences and
Engineering Research Council of Canada, Fonds de recherche du Québec-Nature et Technologies,
Mitacs and industrial partners of the Research Institute on Mines and the Environment.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Expressions for AS, BS and C®

7

When [; < I, the expressions for A, B and C in Equation (25) are suffixed with a “s” to
denote a shear response and expressed as follows:
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Appendix B. Expressions for AY, B® and C”

7

When I; > I, the expressions for A, B and C in Equation (25) are suffixed with a “v” to
denote volumetric response and expressed as follows:
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Notations:

The following symbols are used in the paper:

A,B,C

As, B, C?
AY,BY, C?
ay,az,a3, &

,Q
r, Y

7o
51,52, S3

Uy
:Blr ﬁZ
€, €2, €3
ASi

AEI‘E
Aeii”

¢

o
A

Vy, Vp

coefficients of the quadratic equation for solving A
coefficients of the quadratic equation for solving A (I} < I;)
coefficients of the quadratic equation for solving A (I > I;)
material parameters for MSDP,, criterion

material parameter associated with shape function
cohesion

uniaxial compressive strength

domain size

Young’s modulus for rock mass and backfill

failure function or yield function

function of mean stress dependence

functions of mean stress dependence (I; < I. and I} > I)
functions of mean stress dependence in terms of elastic guess and new
stress state

functions of mean stress dependence in terms of elastic guess (I; < I and I} > I;)
shape function for m-plane

shape functions in terms of elastic guess and new stress state
shear modulus

depth below ground surface

first invariant of stress state

first invariant of stress state in terms of elastic guess

I; value where the cap starts

I; value where the cap intersects the hydrostatic axis (07 = 0p = 03) in the
principal stress space

second invariant of deviator stress

second invariants of deviator stress in terms of elastic guess and new stress state
third invariant of deviator stress

third invariant of deviator stress in terms of elastic guess
bulk modulus

at-rest earth pressure coefficient

reference points

mesh size

hydrostatical far-field stress

mean stress

internal pressure in the cylindrical opening

plastic potential function

plastic potential functions (I; < I and I1 > I;)

radius at the interface between plastic and elastic region
cylindrical coordinates

radius of the cylindrical opening

linear functions for the Hooke’s law

deviator stress tensor component

uniaxial tensile strength

domain thickness

radial displacement

elastic constants associated with K and G

principal strains

total principal strain increment

principal elastic strain increment

principal plastic strain increment

internal friction angle

dilation angle

plastic coefficient

Poisson’s ratio for rock mass and backfill

Lode angle



Processes 2022, 10, 1130

21 of 22

I
of, oN
Prr Pb
01,02,03

* * *
01,02 ,03
0—111 0211 (731

Lode angles in terms of elastic guess and new stress state
density for rock mass and backfill

principal stresses

projections of the principal stress axes in 7-plane
principal stresses in terms of elastic guess

(71N , azN , LT3N principal stresses in terms of new stress state
oy, oy Maximum and minimum horizontal in-situ stresses
oy vertical in-situ stress
Tij stress tensor component
Ao principal stress increment
Ty horizontal stress
U2z vertical stress
oy radial stress
Ty tangential stress
¢ coefficient in plastic potential for non-associated flow rule
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