
Citation: Kareem, A.B.; Hur, J.-W. A

Feature Engineering-Assisted CM

Technology for SMPS Output

Aluminum Electrolytic Capacitors

Considering D-ESR-Q-Z Parameters.

Processes 2022, 10, 1091. https://

doi.org/10.3390/pr10061091

Academic Editors: Mohand Djeziri

and Marc Bendahan

Received: 10 May 2022

Accepted: 26 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Feature Engineering-Assisted CM Technology for SMPS
Output Aluminium Electrolytic Capacitors (AEC) Considering
D-ESR-Q-Z Parameters
Akeem Bayo Kareem and Jang-Wook Hur *

Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence
Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsang-buk-do, Korea;
akeembayo79@yahoo.com
* Correspondence: hhjw88@kumoh.ac.kr

Abstract: Recent research has seen an interest in the condition monitoring (CM) approach for alu-
minium electrolytic capacitors (AEC), which are present in switched-mode power supplies and other
power electronics equipment. From various literature reviews conducted and from a failure mode
effect analysis (FMEA) standpoint, the most critical and prone to fault component with the highest per-
centage is mostly capacitors. Due to its long-lasting ability (endurance), CM offers a better paradigm
for AEC due to its application. However, owing to severe conditions (over-voltage, mechanical stress,
high temperature) that could occur during use, they (capacitors) could be exposed to early breakdown
and overall shutdown of the SMPS. This study considered accelerated life testing (electrical stress
and long-term frequency testing) for the component due to its endurance in thousands of hours. We
have set up the experiment test bench to monitor the critical electrical parameters: dissipation factor
(D), equivalent series resistance (ESR), quality factor (Q), and impedance (Z), which would serve as a
health indicator (HI) for the evaluation of the AECs. Time-domain features were extracted from the
measured data, and the best features were selected using the correlation-based technique.

Keywords: aluminum electrolytic capacitor; condition monitoring; fault diagnosis; feature engineering;
LCR meter; switched mode power supply

1. Introduction

Indeed, it is necessary to ensure that the design of components and systems used in
practical applications achieves an optimal percentage level of efficiency, durability, and
reliability. The core concept of prognostics and health management (PHM) is to avoid
unforeseen breakdowns and economic loss. PHM plays a progressively important role in
modern power electronics device condition-based maintenance (PED–CBM). It helps to
estimate the health conditions of a particular component in the system. However, some
factors can diminish the reliability, and durability of a system, such as environmental con-
ditions, which would go a long way in either causing timely failure or sudden shutdown of
the systems [1–5]. Recent studies/research have changed the dynamics and approach to
maintenance, which involves the integration of diagnosis, fault detection and identifica-
tion (FDI), and prognosis, and can be termed “conditioned-based maintenance” (CBM),
unlike traditional-based maintenance (preventive maintenance). Owing to the scarcity of
data, most researchers work mainly with the model-based [6–9] approach, which requires
empirical and analytical models compared to the data-driven approach [10–13]. In power
converters, the most vulnerable components are capacitors and switching devices. The
pictorial view of the electrolytic capacitor is shown in Figure 1a. Figure 1b shows the
various fault-prone components in power electronic devices, and Figure 1c shows the stress
distribution, and the root cause of failure in power converters [14,15].
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Figure 1. A representation of the fault prone components in power electronic systems, (a) A typical
16 V 1000 uf aluminum electrolytic capacitor (b) Root cause breakdown and (c) Common causes of
failure in power electronics.

When developing a predictive model using machine learning or statistical modelling,
“feature engineering” refers to leveraging domain expertise to choose and convert the most
critical variables from raw data. Feature engineering and selection aim to make machine
learning (ML) algorithms perform better. The model you choose, the data you have, and
the features you prepare all influence the outcomes you get. Even the way you frame the
problem and the objective measurements you use to determine correctness have an impact.
Several interconnected factors influence your outcomes. Significant characteristics that
describe the structures of your data are required [13,16–18].

When building speedier and smaller electrical gadgets, high-performance components
are essential. The capacitor is an excellent example, as it is frequently used to achieve
meagre equivalent series resistance (ESR). This attribute means that capacitors with this
property have a high-quality factor Q, or, in other words, minimal loss or dissipation D. The
capacitor’s ESR, or equivalent series resistance, as well as its DF, or dissipation factor, loss
tangent, and Q, or quality factor, are all critical aspects in its specification. Many elements
of a capacitor’s operation, including the ESR, dissipation factor, loss tangent, and Q, are
significant. They can determine the applications for which the capacitor can be utilized.
ESR, DF, and Q are all elements of a capacitor’s performance that impact its durability and
efficiency. However, for capacitors used in power supplies, ESR and DF are essential since
a high ESR and dissipation factor, DF, will result in a considerable quantity of power being
dissipated in the capacitor [14,19,20].

The concept of accelerated life testing has been widely geared for application in
capacitors owing to the time it takes for them to degrade under several conditions. The
concept was utilized in the aging, with experimental investigation showing that an escape
of electrolytes from the capacitor would result in a decrease in the capacitance value and
an increase in the ESR value. Also, several papers have addressed the fault diagnosis of
capacitors using offline techniques [21–23].

The genuine interest of this research is to achieve a condition monitoring approach
that captures the key failure-prone component—capacitors (but not limited to)—found in
SMPS. In this study, we will be making the following contributions:

• A multi-parameter-based health condition monitoring approach covers the equivalent
series resistance, impedance, loss factor, and quality factor. These selected electrical
parameters have shown a better paradigm for the degradation of electrolytic capacitors.

• A more robust data acquisition technique involving the HIOKI 3536 industry standard
for wide application is aided by a software application to control and set the required
measurement conditions for each capacitor.

• A robust feature engineering approach using a statistical time-domain feature extrac-
tion approach for each capacitor data-set (D, Rs, Q, Z) and a correlation-based feature
selection. This approach has helped select the best features and reduction process
and not forget the critical concept of data preprocessing techniques that require data
wrangling, reshaping, normalization, and cleaning.
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• A machine learning-based algorithm set was selected to train and test the new data
set. Due to the nature of the data size and how the data were acquired, the befitting
models for these were the ML-classifier models.

The structure of this paper is arranged as follows: Section 2 covers the motivation, liter-
ature review, and related works. In contrast, Section 3 gives reviews of the various theories
used in the study. Section 4 shows the proposed framework for the condition monitoring of
the aluminium electrolytic capacitor, while Section 5 shows the experimental setup for data
collection. Section 6 discussed the experimental results and the selected knowledge-based
classification algorithms. Section 7 describes the conclusion and future work.

2. Motivation, Literature and Related Works

From various FMEAs conducted on SMPS, the most fault-prone component is the
output capacitors, saddled with the function of withstanding high-frequency voltage ripples
and keeping a steady output voltage of 12 V, 5 V, and 3.3 V for their various applications.
The increasing evaporation of the electrolyte is the leading cause of degradation in most
AEC, which increases the value of equivalent series resistance (ESR) and decreases the
value of the capacitance (C) concerning the time of usage. Degradation can either lead to
power loss, unstable output voltage, or shutdown of the entire system (SMPS) [23].

The condition monitoring and diagnostics of capacitors can be classified into an online
and an offline process, with the latter having been neglected in the past years. However,
the offline process, which involves the detachment of the capacitors from the SMPS, is
less expensive, easier to use, and causes no damage to the overall SMPS system. On the
one hand, there is an established theory that once the ESR value of a capacitor doubles,
i.e., twice its initial value, it is regarded that the life of the capacitors in question has
ended. On the other hand, there is established knowledge of other electrical parameters like
capacitance, impedance showing degradation trends and acting as a health indicator tool
for diagnostics. The measurement of ESR, one of the major health indicators for electrolytic
capacitors, can be achieved using an LCR. However, the accuracy in the data acquisition
prompts an improvement in a more high-precision instrument.

A diagnostics process involving the injection of a controlled ac component into a
three-phase AC/DC converters, which can be classified as an online technique owing to the
methodology, is carried out in [24]. The value of the ESR can be computed by manipulating
these ac voltages and current components with digital filters, with the recursive least
squares technique providing reliable estimation results. Furthermore, the ESR value is
rectified by considering the temperature effect, for which a simple temperature-sensing
circuit was constructed. ESR is a decision-making tool for the three-phase AC/DC PWM
converters. Interestingly, another approach involving the use of magnetic sensors was used
to estimate the ESR using capacitor and inductor current [25]. The process was proven
to have improved the accuracy of the ESR prediction in AEC found in boost converters.
However, another methodology involving the use of short-time Fourier transform (STFT)
was proposed in [26], which involves the use of the C and ESR parameters. The only need
for the proposed method is the acquisition of the capacitor voltage and current signals
and a boost converter used in several simulated and experimental tests. Based on the
various electrical parameters that can serve as a health indicator tool, the dissipation factor
acted as a diagnostic tool for DC-link capacitors in [27]. It is possible to estimate the
switching component of the capacitor current by measuring the power converter’s output
currents rather than measuring the capacitor current using this technique. The proposed
approach is simulated, and the effects of several aspects on the accuracy of the dissipation
factor measurement were explored. This and many recent approaches can be classified
as online techniques using simulations. While they must have achieved some accuracy
with their various proposed technique, which is as a result of utilizing the output voltage
or current of the power converters to estimate the degradation and condition monitoring
of the capacitors [28–33]. The efficiency of this approach lacks any practical in-depth as
to an experimental approach hence the need for a condition monitoring approach using
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an offline method and comparing the results with an online approach—as done in [34,35].
The aforementioned study also proved that there is no developed approach to achieve a
condition monitoring for electrolytic capacitor applicable in SMPS while in use except by
designing a typical setup similar to the SMPS or other applicable devices. Hence, in this
study, we have deployed a more efficient approach that utilizes the integration of feature
engineering advantages and the decision-making avenue, i.e., selecting the suitable model
based on a combination of features.

3. Theoretical Backgrounds
3.1. Working Description for AEC in SMPS

In generality, the working framework of the SMPS is to utilize the switching devices
(IGBT, MOSFET) to convert an unregulated voltage from the input capacitor(mainly at a
higher voltage range) to a regulated and smoothed DC output voltage (12 volts, 5 volts and
3.3 volts). There are numerous criteria to consider in selecting the input and output filters
due to the design and reliability process, namely, equivalent series resistance, rated ripple
current, and rated voltage. The input capacitors receive current at a higher range repeatedly
compared to the output capacitors that receive smoothed output ripple voltage—this is as-
sisted by the presence of the inductor in series with the output capacitor, which then serves
as an output filter. Interestingly, the SMPS efficiency is based on the following standpoints:

• The S in SMPS stands for switching, which denotes varying voltage continuously.
• The output voltage is controlled by the switching time effect, which is dependent on

the feedback circuitry
• The design efficiency is high because instead of releasing the excess power from the

SMPS as heat, it tends to continuously regulate the input(using the switching device)
to control the output

Due to the above-listed advantages, the SMPS is applicable in motherboards of com-
puters, mobile phone chargers, high voltage direct current (HVDC) power transmission
measurements, battery chargers, central power distribution, motor vehicles, and consumer
electronics, laptops, security systems, space stations.

3.2. Degradation Mechanism of an Aluminum Electrolytic Capacitors

A high capacitance yet small-sized capacitor is created with the increased effective
surface area obtained by etching the foil and achieved by interlacing two strips of alu-
minium foil (anode and cathode) with paper. This foil and paper are then wound into an
element and electrolyte embedded. AEC will degrade performance and eventually fail
when exposed to high voltages. In practice, however, the liquid electrolyte, electrolytic
capacitor plates, and aluminium oxide can all cause a modest equivalent series resistance
(ESR). AEC are constantly subjected to a high voltage/electrical over-stress to accelerate
their degradation to acquire the capacitance value and ESR in an acceptable amount of time.
The electrolytic capacitor charges and discharges continually, deteriorating with time as the
electrolyte evaporates, the leakage current increases, and the internal pressure rises [36].

The current in the AEC surges when a DC voltage is given to a discharged electrolytic
capacitor. During the charge and discharge cycle, the current flow raises the electrolytic
capacitor’s internal temperature. The electrolyte will progressively evaporate as the tem-
perature rises. As a result, the ESR rises while the capacitance decreases. The oxide layer
can deteriorate due to the periodic temperature cycle caused by the charge and discharge
of the electrolytic capacitor. Despite an insulating layer between the two plates, a tiny
leakage current will develop in the electrolytic capacitor, and the leakage current will
increase as the oxide layer degrades. The ESR and capacitance value will be influenced
when the leakage current increases. The increase in pressure inside the electrolytic capacitor
is another degradation avenue because that contributes to its degeneration. The gas inside
the electrolytic capacitor is formed by the rising internal temperature and the increased
pace of the chemical reaction during the charging/discharging cycle. The growing gas can
raise the electrolytic capacitor’s internal pressure [37–41].
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3.3. Overview of Machine Learning-Based Algorithms

In general, a classification model is a function that weights the input features so that
the output separates one class into positive and negative values, respectively. The weights
(and functions) that offer the most accurate and best separation of the two groups of data
are identified during the training of the classifier models. To identify the performance of a
classifier, one must subject them to some metrics like f1 score, accuracy, sensitivity/recall,
and precision. The equations for this metrics are properly defined in Equations (7)–(10)
with various application in some related works [42]. The decision tree model will create
classification rules based on the properties of the training dataset and the classes supplied.
The selection of the “optimal split parameter” for the prediction decision is the decision
tree’s fundamental restriction. This issue can be addressed by using a random forest
classifier, a combination of ensemble and decision tree classification. It is a combination of
a bagging approach and a decision tree-based method. Random forest generates several
decision trees for accurate and steady prediction and combines them. The random forest
classifier has several advantages, including solving classification and regression problems,
which makes it a popular choice in today’s machine learning systems. It describes the
optimized model by examining the most important attributes from a randomly generated
subset of features [43–46]. Stochastic gradient descent (SGD) is a simple yet effective
method for learning discriminative linear classifiers with convex loss functions, such as
(linear) support vector machines and logistic regression. Because it updates more often,
SGD can converge quicker on big datasets than batch training [47–49].

Support vector classifier (SVC) has the merit of solving small sample and nonlinear
problems quickly, and there is no local minimum problem. SVC is also capable of dealing
with high-dimensional data sets and has good generalization skills. On the other hand,
SVC struggles to explain the high-dimensional mapping of kernel functions, notably
radial basis functions. When the data has been confirmed, it is vulnerable to substantial
variances and missing data. The relevance to problems involving many classifications is
limited. The pace of the Naive Bayes model is rapid for classifier problems. It has many
advantages when processing actual data samples, and it offers incremental operations that
can train fresh samples. However, using the assumption of sample attribute independence
is NB’s fatal flaw. The classification performance will rapidly deteriorate when the sample
properties are correlated. A logistic function is used in the logistic regression (LR) model to
represent the probability of an outcome occurring. This method is the most useful when
you want to know how numerous independent variables affect a single result variable.
The most popular feed-forward neural network is the multi-layer perceptron (MLP). MLP
comprises three levels: an input layer, an output layer, and the hidden layers in between.
The hidden layer in MLP provides the computation and processing capacity that allows
the network output to be generated. The loss function of an MLP with hidden layers is
non-convex, and there are several local minimums. As a result, various random weight
initialization can result in varying validation accuracy. To reduce all errors, the gradient
boost model will continue to improve. This can lead to over-fitting by exaggerating outliers.
Cross-validation is used to resolve the above problem attributed to the MLP model [50].
Computationally expensive—GB frequently necessitates many trees (>1000), which can
take a long time and consume much memory. During tuning, this necessitates a massive
grid search [51,52]. Adaboost is less prone to overfitting because the input parameters are
not all tuned simultaneously. Adaboost can help weak classifiers increase their accuracy.
Rather than binary classification challenges, Adaboost is now utilized to categorize text
and images. Adaboost’s key disadvantage is that it requires a high-quality dataset. Before
using an Adaboost algorithm, avoid using noisy data and outliers [53,54]. In a supervised
situation, when we are provided with a dataset with target labels, k nearest neighbours
(KNN) can be utilized for classification. KNN selects the k closest data points in the
training set for classification, and the target label is computed as the mode of the target
label of these k nearest neighbours. When used for classification and regression, it can
learn nonlinear decision boundaries. It can devise a highly adaptable decision boundary by
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varying the value of k. The value of k is the only hyper-parameter and helps to facilitate
hyperparameter adjustment [55–58].

4. Proposed Integrated Feature Engineering and ML-Based Methods

The proposed architecture for the condition monitoring framework is shown in
Figure 2. The filter-based feature selection has been introduced using a data-driven ap-
proach to enhance and improve the discriminating features between the capacitors selected.
Interestingly, the model consists of the pre-processing data stage, a 3-way feature extraction,
correlation-based feature selection, a different combination of input variables, ML-based
diagnosis and performance evaluation of the selected ML algorithm. The dataset compris-
ing the ESR, Z, Q, and D was subsequently received by the model for statistical feature
extraction for each set of capacitors with their description shown in Table 1. The dataset
acquisition occurs using the software aided platform and the LCR meter. The LCR meter
has an inbuilt capacity to obtain four electrical parameters during the data acquisition
process. The other electrical parameters achievable with the LCR meter are as follows:
Admittance (Y), Impedance phase angle, Conductance (G), Susceptance (S), Inductance (Ls
and Lp), Capacitance (Cp and Cs), DC resistance (Rdc), Conductivity, Permittivity, and
Reactance (X).

Figure 2. The proposed condition monitoring framework for the SMPS Aluminum Electrolytic
Capacitors.

Table 1. The Feature Set Description.

Parameters Definition Functions

Z Impedance Z = |Xc |
Sinθ

D Loss coefficient/Dissipation Factor tanδ = ESR
Xc

Rs Equivalent Series Resistance ESR = |Z|Cosθ

Q Quality Factor Q = Xc
ESR

The basic idea of feature selection is subjective to removing non-informative or redun-
dant predictors from the model. Interestingly, the performance of a machine learning model
could degrade if input parameters that are not relevant to the target variable are given. In
order to decide on which methods of feature selection to be deployed, it is best to ascertain
if the outcome is supervised or unsupervised. The time domain features summarized in
Table 2 were extracted using a reshaping technique to transform the structure of the dataset
row and column format. As shown in Figure 3, it can be observed in red colour that there
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are highly correlated features such as variance, root mean square, mean, and maximum
value out of the 21 features extracted. In comparison, seven features were selected after
using the correlation techniques in Equation (1) namely mean, interquartile range, kurtosis,
fifth quartile, wave factor, minimum value, and median absolute deviation. The features
selected, as shown in Figure 4 were chosen based on a correlation benchmark of 0.7. The
features extraction and selection vary accordingly based on the input variables, either
showing more or less discriminative features and showing more or more minor features
selected [42,59].

ρX,Y =
cov(X, Y)

σXσY
(1)

where σX and σY are the standard deviations of X and Y, respectively while cov(X, Y) is
the covariance.

Figure 3. Correlation Matrix for all the features extracted.

Figure 4. Correlation Matrix for the features selected.
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Table 2. Statistical Extracted Features and their definitions [42].

Feature Name Definition

nth percentile (n = 5, 25, 75, 95) Px = 100 x−0.5
n

Root Mean Square Xrms =

√
∑n

i=1(xi)
2

n

Mean x̄ = 1
n (∑

n
i=1 xi)

Kurtosis Xkurt =
1
N Σ
(

(xi−µ)3

σ

)
Interquartile range upperquarterQ3 − lowerquarterQ1

Median abs deviation Xmad = 1
n ∑n

i=1|xi −m|

Skewness Xskew = E
[(

(xi−µ)3

σ

)]
Max Xmax = max(xi)

Min Xmax = min(xi)

Crest Factor XCF = xmax
xrms

Peak factor xPF = xmax√
xs

Wave Factor xWF =

√
1
n ∑n

i=1|xi |2
1
n ∑n

i=1|xi |
Standard error mean Xsem = standarddeviation√

n

Standard deviation SD =
√

1
N−1 ∑N

i=1(xi − x)2

Variance VAR =

√
1
N

N
∑

i=1
(xi − x̄)2

5. Data Acquisition Process

The proposed CM technology for acquiring multiple electrical parameters was achieved
using the HIOKI 3536 LCR meter (IM3536) with an high-precision measurement of ±0.05%
rdg and high-speed measurement of 1 ms. The IM3536 offers a wide function range of
DC and frequency from 4 MHz to 8 MHz, which has raised the industry standard for a
general-purpose LCR meter. The three standalone capacitors applicable in the SMPS were
used as the case study for the CM technology. An LCR meter and CV (constant-voltage)
mode can measure voltage dependency samples. The CV was selected when changes in the
input voltage were not required at both ends of the test sample. Compared to the V mode,
the CV model has the potential to run the experiment continuously when the voltage value
is monitored and controlled with feedback. Firstly, calibration is recommended for the
equipment before usage. The open and short correction process was carried out prior to
the commencement of the experiment. The residual components in the test fixture used to
measure a target can be stated using the equivalent circuit. Both of these correcting methods
are “open and short corrections”, and LCR meters have the functionality to conduct both.
The instrument is set to match the frequency of the power source to reduce the noise effect.
To avoid unstable measurement, the supply frequency matches the commercial power
frequency (50/60 Hz) [60,61]. The data acquisition process is better described in Figure 5
showing the computer-aided software, HIOKI 3536 LCR meter, the L2000 four-terminal
probe connected to the end of the LCR meter holds the test sample as shown in Figure 5.
The data collection process lasted 4320 min at room temperature for all capacitors starting
with the highest capacity—2200 uf, 1000 uf and 470 uf. The experimental condition is best
described in Table 3. The impedance Z has a real section (Rs) and an imaginary (X) section,
and its parameters can be determined by expanding it on a complex plane. The impedance
relationships are expressed in the Equations (2)–(6) below:
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Z = Rs + jX = |Z|∠θ (2)

θ = tan−1
(

X
Rs

)
(3)

Rs = |Z|cosθ (4)

X = |Z|sinθ (5)

|Z| =
√

Rs
2 + X2 (6)

Table 3. Experimental Measurement Conditions.

Functions Description

Electrical Parameters D–Rs–Q–Z
Frequency/Freq-Step 1 MHz/1000 Hz/10 Hz

DC Bias ON 1.0 volts
Signal Level 0.5 Vrms

Measurement Range Auto
Speed SLOW2

LowZ mode ON

Figure 5. A detailed description of the connection used in data acquisition process.

5.1. Experimental Test Bench

The capacitors were subjected to 4 Hz to 8 MHz using computer-aided software
to provide the necessary parameters for a frequency-based mode. The description for
the computer-aided software process of data acquisition is shown in Figures 6–8. The
equipment with the device under test (DUT) was subjected to the following:

1. USB Communication Selection—This window showcase the selection process for
the correct USB port for the connection between the computer, software and the
equipment. Once there is no synchronization between the System, the equipment will
not proceed with the data collection process.

2. System—Setting up the equipment system covers the measurement type 1–4 with
the necessary parameters. The level mode has the option for constant voltage (CV),
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constant current (CC) and open-circuit voltage (V). The latter was selected during
the experimental procedure to achieve a varying voltage across the DUT. The AC
speed was selected for the SLOW2 option to provide the slowest and high accuracy
for the DUT parameters selected. The Low Z mode on the dashboard provides a high
precision when set ON for capacitors with high capacitance above 100 uf. The Ac auto
range is kept On to provide an automatic range for the DUT. The Limit (A) is set off to
not interfere with the current generated during the DUT test procedure.

3. Fix Function—The set of frequency (Hz), DC Bias (V), and AC level (V) are set to
fix the value. The sampling delay function is needed to enter the delay needed
during measurement. However, for capacitor measurement, we do not need this
function. The sampling mode function consists of the infinite mode (na), finite (Ea)
and Timer(sec). The infinite mode was selected during the experiment to achieve a
continuous measurement until the frequency set is reached.

4. DC Sweep—These functions consist of the DC bias start voltage, DS-Frequency (Hz),
Dc Bias Stop (v), DS-AC level (V), DC Bias Step Voltage, and DS-Delay (sec). The start
and stop voltage were set to 1 volt and 5 volts, respectively, while the step voltage was
set to 0.01 volts which means there would be an increase during the measurement in
the order 0.01, 0.02, 0.03 till the set stop voltage.

5. Frequency Sweep—This covers the frequency start, stop and step, which were set to
10, 8 MHz and ten, respectively.

6. Operation Start and Stop—This section covers the reset, setup, run, stop, and the close
button, which aids the measurement parameter settings and program end button.

7. Graph Buffer Size—From this section, you can easily manoeuvre between the two
graph windows and view the run and stop the display. Also, select the preferred
parameter (Y-axis) for each graph and the x-axis section, which could be frequency,
and the number of samples.

8. Measured Data—This section displays in rows and columns the measured data from
the DUT.

9. Measured Data Plot—This section plots the graph for the first two selected parameters
with both on the y axis (left and right) with a common x-axis.

10. Graph Setting—This section gives room for adjustment and controls to the graph
section, which could help in quick visualization while the experiment is ongoing.

Figure 6. A detailed description of the computer aided software interface used in data collection with
label from 1, 2, 6, 7 and 8.
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Figure 7. A description of the section numbered 3 to 5 covering the Fix function, DC-Sweep and
Frequency Sweep respectively.

Figure 8. A further description for the computer aided section of 9 and 10 showing the graph display
and graph setting/adjustment section.

Equivalent Circuit Mode and LCR Meter Measurement Circuit—The Four Terminal
Pair Method

By detecting the current flowing to the measurement target and the voltage across the
measurement target’s terminals, LCR meters can determine Z and phase angle. They then
use the Z and phase angle values to calculate measurement parameters like inductance (L),
capacitance (C), and resistance (R). Whether the instrument is in series equivalent circuit
mode or parallel equivalent circuit mode, the equations utilized to calculate these measure-
ment parameters change as the instrument cannot decide which mode is appropriate for
a given measurement objective. The user must select the proper equivalent circuit mode
to minimize measurement error. Figure 9 shows the description of the four terminal pair
measurement circuit used for the data acquisition process [62,63].

Cs (or Ls) and the resistance component Rs are linked in series in series equivalent
circuit mode, whereas Cp (or Lp) and the resistance portion Rp are connected in parallel
equivalent circuit mode. In general, series equivalent circuit mode is used when measuring
low-impedance elements (with an impedance of fewer than 100 ohms), such as high-
capacity capacitors and low inductance. The parallel equivalent circuit mode is used when
measuring high-impedance elements (with an impedance of more than 10 k ohms), such
as low-capacitance capacitors and high-inductance. Both data sets can be displayed since
measured values in both equivalent circuit modes are calculated values. However, caution
is advised since the optimal equivalent circuit depends on the measurement aim.
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Figure 9. The LCR meter measurement circuit—Four Terminal Pair Method.

By decreasing the impacts of the magnetic field induced by the measurement current,
this approach can reduce measurement error from impedance values ranging from low to
high. By employing insulated cables and overlaying the cables conveying current to and
from the measurement target, it can neutralize the magnetic field.

5.2. Experimental Data Visualization

Following the experiment carried out using the HIOKI 3536 LCR meter, the results
of the ESR are shown in Figure 10. For a better comparison, the experiment also involved
other electrical parameters like dissipation faction (D), impedance (Z), and quality factor
(Q) for three electrolytic capacitors applicable as an output filter for SMPS. The capacitors
measured have a nominal capacitance value of 2200 uf, 1000 uf, 470 uf and 16 volts across
the capacitors, respectively. It can be seen from Figure 10 that there is a degradation trend
among the capacitors as they are subjected to a charging and discharging cycle but at a
minimal voltage value of 1.0 to 5.0 volts.

Figure 10. Exploratory time series data analysis of the equivalent series resistance (ESR) across the
three capacitors.

6. Diagnostics Assessment and Discussion
6.1. Selected Algorithm Parameters

There are huge interrelationships between extracted condition health indicators/features
as most machine learning classifiers would require discriminant characteristics as input to
achieve acceptable diagnostic accuracy. Figure 4 shows the feature selection results, which
should offer sufficient and acceptable diagnostic results and act as the correct condition
indicators for aluminium electrolytic capacitors used in SMPS. The 7-dimensional selected
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features are extracted from the training and test data sets, respectively, and prepared
for ML-based diagnosis training and evaluations. However, there is an increase and
reduction based on the input variables picked when the idea of combining and eliminating
different input features to be extracted is used. We have considered the selected ML-based
classifiers due to prior knowledge, robustness, and computational costs. The selected
algorithms are shown in Table 4. Each model has its own set of parameters and design,
necessitating domain knowledge for optimal performance. The machine learning algorithm
are implemented based on the python programming language using a system with the
following configurations; processor (AMD Ryzen 7 2700 Eight Core Processor, 3.20 GHz),
installed memory (32 GB RAM), system type (64-bit operating system, x64-based processor).

Table 4. Machine Learning Classifiers and their Parameters.

ML Classifier Major Functional Parameters Parameter Values

MLP Activation function ( f ), number of layers/nodes (h/a), 2* f = ReLU, h/a = 1/7, α = 0.001
learning rate (α)

DT max–depth 3
KNN k 3
RF n estimators 70
SGD random–state 101

loss function = modified huber
NB Gaussian, var–smoothing = 1e-09 –
LR Regularization L1, L2
GBC n estimators 100
SVC Regularization (C), gamma (γ) C = 100, γ = auto
Adaboost n estimators 50

6.2. Machine Learning Assessment Evaluation

The accuracy of a classification algorithm is an important factor to consider when
evaluating its performance. The accuracy of a classification method on a data set is defined
as the number of instances predicted correctly over the total number of instances when
all instances in the data set have the same weight. K-fold cross-validation is a popular
method for predicting the performance of a classification algorithm or comparing the
performance of two classification algorithms on a data set. This approach divides a data
set into k disjoint folds of roughly similar size at random, with each fold being used to
test the model induced by the other k1 folds via a classification algorithm. The average of
the k accuracy obtained from k-fold cross-validation is used to evaluate the classification
algorithm’s performance, and the level of average is considered to be at fold [64,65]. These
classification metrics formula—accuracy, recall/sensitivity, precision, and f1 score are
shown in Equations (7)–(10). In addition, the confusion matrix provides a more in-depth
analysis of the performance of the selected algorithms on the dataset.

Accuracy =
TP

TP + FP + TN + FN
(7)

Recall/Sensitivity =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

F1- Score =
2 ∗ Sensitivity ∗ Precision

Precision + sensitivity
(10)

where the true positives (TP) are the number of correctly classified predictions, and true
negatives (TN) are the number of classified that are negative and are negative. False
positives (FP) are the number of falsely classified predictions that are positive, and the false
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negatives (FN) are the number of incorrectly labelled inputs belonging to an incorrectly
classified class. The model with the least FN is best chosen as it is the best criteria for
implementation and choosing the suitable model [42].

Table 5 summarises the performance comparison among the ML models selected based
on all the electrical parameters acting as an input variable to the models. As observed from
Table 5, the RDF and GB have a 99.77% and 100 % accuracy with a computational cost (s)
of 17.5067 and 55.4777, respectively. However, KNN and SVC show a 99.33% and 94.33%
accuracy with a lesser computational cost of 0.3133 and 1.0400, respectively. RDF and GB
seem to have a higher rank than KNN and SVC in terms of accuracy. However, from the
standpoint of cost, the KNN and SVC can be categorized as the best model for selection
using all the features, i.e., the four electrical parameters selected during the experimental
setup. The NB with the least computational cost of 0.2667 shows a poor prediction accuracy
of 34.55%, making it rank the least and not to be considered for deployment. Figure 11
shows the plot of all the models in terms of accuracy (in green colour) and computational
cost (in black dashed line).

Table 5. Global performance comparison of ML models using all feature sets.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 58.89 48.17 57.33 49.49 8.2444
DT 91.11 93.28 92.00 91.81 0.4467

KNN 99.33 98.68 98.67 98.67 0.3133
RDF 99.77 96.13 95.78 95.77 17.5067
SGD 73.88 67.90 70.11 62.22 1.0333
NB 34.55 53.27 57.22 51.04 0.2667
LR 74.55 70.07 69.67 69.64 2.5133
GB 100.00 100.00 100.00 100.00 55.4777

SVC 94.33 80.86 80.33 80.19 1.0400
Adaboost 75.11 77.00 75.00 73.00 8.6900

Figure 11. Model accuracy assessment for each all features (D-Q-RS-Z).

Interestingly, we explored the option of an individual and dual input parameter
for the model to compare its performance with using total features. The Table 1 gives
a better insight into the combination of the features for the model evaluation with the
individual input parameter shown in Table 6—for the impedance, Table 7 for the loss
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coefficient/dissipation factor, Table 8 for the equivalent series resistance and Table 9 for the
quality factor. Figure 12 shows the bar plot of the model accuracy of the individual approach
and also displays the average computational cost across the model for the individual
features. The impedance (Z), loss coefficient (D), ESR, and quality factor (Q) are in blue,
orange, green and red colours, respectively. In terms of accuracy and consistency, it can
be seen that KNN and GBC rank top. In contrast, in terms of computational cost (s),
the NB (0.233875), KNN (0.302475), DT (0.3758) and SVC (0.765) s in that order have the
most negligible average value across the individual feature model performance evaluation.
Interestingly, NB predicted poorly with an average accuracy of 73.885% across the input
parameters. At the same time, KNN ranks the highest in terms of accuracy (98.19%) and
the least computational cost, DT with an average accuracy (94.4125%) follows RDF with an
average accuracy of 95.915% but with an average computational cost of 15.49399 s which
shows it can not be considered for a cost-aware application.

Table 6. Global performance comparison of ML models using impedance (Z) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 48.77 46.49 48.78 43.53 7.6400
DT 91.44 92.37 91.56 91.55 0.3700

KNN 98.22 98.27 98.22 98.22 0.2833
RDF 91.78 91.94 91.78 91.72 15.8266
SGD 73.00 74.45 73.00 69.36 1.2266
NB 48.22 44.85 48.22 38.49 0.2200
LR 71.56 70.93 71.56 70.53 3.4933
GB 99.11 99.12 99.11 99.11 50.1100

SVC 89.78 90.53 89.78 89.28 1.2000
Adaboost 88.78 89.98 88.78 88.89 8.7733

Table 7. Global performance comparison of ML models using loss coefficient (D) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 86.88 88.83 86.89 86.82 9.1933
DT 90.11 90.88 91.66 88.89 0.4066

KNN 98.44 97.76 98.89 99.44 0.3067
RDF 95.44 98.67 97.22 98.22 15.6333
SGD 78.44 87.45 76.89 86.44 1.1222
NB 68.88 78.88 76.66 76.66 0.2267
LR 92.66 89.00 91.11 89.55 2.8867
GB 99.44 100.00 100.00 100.00 52.7111

SVC 93.33 96.66 96.66 96.66 0.7267
Adaboost 93.78 93.33 93.33 93.33 8.8133

Table 8. Global performance comparison of ML models using (ESR) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 93.33 93.28 93.25 93.41 10.2133
DT 98.33 98.33 98.35 98.36 0.3333

KNN 99.33 99.34 99.36 99.34 0.3066
RDF 99.33 99.36 99.33 99.32 15.3333
SGD 94.33 94.32 94.33 94.34 0.7733
NB 95.11 95.11 95.09 95.10 0.2444
LR 92.89 93.00 92.89 93.00 2.4888
GB 100.00 100.00 100.00 100.00 44.3967

SVC 98.33 98.32 98.34 98.33 0.5667
Adaboost 97.77 97.75 97.72 97.75 8.3333
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Table 9. Global performance comparison of ML models using quality factor (Q) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 87.56 87.55 87.54 87.56 5.2133
DT 97.77 97.25 97.11 97.11 0.3933

KNN 99.66 99.67 99.67 99.67 0.3133
RDF 97.11 95.26 94.67 94.63 15.7267
SGD 89.77 89.35 87.89 87.72 0.9999
NB 83.33 83.00 74.11 69.93 0.2444
LR 89.22 89.43 89.33 89.32 2.2222
GB 99.55 99.46 99.44 99.44 54.8233

SVC 94.55 95.54 95.11 95.10 0.5666
Adaboost 81.88 84.00 82.00 81.00 9.0733

Figure 12. Model accuracy assessment for single features.

In terms of individual model performance and features, the ESR features showed
a better prediction across all the models, further validating its importance as the best
feature for diagnosing an aluminium electrolytic capacitors found in SMPS. The prediction
for ESR stands out for all the models except for KNN and GB, which had a minimal
difference in accuracy among the single features. Also, the quality factor (Q) ranks second
as a more diagnostics tool in terms of performance across the models selected with loss
coefficient (D) and impedance (Z) with the least performance accuracy of 89.419% and
82.209% respectively. Furthermore, we explored the option of combining two electrical
parameters and checking for their performance on the models.

Tables 10–15 shows the dual feature set performance evaluation in the order,
impedance + dissipation factor (ZD), ESR + quality factor (RSD), ESR + impedance (RSZ),
quality factor + impedance (QZ), quality factor + dissipation factor (QD) and ESR + dis-
sipation factor (RSD) respectively. Figure 13 shows the bar plot for all the dual feature
sets with their average computational cost. KNN, RDF and GB ranked high in accuracy
and consistency across all the dual feature sets as the models predicted accurately with an
average computational cost of 0.287767, 15.6311, and 50.78665 s.
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Table 10. Global performance comparison of ML models using combination of (Z) and (D) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 61.89 66.88 66.44 64.81 9.4444
DT 94.00 88.38 83.00 81.95 0.3444

KNN 99.44 98.62 98.56 98.56 0.2800
RDF 99.00 96.29 96.11 96.09 15.7533
SGD 74.44 87.57 85.00 84.33 1.1667
NB 57.22 63.00 50.11 45.28 0.2333
LR 69.55 68.34 69.44 67.69 3.0066
GB 99.88 99.78 99.78 99.78 50.8233

SVC 94.88 78.1 75.67 73.4 1.0800
Adaboost 99.22 88.45 83.89 82.94 8.8933

Table 11. Global performance comparison of ML models using combination of (RS) and (Q) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 71.22 73.01 71.22 67.94 8.4533
DT 96.67 96.69 96.33 96.34 0.4133

KNN 98.67 98.70 98.67 98.67 0.2933
RDF 99.22 95.85 95.44 95.48 15.5867
SGD 95.11 91.73 89.00 88.37 0.7933
NB 71.67 67.70 66.11 64.00 0.2133
LR 87.56 88.69 88.00 87.84 3.0933
GB 99.67 99.25 99.22 99.22 53.7633

SVC 97.11 94.48 94.11 94.08 0.6867
Adaboost 84.56 86.95 86.56 86.41 9.0067

Table 12. Global performance comparison of ML models using combination of (RS) and (Z) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 58.33 58.90 58.33 53.62 7.8444
DT 96.00 95.85 95.56 95.55 0.4267

KNN 98.00 98.05 98.00 98.00 0.2733
RDF 96.00 94.05 94.00 93.95 15.9200
SGD 96.00 95.84 95.44 95.43 0.8800
NB 60.00 65.93 58.56 56.20 0.2200
LR 62.45 63.34 62.22 60.87 3.1867
GB 99.32 99.45 99.11 99.22 57.9633

SVC 84.00 96.50 96.33 96.34 0.7933
Adaboost 96.32 96.78 96.11 96.04 8.1800

Table 13. Global performance comparison of ML models using combination of (Q) and (Z) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 75.88 77.02 75.89 75.64 10.1400
DT 84.33 89.08 84.11 83.43 0.3267

KNN 97.55 97.97 97.78 97.75 0.2800
RDF 98.44 96.85 96.78 96.76 15.3333
SGD 80.22 79.70 78.00 74.49 0.9067
NB 33.66 51.60 52.67 42.16 0.2067
LR 77.88 78.28 77.78 77.36 2.5067
GB 100.00 99.45 99.44 99.44 45.2500

SVC 79.88 79.57 78.00 77.01 0.7267
Adaboost 83.22 88.02 85.78 85.18 8.2467
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Table 14. Global performance comparison of ML models using combination of (Q) and (D) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 44.22 38.68 44.22 32.79 5.8133
DT 83.88 89.01 85.56 84.66 0.4333

KNN 99.88 98.38 98.33 98.33 0.3000
RDF 96.88 97.03 96.89 96.88 15.6867
SGD 85.00 88.02 84.89 83.54 0.9533
NB 43.33 45.48 50.44 43.87 0.2200
LR 77.67 73.70 74.56 73.30 2.8733
GB 99.88 99.57 99.56 99.56 55.4167

SVC 89.11 87.55 86.78 86.7 0.8667
Adaboost 99.56 96.02 95.78 95.73 9.3333

Table 15. Global performance comparison of ML models using combination of (RS) and (D) features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cost (s)

MLP 29.67 24.33 29.67 24.46 4.7667
DT 92.88 91.94 90.00 89.80 0.3000

KNN 99.55 98.16 98.11 98.11 0.2600
RDF 95.78 94.69 94.44 94.45 15.5066
SGD 91.22 73.25 65.67 61.53 1.1933
NB 33.78 52.18 45.78 41.06 0.2333
LR 80.44 81.87 80.43 80.45 2.8333
GB 99.77 99.78 99.75 99.77 41.5033

SVC 92.00 91.28 91.45 91.67 1.3667
Adaboost 89.22 89.56 88.22 89.47 8.2133

Figure 13. Model accuracy assessment for dual features.

Going by the individual model for the dual features performance comparison, the
multi-perception (MLP)—a fully connected class of feed-forward artificial neural network
has average accuracy and computational cost (56.8683% and 7.74368 s), respectively. The
combination of ESR and Q stands out for the MLP in terms of accuracy and computational
costs. With (RSQ) dual features with the highest accuracy. The decision tree (DT)—easy and
intuitive with its tree-based classification rules has average accuracy and computational
cost (91.2933% and 0.374067 s), respectively, with the (RSZ) dual feature with a better
prediction. The k nearest neighbours (KNN)—a supervised learning algorithm that looks to
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its surrounding data and classifies them, resulted in an average accuracy and computational
cost (98.8483% and 0.287767 s). With a better discriminant performance using the (QD)
dual feature with a 99.88% accuracy.

The random forest (RDF)—an ensemble learning classification with a collection of
the decision tree has an average accuracy and computation cost (97.5533% and 15.6311 s),
respectively. The stochastic gradient (SGD), Naive Bayes (NB), and logistic regression
(LR) has an average accuracy and computational cost (86.9983%, 49.9433%, 75.9250%
and 0.9822167, 0.2211, 2.91665 s). Noticeably, the NB model seems to have the least
computational cost among the models but with a poor prediction for the dual feature.
The gradient boost algorithm (GB)—with a primary idea to develop models sequentially,
with each model attempting to reduce the mistakes of the previous model. The GB had
consistent accuracy across all the dual features with average accuracy and computational
cost (99.7533% and 50.78665 s). The support vector classifier (SVC)—a set of supervised
learning models with practical advantages in high dimensional spaces has average accuracy
and computational cost (89.4967% and 0.9200 s), respectively, with the (RSQ) dual feature
ranking high among other features.

Furthermore, last but not least, the Adaboost model—an ensemble learning algorithm
that uses an iterative mode to learn and combine weak classifier with building a more
robust classifier with average accuracy and computational cost (92.0167% and 8.64555 s)
across the dual features with the (QD) features ranking high among its peer. Finally, by
assessing the results from the dual features, the ESR and Q have the highest occurrence,
which shows they both have the needed discriminative features to act as a diagnostic tool
either as a standalone feature or combination of features. The comparison among the
feature selection has given insights into this methodology and can be replicated for other
power electronic devices.

Figure 14 shows the fault visualization of the three output aluminium electrolytic
capacitors using the principal component analysis (PCA). The label colour (blue, red and
green) shows the 2200 uf, 1000 uf and 470 uf capacitors. The PCA has helped reduce the
entire dataset (an initial seven feature selection) to a new set of features (two features). The
approach assisted in giving an insight into the fault classification space of the capacitors.

Overall, the KNN model performance across all the feature selection method were
outstanding in terms of accuracy and computational cost. Also, the ensemble method
(RDF and GB) had good accuracy across the feature selection method but with a higher
computational cost. With this few point, in terms of accuracy, the gradient boost model is
the ideal model for application while in terms of computational cost, the KNN model is to
be selected due to its simplicity. It has been able to outperform other classifier with this set
of data from the aluminum electrolytic capacitors. To corroborate the model selection, the
most performing feature (ESR) confusion matrix is shown in Figure 15 across the machine
learning algorithm selected. The label (0,1,2) denotes the three capacitors respectively in
order of their capacitance value (2200 uf, 100 uf, and 470 uf).

Figure 14. Fault Visualization Plot for the Aluminum Electrolytic Capacitors.
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Figure 15. Confusion Matrix of the selected models (a) MLP (b) DT (c) KNN (d) RF (e) SGD (f) LR
(g) GB (h) SVC (i) Adaboost

7. Conclusions and Future Works

The proposed approach provides an experimental architecture compared to the online
method using ESR and C values estimation from voltage and current signals sampling. The
proposed method (offline) directly acquires the selected electrical signals that can act as
a health indicator for the aluminium electrolytic capacitors diagnosis. Also, the method
proposed offers a more reliable and accurate condition monitoring that can be replicated
easily in an industrial environment.

In this study, a multi parameter condition monitoring framework is proposed for fault
diagnosis in output capacitors of SMPS. The aluminium electrolytic capacitors deterioration
is characterized by different electrical parameters with the equivalent series resistance
having the best discriminating features to classify the models. The input and output
capacitance of any power system are critical to its overall performance. Different types
of capacitors will be used in a well-designed power supply decoupling network and the
amount and type of capacitors used in any design will be determined by the system design
requirements. A reliable, low-cost power system can be created by following the capacitor
recommendations in the data sheet and selecting capacitors depending on your actual
operating conditions. With other various capacitor type available, aluminium electrolytic
capacitors are mostly selected due to their superior energy density and cost effectiveness.

Interestingly, we have correlated a statistical feature engineering approach with var-
ious machine learning models on the electrical signals from the HIOKI 3536 LCR. The
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major contribution of this study is the extraction and selection of a substantial features for
improved offline condition monitoring techniques at the right computational costs. We
have also adopted a wide range comparison among different classification algorithm to aid
the decision making tool and deployment for practical applications.

The single feature approach has a better performance ratio compared to the dual and
all feature approaches among the different feature selection techniques adopted. Also,
the advantages of various parameters like data size, number of hyperparameters, missing
values, outliers, and feature scaling paved way for improved performance among some
of the models. This study has illustrated the effectiveness of the proposed condition
monitoring method on aluminum electrolytic capacitor subjected to a similar charging and
discharging cycle using the advanced HIOKI 3536 LCR meter.

This methodology can be replicated for most power electronics component like induc-
tors, transistor etc by identifying the right parameters to be supervised for their condition
monitoring process. For future studies, we would direct our aim to a temperature dependent
condition monitoring using a filtering mechanism combined with deep learning models.
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