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Abstract: An important requirement of wastewater treatment plants (WWTPs) is compliance with
the local regulations on effluent discharge, which are going to become more stringent in the future.
The operation of WWTPs exhibits a trade-off between operational cost and effluent quality, which
provides a scope for optimization. Process optimization is usually done by optimizing a model of the
process. However, due to inevitable plant–model mismatch, the computed optimal solution is usually
not optimal for the plant. This study represents the first attempt to handle plant–model mismatch
via constraint adaptation (CA) for the real-time optimization of WWTPs. In this simulation study,
the “plant” is a model adopted from the BSM1 benchmark, while a reduced-order “model” is used
for making predictions and computing the optimal inputs. A first implementation uses steady-state
measurements of the plant constraints to adjust the model in the optimization framework. A fast CA
technique is also proposed, which adjusts the model using transient measurements. It is observed
that, even in the presence of significant plant–model mismatch, the two proposed techniques are able
to meet the active plant constraints. These techniques are found to reduce the pumping and aeration
energy by 20%, as compared to that adopted in BSM1.

Keywords: WWTP; BSM1; real-time optimization; constraint adaptation; fast constraint adaptation

1. Introduction

Wastewater treatment plants (WWTPs) are large-scale facilities for restoring pol-
luted wastewater to a desirable quality. Wastewater discharge standards are enforced
to ensure a reduced environmental impact, the compliance of which are getting stricter
with time. These stricter standards impose an extra burden on WWTPs, thus leading to a
significant increase in their operational costs [1–3]. In the operation of a WWTP, most of
the energy is consumed during the secondary treatment, where the majority of nutrients
and organic matter is removed with the help of an activated sludge process. This energy,
which consists of pumping energy for the recycle flows and aeration energy to provide
oxygen to the aerobic processes, consumes 50–90% of the total electricity required for the
plant [4–6]. The trade-off between cost (energy consumption) and treatment performance
(effluent quality) can be addressed via optimization. In other words, optimal operation of
WWTPs implies minimizing the operational cost, while complying with the wastewater
discharge standards.

A major issue associated with the implementation of optimization techniques is casting
a real-world problem into a mathematical model. Typically, a mathematical model cannot
describe a real process (labeled here plant) accurately due to assumptions, approximations
and simplifications associated with the modeling process. It follows that optimal solutions
obtained by solving a model-based optimization problem are optimal for the model, but
usually not for the plant due to inevitable plant–model mismatch. Furthermore, if these
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model-based solutions are directly implemented on the plant, they may lead to violation
of some key constraints. Unfortunately, this fact is too often overlooked by academic
researchers. For example, there are several studies that propose to optimize the performance
of WWTPs by solving a model-based optimization problem [6–11]. Additionally, some
studies use model predictive controllers that rely on solving a model-based optimization
problem [12–16]. Note, however, that the limitations of model-based approaches can be
overcome by including plant measurements in the optimization framework to handle
plant–model mismatch. These measurement-based optimization techniques are referred to
as real-time optimization (RTO) in the literature [17,18].

Ideally, RTO techniques use plant measurements to drive the plant to optimality, while
ensuring constraint satisfaction. Measurements can be used at three different levels, namely,
the process model (to update the model parameters), the cost and constraints (to modify
the cost and constraints of the optimization problem), and the constraints (to modify only
the bias in the constraints of the optimization problem) as discussed next:

• Parametric uncertainties can be handled by updating the uncertain model parameters
using a so-called “two-step” approach. This works well in the case of parametric
plant-model mismatch, that is, when the plant-model mismatch can be corrected by
parameter adaptation [19]. In the case of structural mismatch, parameter estimation
will not be able to adapt the model correctly, and the two-step scheme may not work
well [20].

• Structural uncertainty can be handled by modifying the cost and constraints of the
optimization problem. The first investigation in this direction is the method labeled
integrated system optimization and parameter estimation (ISOPE) [21]. However,
the parameter estimation step makes its implementation difficult in the presence of
measurement noise and insufficient excitation in the data. Hence, it may be beneficial
to skip the parameter estimation step and modify only the cost and constraints in the
optimization framework. The corrections added to the cost and constraints are referred
to as modifier terms, and the resulting RTO scheme is named modifier adaptation
(MA) [22]. The correction of bias and gradients in the predicted cost and constraints
are performed via so-called zeroth- and first-order modifiers, respectively.

• When only zeroth-order modifiers are used to compensate for plant-model mismatch,
the RTO method is known as constraint adaptation (CA) [23]. Note that gradient
estimation is difficult in practice, especially with a large number of inputs. CA does
not involve gradient estimation and is often preferred over MA. It ensures feasible
operation of the plant by driving it iteratively to a point where all constraints are met.
However, this way, optimal plant operation can only be ensured when the number of
inputs (or decision variables) is equal to the number of active plant constraints [18].

This paper describes the application of CA towards the optimization of WWTPs.
To the best of our knowledge, there is no work in the literature using CA for the real-
time optimization of WWTPs. CA is an iterative scheme that ensures feasibility, but
not necessarily optimality, upon convergence. However, in this study, since the optimal
operation is characterized by two quality requirements (or constraints) being met, CA can
lead to plant optimality by working with only two inputs.

Hence, CA is capable of optimizing the BSM1 plant operation at steady state using
an adequate (but not necessarily accurate) model and appropriate either steady-state
or transient measurements (There is a noticeable difference between model accuracy and
model adequacy. In the context of MA and CA, good performance requires model adequacy,
but not necessarily model accuracy. Model adequacy for CA simply says that the model
is capable of predicting the correct set of active constraints at the plant optimum. See
A.G. Marchetti, T. de Avila Ferreira, S. Costello and D. Bonvin, Modifier Adaptation as a
Feedback Control Scheme, Ind. Eng. Chem. Res., 59(6), 2261–2274 (2020) for more details.).
The reason for which plant optimality can be reached even with an inaccurate model is
the fact that optimization is set up in a way that (i) the model is corrected using bias
terms on the constraints so as to be able to predict the active plant constraints correctly,
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and (ii) all degrees of freedom in the optimization problem are used to meet the active
constraints [23]. Note that, this way, a higher priority is given to feasibility (meeting the
active plant constraints) than to optimality, which corresponds to industrial practice.

The paper is organized as follows. Section 2 on Materials and Methods describes
the various WWTP models, namely, the 147th-order BSM1 model, the 47th-order model
that is used as “plant”, and the 20th-order model that is used as “model”. Then, the
RTO methodologies CA and fast CA are briefly presented, first in general terms and then
with respect to their application to WWTP. Section 3 on Results and Discussion presents
the main results obtained with both CA and fast CA for the case of constant influents.
Conclusions are provided in Section 4. In addition, there are three appendices supporting
the model simplifications introduced to reduce the 147th-order BSM1 model to the 20th-
order “model”.

2. Materials and Methods

In silico approaches are often used to evaluate the performance of control and op-
timization schemes without expensive experimentation. For this, a simulated reality is
typically selected as the “plant”, as was done in [15,16]. These studies have considered the
Benchmark Simulation Model No. 1 (BSM1) [24] as “plant” and a reduced-order model
as “model”. In our work, for simplicity, a 47th-order model adopted from the Benchmark
Simulation Model No. 1 (BSM1) [24] is selected as “plant” and a reduced 20th-order model
is used as “model” in CA schemes. The reason for this choice is twofold: (i) numerical
optimization of the BSM1 model that includes the settler equations is a rather difficult
task, and (ii) the actual performance of CA depends on the ability of a modified model to
appropriately predicting the measured plant constraints; this is easily done by the use of
bias terms that express the differences between the plant measurements and the values
predicted by the model.

2.1. Wastewater Treatment Plant: Models and Controllers

Wastewater treatment is carried out in three main stages, namely, primary, secondary
and tertiary treatments [25]. This study focuses on the secondary treatment that involves
biological processes and secondary settling. The secondary treatment is also referred to
as the activated sludge process (ASP) in the literature [26–30]. The standard benchmark
model named BSM1 is widely used among the research community for simulation-based
comparative studies.

2.1.1. Benchmark Simulation Model No. 1

The BSM1 model represents the activated sludge process in WWTPs, where the biolog-
ical process is modeled using the Activated Sludge Model No.1 (ASM1) [31] and the settling
process is modeled using the double-exponential settling velocity function [32]. BSM1,
like any conventional secondary treatment in a WWTP, has a series of biological reactors
followed by a settling tank. BSM1 includes 5 reactors, of which the first two are under
anoxic conditions, and the remaining three are under aerobic conditions. The anoxic section,
the aerobic section and the settler have capacities of 2000, 4000 and 6000 m3, respectively.
There are two recycle streams, namely, one from the last tank (labeled Qa), and another one
from the underflow of the settler (labeled Qr). Furthermore, a WWTP typically involves
two built-in control loops to regulate (i) the nitrate level in the second reactor, SNOp,2, by
manipulating Qap, and (ii) the oxygen level in the fifth reactor, SOp,5, by manipulating
the oxygen transfer coefficient (KLa)p in the aerobic section. This can be done using, for
example, two proportional-integral (PI) controllers. The schematic representation of the
BSM1 plant is shown in Figure 1.
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Figure 1. Schematic representation of the controlled BSM1 plant.

2.1.2. 47th-Order Plant Adopted from BSM1

In the BSM1 model, every biological reactor is described using 13 ordinary differential
equations (ODEs). Hence, the series of five biological reactors contribute 65 ODEs to BSM1.
The secondary settler is a ten-layer system, where each layer is represented by 8 ODEs.
Hence, the secondary settler contributes 80 ODEs to BSM1. Furthermore, each controller
adds one differential equation to the model if it possesses an integral term. Consequently,
BSM1 has a total of 147 ODEs.

The settling process in BSM1 is assumed to be biologically inactive, which means there
is no biological phenomena taking place in the settling tank, and the only process prevalent
in the settler is the settling of solids. Consequently, the soluble matter concentrations are
not affected by the settling process and are the same at both the inlet and the outlet of the
settler. Moreover, the settler overflow has a negligible amount of particulate matter in the
treated effluent, as can be seen in the simulated results presented in [24]. It follows that
one can assume that the settler generates effluent with no particulate matter, which allows
eliminating 80 ODEs from the BSM1 model. Hence, the assumption of a perfect settler in
BSM1 reduces the number of ODEs from 147 to 67. The perfect settler equations are shown
in Appendix A.

BSM1 can further be simplified by removing 20 additional ODEs from the model
as each reactor contains two inert states and two so-called reaction invariants. Reaction
invariants are state variables that are not directly affected by the reaction [33]. Xp and SAlk
are reaction invariants in ASM1 as they do not appear in the process rates shown in the
ASM1 Peterson matrix presented in [31]. ASM1 also includes two inert states, SI and XI ,
which do not participate in the reactions and leave the system at their inlet concentrations.
Removing the mass balance equations for these 4 states in each of the 5 biological reactor
results in a 47th-order model. The representation of the reduced ASM1 model with 9 state
variables in the form of Peterson matrix is shown in Appendix B. The 47th-order model
presents two main advantages. Firstly, it is a good representation of BSM1 as its predictions
are fairly close to those of the full model as shown in Table A1. Secondly, it can be easily
optimized owing to the assumption of a perfect settler.

2.1.3. 20th-Order Model

The 47th-order “plant” model is still too large to be used for real-time computations.
The model can be further simplified by combining the two anoxic reactors into a single
reactor of volume 2000 m3 and the three aerobic reactors into a single reactor of volume
4000 m3. This way, a reduced model having only two reactors is obtained, with each reactor
being represented by 9 ODEs. The reduced model includes 20 ODEs, 18 ODEs from the
reactors and 2 ODEs from the PI controllers. This 20th-order model will be used as the
“model” in the RTO scheme. The schematic representation of this controlled model is
shown in Figure 2.
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2.1.4. Design of Controllers

The general equation for a PI controller is given as [34]:

u(t) = Kc

(
e(t) +

1
τI

∫ t

0
e(t)dt

)
(1)

where u is the manipulated variable, e is the difference between the setpoint (SP) and the
process variable (PV), Kc is the controller gain and τI is the integral time constant.

Differentiating Equation (1) with respect to t gives the following ODE:

.
u(t) = Kc

(
.
e(t) +

1
τI

e(t)
)

(2)

Based on this equation, the controller equations for the plant and the model are
provided in Appendix C. Controller tuning can be done using, for example, the Ziegler–
Nichols step response method [34].

2.2. RTO via Constraint Adaptation
2.2.1. Formulation of the Optimization Problem

Let the steady-state plant optimization problem be expressed mathematically as [35]:

u∗parg min
u

Φp(u)φp

(
u, yp(u)

)
s.t. Gp(u)gp

(
u, yp(u)

)
≤ 0

uL ≤ u ≤ uU

(3)

where u is the input vector of dimension nu, yp is the measured plant output vector of
dimension ny, φp is the plant cost function, gp is the vector of plant constraints of dimension
nG, and subscript (·)p indicates a quantity related to the plant. Furthermore, Φp and Gp are
the plant cost function and vector of plant constraints expressed in terms of u, respectively.

It is clear in the above definitions that the plant cost and constraints are known function
of u and yp. However, in practice, the plant steady-state input–output mapping yp(u) is
typically unknown, and it is estimated using an approximate steady-state model:

f(x, u, θ) = 0 (4)

y = h(x, u, θ) (5)

where x is the state vector of dimension nx, y is the model predicted outputs vector of
dimension ny, and θ is the model parameters vector of dimension nθ .
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Solution to f(x, u, θ) = 0 can be expressed as x = ξ(u, θ) with ξ the steady-state
map between u and x. Hence, the input–output map predicted by the model can be
represented as:

y(u, θ) = h(ξ(u, θ), u, θ) = H(u, θ) (6)

This way, a model-based optimization problem can be formulated as follows:

u∗arg min
u

φ(u, θ)φ(u, y(u, θ))

s. t.G(u, θ)g(u, y(u, θ)) ≤ 0
uL ≤ u ≤ uU

(7)

where φ is the model cost function, g is the vector of model constraints of dimension nG, Φ
is the plant cost function expressed in terms of u, and G is the vector of plant constraints
expressed in terms of u.

The model-based optimization problem Equation (7) can be solved numerically. How-
ever, the model optimum u∗ does not coincide with plant optimum u∗p due to plant–model
mismatch. Hence, plant measurements are incorporated into the optimization framework
to tackle this plant–model mismatch. In CA, these measurements are used to construct
zeroth-order modifiers. Zeroth-order modifiers are used for bias correction in the predicted
constraints. They represent the difference between the measured plant constraints and the
constraints predicted by the model for given inputs. There is no need to add zeroth-order
modifier to the cost function since adding a constant value to the cost function does not
change the location of the optimal solution. Hence, it is used only with the constraints and
computed as follows:

εG
k = Gp(uk)−G(uk, θ) (8)

where εG
k is a vector of dimension nG, and k is the iteration number.

2.2.2. CA Using Steady-State Measurements

Using the aforementioned zeroth-order modifiers, a modified optimization problem is
solved iteratively as per Figure 3. At kth RTO iteration, uk is obtained from the numerical
solution to the following modified optimization problem:

uk+1 := argmin
u

Φ(u)

s.t. Gm(u) := G(u) + εG
f ,k ≤ 0

(9)

where εG
f ,k are filtered modifiers as discussed next, and subscript (·)m indicates a quantity

that has been modified. Indeed, using modifiers Equation (8) often results in overcorrection,
thereby causing the CA scheme to oscillate. This can be avoided by applying a first-order
filter on the modifiers as follows:

εG
f ,k = (I−K)εG

f ,k−1 + KεG
k (10)

I is the identity matrix, while K is a filter matrix whose eigenvalues are between 0 (full
filtering) and 1 (no filtering). The matrix K is often chosen as a diagonal matrix, with nG
identical eigenvalues, that is, K = KI. The more noise, the lower the K value. Values
between 0.5 and 0.8 are often used. The effect of more filtering is to reduce the convergence
speed, but it does not affect the converged values. The CA algorithm is given next:

1. Initialize the filtered modifiers εG
f ,0 = 0. Choose the filter matrix K and the conver-

gence threshold δ. Set k0.
2. Solve the modified optimization problem Equation (9) to get the inputs uk+1.
3. If ‖uk+1 − uk‖ ≤ δ, set kk + 1; otherwise stop.
4. Apply the inputs to the plant, wait for steady state and take the measurements Gp(uk).
5. Evaluate the modifiers Equation (8), apply the filter Equation (10) and return to Step 2.
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If the above RTO scheme converges, it will satisfy the plant constraints. For instance, if
the RTO scheme converges for k→ ∞ , then the modified quantities for k→ ∞ correspond
to the plant quantities, and Gm approaches Gp as shown below:

Gm(u, y(u∞, θ)) := G(u∞, y(u∞, θ)) + εG
∞

Gm(u, y(u∞, θ)) := G(u∞, y(u∞, θ)) + Gp

(
u∞, yp(u∞)

)
−G(u∞, y(u∞, θ))

Gm(u, y(u∞, θ)) := Gp

(
u∞, yp(u∞)

)
2.2.3. Fast CA Using Transient Measurements

CA solves a modified optimization problem that uses steady-state plant measurements.
When the plant requires much time to reach steady-state, this results in slow convergence
to plant optimality. This issue can be mitigated by estimating the plant steady state using
transient measurements and a dynamic model as shown in Figure 4 [36,37]. For this, at
time tk corresponding to the kth RTO iteration during transient, the plant measurements
ydyn

p are taken and complemented by the model prediction of the remaining part of the
transient to steady state. This prediction ∆ is obtained via a dynamic model of the plant.
Hence, an estimate of the plant steady-state yss

p is obtained as:

ŷSS
p = ydyn

p + ∆ = ydyn
p +

(
ySS − ydyn

)
(11)
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The estimated plant steady state is used in the CA scheme, which can then converge
in a single settling time (i.e., the time it takes for the plant to reach steady state). CA using
transient measurements is referred to as fast CA in the literature [38].

Both CA and fast CA ensure feasible operation of the plant by driving it iteratively to
a point where all the constraints are met. In some cases, it also provides plant optimality,
in particular when the number of active constraints is equal to the number of inputs [23].
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Note that both CA and fast CA need to work iteratively because they compute an optimum
locally (and not globally) at each iteration.

2.3. RTO Applied to WWTP

This section describes the application of RTO to a WWTP as per the scheme shown
in Figure 3. The optimization problem is solved by incorporating the model described
in Section 2.1.3. as equality constraints. This model is also used to provide the model
predictions needed to compute the modifiers. The plant measurements required in the
RTO scheme are generated by simulating the plant described in Section 2.1.2. In addition, a
plant optimization problem is solved to determine the plant optimum, which is required to
verify that the RTO scheme reaches plant optimality. As highlighted earlier, the mechanical
pumping and the aeration process are the two most energy-intensive processes in WWTPs.
Hence, the objective of optimization is to minimize the sum of pumping energy (PE) and
aeration energy (AE) of the WWTP as presented below.

PE, which represents the energy used for pumping the internal recycle stream Qa, is
calculated as follows:

PE = fPE·Qa

[
kWh·d−1

]
(12)

where fPE is the PE factor and has the value of 0.004 kWh·m−3 as given in [24].
AE is expressed in terms of the oxygen transfer coefficient KLa and represents the en-

ergy needed to transfer oxygen into the reactor. KLa is directly related to energy-consuming
factors such as airflow and mixing velocity [39]. It is assumed that 1800 gO2 can be trans-
ferred per kWh of energy at 15 ◦C and zero dissolved oxygen concentration [24]. This
assumption leads to the following oxygen transfer rate (OTR) expression:

OTR = Vaerobic·KLa·SO,sat

[
gO2·d

−1
]

(13)

where Vaerobic is the volume of the reactor under aerobic conditions expressed in m−3, and
SO,sat is the oxygen saturation concentration with the value of 8 gO2·m−3 at 15 ◦C. Hence,
AE can be calculated as follows:

AE = fAE·OTR
[
kWh·d−1

]
(14)

where fAE is the AE factor and has the value of 1
1800 kWh·(g O2)

−1 as provided in [24].
Finally, the overall cost index (OCI) is expressed as the sum of PE and AE:

OCI = 0.004 Qa +
SO,sat

1800
·Vaerobic·KLatext

[
kWh·d−1

]
(15)

Substituting SO,sat = 8 and Vaerobic = 4000 in the above expression gives:

OCI = 0.004 Qa + 17.8KLa
[
kWh·d−1

]
(16)

The constraints for the optimization problems include bounds on the manipulated
variables KLa and Qa and on the setpoints of the controlled variables spSNO and spSO.
Additionally, a constraint is also placed on the ammonia concentration in the effluent.
Constraint adaptation guarantees feasible operation upon convergence; therefore, the
bounds are not going to be violated. Hence, the effluent quality (EQ) is automatically
enforced by the upper bounds on the concentrations. The various optimization problems
can be formulated as discussed next.
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2.3.1. Plant Optimization Problem

The plant optimization problem is solved to have some prior knowledge of plant
optimality in this simulation study. The plant optimum will be used to validate the
optimum obtained using RTO schemes. The plant optimization problem reads:

min
spSNOp,2,spSOp,5

0.004Qap + 17.8(KLa)p

45 SS plant equations
2 SS controller equations

180 ≤ Qap ≤ 92, 000
1.5 ≤ (KLa)p ≤ 360

0.5 ≤ spSNOp,2 ≤ 5
0.5 ≤ spSOp,5 ≤ 5

SNHp,5 ≤ 4

(17)

This optimization problem is formulated with the setpoints spSNOp,2 and spSOp,5 as
decision variables and includes bounds on the inputs Qap and (KLa)p. These bounds are
adopted from [24]. In Equation (17), SS stands for steady state and the optimization problem
includes 45 steady-state plant equations along with 2 controller equations as constraints.

2.3.2. Model Optimization Problem

The model optimization problem includes 18 steady-state model equations along with
2 steady-state controller equations as constraints as represented below:

min
spSNO,1, spSO,2

0.004Qa + 17.8KLa

18 SS model equations
2 SS controller equations

180 ≤ Qa ≤ 92, 000
1.5 ≤ KLa ≤ 360

0.5 ≤ spSNO,1 ≤ 5
0.5 ≤ spSO,2 ≤ 5

SNH,2 ≤ 4

(18)

The bounds on inputs and setpoints of the model optimization problem are taken
similar to that of the plant as described in the Section 2.3.1. In the presence of plant-model
mismatch, the optimal solution to the above model-based problem does not typically lead
to plant optimality. Hence, the model-based problem will be modified and used in the CA
and fast CA schemes to drive the plant towards optimality.

2.3.3. Modified Optimization Problem

The following modified optimization problem is solved at each RTO iteration k to
compute the optimal setpoints for the next iteration:

min
spSNO,1, spSO,2

0.004Qa + 17.8KLa

18 SS model equations
2 SS controller equations

180 ≤ Qa ≤ 92, 000
1.5 ≤ KLa ≤ 360

0.5 ≤ spSNO,1 ≤ 5
0.5 ≤ spSO,2 ≤ 5
SNH,2 + εk ≤ 4

(19)
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When some of the constrained quantities are either perfectly known or known functions
of the inputs, they possess no uncertainty and thus they do not require modification [40].
The bounds on the inputs Qa and KLa represent saturations of the control actions. These
saturation limits are perfectly known. In addition, the bounds on the setpoints are also
perfectly known. Consequently, the bounds on inputs and setpoints need not be modified
in the RTO scheme. Hence, SNH,2 is the only quantity that needs to be modified via
zeroth-order modifier as described next.

Zeroth-order modifier for CA

The inequality constraint G in a minimization problem formulation is typically pro-
vided by specifying an upper bound at zero, that is, G ≤ 0. Consequently, the upper
bounds on the ammonia concentrations can be expressed as follows:

Gp := SNHp,5 − 4 ≤ 0 (20)

G := SNH,2 − 4 ≤ 0 (21)

The zeroth-order modifier is then expressed using steady-state measurements as:

εG
k = Gp − G = SNHp,5 − SNH,2 (22)

Zeroth-order modifier for fast CA

Fast CA uses transient measurements denoted (·)dyn, and the steady state of the plant
is estimated using a dynamic model. For example, the steady-state value of Gp can be
estimated using Equation (11) as follows:

Ĝp = Gdyn
p +

(
G− Gdyn

)
(23)

The zeroth-order modifier can then be evaluated as:

ε̂k = Ĝp − G = Gdyn
p − Gdyn = Sdyn

NHp,5 − Sdyn
NH,2 (24)

3. Results and Discussion

This study assumes that a constant influent is treated by the WWTP. This influent is
adopted from [24], and its parameters are given in Table 1.

Table 1. Constant influent data.

Variables SS XS XBH SNH SND XND Qin

Values 69.5 202.32 28.17 31.56 6.95 10.59 18,446
Units g COD·m−3 g COD·m−3 g COD·m−3 g N·m−3 g N·m−3 g N·m−3 m3/d

SO = 0 g COD·m−3, XBA = 0 g COD·m−3, SNO = 0 g N·m−3.

The control parameters for both the plant and the model are obtained using the Control
Systems Toolbox in MATLAB©. First, single-input, single-output models are obtained in
the form of transfer functions using step responses. This is followed by the design of two
PI controllers. The control parameters for the plant and the model are given in Table 2.

Table 2. Control parameters for the model and plant.

Control Parameters KC1 τI1 KC2 τI2

Plant controllers 294 0.0069 4.7 0.066
Model controllers 122.8 0.0035 2.6 0.024

When the BSM1 control strategy presented in [24] is applied to the 47th-order plant for
regulating the concentration of SNOp,2 at 1 g N/m3 by manipulating Qa and that of SOp,5 at
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2 g COD/m3 by manipulating KLa in the fifth reactor, the plant OCI is 3674 kWh·d−1. Note
that KLa for the third and fourth reactors are fixed at 240 d−1, similar to those in BSM1.

This work uses the CasADi framework [41] to solve the numerical optimization
problems. The variables of interest corresponding to the plant optimum are reported in
Table 3. These results will be used to validate the converged CA and fast CA solutions.

Table 3. Plant steady-state optimization results.

Variables spSNOp,2 spSOp,5 SNHp,5 Qap (KLa)p OCIp

Plant SS values 0.5 0.81 4 34,460.9 153.81 2872.2
Units g N·m−3 g COD·m−3 g N·m−3 m3/d 1/d kWh/d

The variables of interest corresponding to the model optimum are reported in Table 4.
These setpoints are implemented on the plant to show the consequence of direct application
of the model optimum to the plant.

Table 4. Model steady-state optimization results.

Variables spSNO,1 spSO,2 SNH,2 Qa KLa OCI

Model SS values 0.5 0.76 4 20,321.5 159.32 2913.6
Units g N·m−3 g COD·m−3 g N·m−3 m3/d 1/d kWh/d

As highlighted earlier, operating the plant using the model-based optimal setpoints
results in suboptimal operation. In the worst case, it may even lead to infeasible plant opera-
tion due to plant–model mismatch. Such an instance is shown in Table 5. It can be observed
that SNHp,5 > 4, thereby representing infeasible plant operation at the model optimum.

Table 5. Plant steady-state values at model optimum.

Variables spSNOp,2 spSOp,5 SNHp,5 Qap (KLa)p OCIp

Plant SS values 0.5 0.76 4.65 38,636.3 151.53 2848.4
Units g N·m−3 g COD·m−3 g N·m−3 m3/d 1/d kWh/d

The characterization of the model optimal solution (Table 4) indicates that two con-
straints are active at the optimum, namely, spS∗NO,1 = 0.5 and S∗NH,2 = 4. Since the
optimization problem has two decision variables, optimality is completely determined by
these two active constraints. Hence, updating Qa and KLa to meet these two optimality-
determining quantities will drive the plant towards optimality.

CA scheme. Plant optimality can be verified by the CA results in Figures 5 and 6.
The red-dotted lines in Figure 5 represent the plant optimal values obtained by solving
Equation (17), whereas in Figure 6 they represent the bounds on the nitrate, oxygen and
ammonia concentrations. RTO is started from the steady-state values achieved by imple-
menting the BSM1 control strategy to the plant. It can be observed that the CA scheme takes
two iterations (around 120 days) to drive the plant close to optimality, where blue RTO lines
overlap the red-dotted plant optimal lines. We notice here an important dichotomy, namely,
two iterations are indicative of quick convergence, whereas 120 days is an unacceptable
long time! This is due to the long time (60 days) taken by the plant to reach steady state
following a system perturbation. This long settling time is intrinsic to WWTPs and cannot
be changed with RTO schemes that rely on steady-state measurements. However, the
practical message that can be taken from Figures 5 and 6 is the following: CA updates
the setpoints spSNO,1 and spSO,2 for the model (or spSNOp,2 and spSOp,5 for the plant and
thus also Qap and (KLa)p via the two PI controllers) in a direction that improves the OCI.
Another message is that it would be quite useful in WWTP to be able to use transient
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measurements in order to avoid having to wait so long for steady state. This is precisely
what fast CA does, as shown next.
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Fast CA scheme. Plant optimality can be achieved in a single settling time using the fast
CA approach as shown in Figures 7 and 8. Blue-solid and red-dotted lines in these figures
represent the same as they do in Figures 5 and 6. The time between transient measurements,
τRTO, is chosen to be 1 day. It can be noticed that the plant reaches optimality within about
50 days, where the blue RTO lines overlap the red-dotted plant optimal lines. The value of
the filter K for the CA and the fast CA is chosen to be 0.6 and 0.5, respectively.

Processes 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

figures represent the same as they do in Figures 5 and 6. The time between transient meas-
urements, 𝜏 , is chosen to be 1 day. It can be noticed that the plant reaches optimality 
within about 50 days, where the blue RTO lines overlap the red-dotted plant optimal lines. 
The value of the filter 𝐾 for the CA and the fast CA is chosen to be 0.6 and 0.5, respec-
tively. 

   
Figure 7. Fast CA results–Plant inputs and overall cost index. 

Figure 8. Fast CA results—Plant variables. 

There are three constrained quantities in the optimization problem, namely, 𝑠𝑝𝑆 , , 𝑠𝑝𝑆 ,  and 𝑆 , . The beauty of the adopted strategy is illustrated by the fact that, if two 
of the constraints are active at the optimum, the PI controllers can directly drive the plant 
to optimality in a single RTO iteration. Note, however, that feasibility is not ensured prior 
to convergence. This is clearly seen with CA in Figure 6, with the ammonia concentration 
exceeding its upper limit in the time period 10 < t < 80 d. In contrast, fast CA, which relies 
on most frequent measurements, is less aggressive and thus does not exhibit overshoot 
and constraint violation at all (see Figure 8). 

4. Conclusions 
The work has considered the real-time operation of WWTPs at minimal energy cost, 

while still satisfying the effluent discharge norms. It has been proposed to incorporate 
plant measurements in a model-based optimization framework in order to drive the plant 
to plant optimality. The two methods investigated here are CA and fast CA that both use 
measurements of the constrained quantities for bias correction in the optimization frame-
work. 

The procedure is iterative because the model correction at each iteration is only lo-
cally (and not globally) correct. By design, CA ensures feasibility upon convergence. In 
addition, it can drive the plant to optimality when the number of active constraints is 
equal to that of decision variables. This is precisely the case in this study of WWTPs, and 
it is observed that the pumping and aeration energy can be reduced by about 20% as com-
pared to the BSM1 control strategy, while still satisfying the requirement on ammonia 
concentration in the effluent.  

In this work, the plant is considered to treat an influent of constant flow and compo-
sition. Most of the WWTPs have a buffer system or equalization tank to feed a constant 

Figure 7. Fast CA results–Plant inputs and overall cost index.

There are three constrained quantities in the optimization problem, namely, spSNO,1,
spSO,2 and SNH,2. The beauty of the adopted strategy is illustrated by the fact that, if two
of the constraints are active at the optimum, the PI controllers can directly drive the plant
to optimality in a single RTO iteration. Note, however, that feasibility is not ensured prior
to convergence. This is clearly seen with CA in Figure 6, with the ammonia concentration
exceeding its upper limit in the time period 10 < t < 80 d. In contrast, fast CA, which relies
on most frequent measurements, is less aggressive and thus does not exhibit overshoot and
constraint violation at all (see Figure 8).
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4. Conclusions

The work has considered the real-time operation of WWTPs at minimal energy cost,
while still satisfying the effluent discharge norms. It has been proposed to incorporate plant
measurements in a model-based optimization framework in order to drive the plant to
plant optimality. The two methods investigated here are CA and fast CA that both use mea-
surements of the constrained quantities for bias correction in the optimization framework.

The procedure is iterative because the model correction at each iteration is only locally
(and not globally) correct. By design, CA ensures feasibility upon convergence. In addition,
it can drive the plant to optimality when the number of active constraints is equal to that of
decision variables. This is precisely the case in this study of WWTPs, and it is observed
that the pumping and aeration energy can be reduced by about 20% as compared to the
BSM1 control strategy, while still satisfying the requirement on ammonia concentration in
the effluent.

In this work, the plant is considered to treat an influent of constant flow and composi-
tion. Most of the WWTPs have a buffer system or equalization tank to feed a constant flow
and composition influent to the WWTP. Nevertheless, the influent coming to the WWTP has
time-varying flowrate and composition. For time-varying influent, the proposed methodol-
ogy can, in principle, still be implemented to reach plant optimality. However, this would
call for the online solution to a dynamic (rather than static) optimization problem, a much
more challenging task, which could be the subject of further research.

Another topic of considerable interest is the possibility of using machine-learning
techniques for the modeling, estimation and optimization of WWTPs. However, one has
to keep in mind that these techniques need to rely on “representative measurements” in
order to perform well. In the case of WWTPs, representative measurements probably need
to include the various concentrations, which unfortunately are rarely available as a whole.
Hence, whether machine-learning techniques are suited to tackle real WWTPs is still an
open question. A few preliminary research results are available, see for example [42–44].
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Appendix A

Perfect Settler

As shown in the figure below, a portion of the stream, namely Qa, is removed from
the flow Q5 leaving the fifth reactor and recycled to the first reactor. The remaining part of
Q5 is sent to the settler as the feed Q f . The concentration of Q f is the same as that of Q5.
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Figure A1. Schematic representation of a perfect settler. Symbols: 𝑄 : Settler feed flowrate, 𝑄 : In-
fluent flowrate, 𝑄 : Internal recycle flowrate, 𝑄 : Flow from reactor 5, 𝑍 : Concentration in 𝑄 , 𝑄 : 
External recycle flowrate, 𝑍 : Concentration in 𝑄 , 𝑄 : Effluent flowrate, 𝑍 : Concentration in 𝑄 , 𝑄 : Wastage sludge flowrate, and 𝑍 : Concentration in 𝑄 . 

The concentration of the settler underflow, 𝑍 , can be expressed in terms of 𝑄  and 𝑄  as shown next: (𝑄 + 𝑄 ) ∙ 𝑍 = (𝑄 − 𝑄 ) ∙ 𝑍 + (𝑄 + 𝑄 ) ∙ 𝑍  (A1)

Figure A1. Schematic representation of a perfect settler. Symbols: Q f : Settler feed flowrate, Qin:
Influent flowrate, Qa: Internal recycle flowrate, Q5: Flow from reactor 5, Z5: Concentration in Q5, Qr:
External recycle flowrate, Zr: Concentration in Qr, Qe: Effluent flowrate, Ze: Concentration in Qe,
Qw: Wastage sludge flowrate, and Zw: Concentration in Qw.

The concentration of the settler underflow, Zr, can be expressed in terms of Qr and
Qw as shown next:

(Qin + Qr)·Z5 = (Qin −Qw)·Ze + (Qr + Qw)·Zr (A1)

• For the soluble matter (S), Se = S5

Sr =
(Qin + Qr)S5 − (Qin −Qw)S5

(Qr + Qw)
= S5 (A2)

• For the particulate matter (X), Xe = 0

Xr =
(Qin + Qr)X5·(Qin −Qw)× 0

(Qr + Qw)
=

(Qin + Qr)

(Qr + Qw)
·X5 (A3)

f actor =
(Qin + Qr)

(Qr + Qw)
(A4)

Hence, the external recycle has the following characteristics: flowrate, Qr; soluble
matter concentration, Sr = S5 and particulate matter concentration, Xr = f actor× X5.

Table A1. Steady-state values of variables of interest of the 147th-order and 47th-order models at
three different set of inputs.

Variables Units 147th-Order
Model

47th-Order
Model

147th-Order
Model

47th-Order
Model

147th-Order
Model

47th-Order
Model

Qap m3/d 55,338 55,338 36,892 36,892 18,446 18,446

(KLa)p 1/d 240 240 200 200 160 160

SNOp,2 gN/m3 8.54 8.35 4.27 4.00 0.28 0.23

SOp,2 gCOD/m3 3.93 3.98 2.97 2.99 1.10 0.96

SNH,2 gN/m3 0.69 0.55 0.89 0.72 3.3 3.00
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Appendix B

Table A2. Peterson matrix for the reduced ASM1 model with 9 state variables.

Component→ i 1 2 3 4 5 6 7 8 9
Process Rate, ρj [M L−3 T−1]

j Process ↓ SS XS XB, H XB, A SO SNO SNH SND XND

1 Aerobic growth of heterotrophs − 1
YH

1 − 1−YH
YH

−iXB µ̂H

(
SS

KS+SS

)(
SO

KO,H+SO

)
XB,H

2 Anoxic growth of heterotrophs − 1
YH

1 − 1−YH
2.86 YH

−iXB µ̂H

(
SS

KS+SS

)( KO,H
KO,H+SO

)(
SNO

KNO+SNO

)
ηgXB,H

3 Aerobic growth of autotrophs 1 − 4.57−YH
YH

1
YA

−iXB − 1
YH

µ̂A

(
SNH

KNH+SNH

)(
SO

KO,A+SO

)
XB,A

4 ‘Decay’ of heterotrophs 1− fp −1 iXB − fpiXP bH XB,H

5 ‘Decay’ of autotrophs 1− fp −1 iXB − fpiXP bA XB, A

6 Ammonification of soluble organic nitrogen 1 −1 kaSNDbH XB, H

7 ‘Hydrolysis’ of entrapped organics 1 −1 kH
XS/XB,H

KX+(XS/XB,H)

[(
SO

KO,H+SO

)
+ ηh

( KO,H
KO,H+SO

)(
SNO

KNO+SNO

)]
XB,H

8 Hydrolysis’ of entrapped organic nitrogen 1 −1 ρ7

(
XND

XS

)
Observed conversion rates [M L−3 T−1] ri = ∑

j
vijρj

Stoichiometric Parameters: Heterotrophic yield: YH,
Autotrophic yield: YA,

Fraction of biomass yielding particulate products: f P,
Mass N/Mass COD in biomass: iXB,

Mass N/Mass COD in products from biomass: iXP
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Kinetic Parameters:
Heterotrophic growth and decay: µ̂H, KS, KO, H, KNO, bH

Autotrophic growth and decay: µ̂A, KNH, KO, A, bA
Correction factor for anoxic growth of heterotrophs: ηg

Ammonification: ka
Hydrolysis: kh, KX

Correction factor for anoxic hydrolysis: ηh
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Appendix C

Appendix C.1 PI Controllers for the Plant

The controlled plant has two control loops to perform the following actions:

1. Regulate the level of SNOp,2 by manipulating Qap.

For this control loop, SNOp,2 is the PV. With the corresponding SP being denoted by

spSNOp,2, e is expressed as: e = spSNOp,2 − SNOp,2. Hence,
.
e = −

.
SNOp,2. Substituting these

terms in Equation (2), the controller equation for this control loop becomes:

.
Qap = Kc,p1

(
−

.
SNOp,2 +

1
τIp1

(
spSNOp,2 − SNOp,2

))
(A5)

where
.
SNOp,2 is taken from the ODE corresponding to the mass balance of SNOp,2 in the

second anoxic reactor of the plant.

2. Regulate the level of SOp,5 by manipulating (KLa)p.

For this control loop, SOp,5 is the PV. With the corresponding SP being denoted by

spSOp,5, e is expressed as: e = spSOp,5 − SOp,5. Hence,
.
e = −

.
SOp,5. Substituting these terms

in Equation (2), the controller equation for this control loop becomes:( .
KLa

)
p
= Kc,p2

(
−

.
SOp,5 +

1
τIp2

(
spSOp,5 − SOp,5

))
(A6)

where,
.
SOp,5 is taken from the ODE corresponding to the mass balance of SOp,5 in the third

aerobic reactor of the plant.

Appendix C.2 PI Controller Equations for the Model

The controlled model has the control loops to perform the following actions:

1. Regulate the level of SNO,1 by manipulating Qa

For this control loop, SNO,1 is the PV. With the corresponding SP being denoted by
spSNO,1, e is expressed as: e = spSNO,1 − SNO,1. Hence,

.
e = −

.
SNO,1. Substituting these

terms in Equation (2), the controller equation for this control loop becomes:

.
Qa = Kc,1

(
−

.
SNO,1 +

1
τI1

(spSNO,1 − SNO,1)

)
(A7)

where,
.
SNO,1 is taken from the ODE corresponding to the mass balance of SNO,1 in the first

reactor of the model.

2. Regulate the level of SO,2 by manipulating KLa

For this control loop, SO,2 is the PV. With the corresponding SP being denoted by
spSO,2, e is expressed as: e = spSO,2 − SO,2. Hence,

.
e = −

.
SO,2. Substituting these terms in

Equation (2), the controller equation for this control loop becomes:

.
KLa = Kc,2

(
−

.
SO,2 +

1
τI1

(spSO,2 − SO,2)

)
(A8)

where,
.
SO,2 is taken from the ODE corresponding to the mass balance of SO,2 in the second

reactor of the model.
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