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Abstract: The stabilization problems for time-delay stochastic systems with multiplicative noise
in the control variable are investigated in this paper. The innovative contributions are described as
follows. Since the past work on stabilization is based on some delay-dependent algebraic Riccati
equation (DARE), how to numerically calculate the stabilizing solution remains an unsolved and
open problem. On the one hand, an iterative algorithm for computing the unique stabilizing solution
of DARE is proposed, while the convergence property is also proved. On the other hand, the concepts
of critical stabilization and essential destabilization are proposed as a supplement to stochastic
stabilization in terms of spectrum technique. Moreover, the Lyapunov-based necessary and sufficient
conditions are developed.

Keywords: stochastic system; input delay; critical stabilization; essential destabilization; spectrum
technique

1. Introduction

It is becoming increasingly clear that areas such as network control, finance, power
systems, robotics, and a large range of practical engineering systems can be described
as stochastic models [1–5]. In the actual system, due to the limited capacity between
different parts of the actual system, the uncertainty of the external environment changes,
etc., time delay is a common phenomenon in system modeling. For the actual system in
engineering, time delay will cause some negative impacts that cannot be ignored, such
as the instability of the system and the decline in system performance. In recent years,
stochastic systems with time delay have been extensively studied, especially for the issues
such as LQ optimal control, stochastic stabilization, observability, mixed H2/H∞ control
and H2 control. One of the crucial problems is the stabilization problem, which is a scheme
for obtaining closed-loop stability control.

Over the past few decades, the research on stochastic systems with input delay has
attracted widespread attention; see [1,2,6,7]. The vast majority of stability studies use the
method of the generalized Lyapunov equation (GLE) [8–10]. This approach can provide
easy-to-verify stability standards, but there is nothing that can be done to deal with some
important issues. Recently, in an input-delay-free stochastic system, Refs. [11–13], a random
spectral analysis method has been adopted to study the stability problem for some linear
time-invariant (LTI) models. Notice that the role of spectral analysis is irreplaceable by the
Lyapunov functional approach. Based on the spectrum theory, the concepts of asymptotic
mean square stabilization, critical stabilization, and essential destabilization are defined,
which are effective and meticulous. However, we find that there are very few stabilization
results for stochastic dynamics with input delay. And due to the interference of input
delay factors, the delay-dependent Lyapunov operator and operator spectrum is much
more complex than the generalized Lyapunov operator and its operator spectrum. How
to utilize the available information to determine the necessary and sufficient conditions
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for critical stabilization and essential destabilization is very difficult. As far as we know,
there are no relevant research results on time-delay stochastic systems. On the other hand,
since the past work on stabilization is based on the DARE, the analysis for the nonlinear
DARE is challenging. How to use the convergence algorithm to numerically calculate the
unique stabilizing solution of DARE deserves in-depth study. This has greatly stimulated
the motivation and confidence in our scientific research of this paper.

The objective of this paper is to obtain the necessary conditions for asymptotic mean
square stabilization, while at the same time we define critical stabilization and essential
destabilization as a supplement to the asymptotic mean square stabilization. We propose an
iterative algorithm for computing the stabilizing solution and give the proof of convergence
of the algorithm. In addition, we provide a set of necessary and sufficient conditions to
confirm critical stabilization and essential destabilization.

To be specific, our research layout and methodology are described as follows. Section 2
formulates the systems under consideration and also presents preliminary results which
will express our results more precisely. The main results are given in Sections 3–5 in terms
of methods such as convergence algorithm, recursion, delay-dependent Lyapunov equation
(DLE), resizing algorithm, etc. Section 6 provides two examples to show the effectiveness
of our theoretic results.

Notations: ker(A) means its kernel space and let I be the identity matrix with ap-
propriate dimension. A⊗ B represents the Kronecker product of the matrices A and B.
δks is a Kronecker function. Let Sn be the space of all n-dimensional symmetric matrices.
D[0, 1] = {z|z ∈ C, |z− 0| ≤ 1}. ek means a sequence of real random variables defined
on the complete probability space (Ω,F ,P ,Ft) with Ft = σ{es, s = 0, . . . , t}. Define
x̂t|s = E[xt|Fs] to be the conditional expectation xt w.r.t. the filter Fs.

2. Problem Formulation and Preliminaries

Consider the following discrete time stochastic dynamics

xk+1 = Axk + Bvk−d + ekCvk−d, (1)

where ek is assumed to be a scalar random white noise satisfying E(ek) = 0 and E(ekes) =
σ2δks, d > 0 is a positive number representing time delay in control input. To condense the
formula, let us define [A, B, C|d] representing the system (1). Note that the mean square
stabilization problem of stochastic system has been fully studied in [14–17] and the study
in [18–25] also extended the theoretical results to a more general level.

Remark 1. For a stochastic system with input delay and multiplicative noise in the control variable,
it is worth mentioning that this stochastic dynamic model has a wide application in engineering
practice. Specifically, consider an NCS operating over a reliable communication channel, in which
the control signal is assumed to suffer both packet loss and network-induced delay from the controller
to the actuator. As shown in [17], the overall NCS can be modelled by

xk+1 = Axk + ηkBvk−d (2)

where the packet loss process of γk follows the Bernoulli distribution with P(ηk = 0) = s ∈ [0, 1].
When we denote ek = ηk − (1− s), system (2) is equivalent to

xk+1 = Axk + (1− s)Bvk−d + ekBvk−d (3)

which is a special case of system [A, B, C|d].

Facilitated by stochastic control techniques, the objective is to find the necessary
conditions for the asymptotic mean square stabilization. More importantly, explore the
equivalent conditions for the critical stabilization and essential destabilization of the system
(1) under consideration. To express our results more precisely, we need to introduce the



Processes 2022, 10, 989 3 of 15

following definitions and lemmas. Different from the previous work, one significant contri-
bution is that our control law is designed as the feedback of an extended state that contains
the recently available state information and part values from previous control inputs.

Here we recall some basic definitions and lemmas related to stabilization in the mean
square sense, which are necessary for the exposition in this paper. For additional details
and other basics, we refer the reader to [14,26–28].

Definition 1. System [A, B, C|d] is asymptotically mean square stabilizable, if there exists a control
input with vk−d = Kx̂k|k−d−1, k ≥ d, such that

xk+1 = Axk + [B + ekC]Kx̂k|k−d−1 (4)

is asymptotically mean square stable.

In order to make the description and research more convenient, we define the following
operators. For system [A, B, C|d], let F [A,B,C|d]

K be a linear operator from Sn to Sn defined
as follows

F [A,B,C|d]
K (M) = (A + BK)M(A + BK)′ + σ2 AdCKMK′C′(A′)d. (5)

The adjoint operator F ∗K of F [A,B,C|d]
K from Sn to Sn is given as

F ∗K(M) = (A + BK)′M(A + BK) + σ2K′C′(A′)d MAdCK. (6)

The spectral set of F is represented by

ρ(FK
[A,B,C|d]) = {λ,FK

[A,B,C|d](M) = λM, M ∈ Sn, M 6= 0}. (7)

Moreover, for system [A, B, C|d], the nonlinear Riccati operatorsR[A,B,C|d] from Sn to
Sn is defined as

R[A,B,C|d](M) = A′MA− L′U−1L + Q, (8)

where Q ≥ 0, R > 0 and

L = B′MA,

U = B′MB + R + σ2C′QC + σ2
d−1

∑
k=0

C′(A′)k+1QAk+1C + σ2C′(A′)d(M−Q)AdC. (9)

Lemma 1 ([29]). The equivalent conditions for the mean square stabilization of system [A, B, C|d]
are given as follows.

(a) System [A, B, C|d] is stabilizable in the mean square sense, if and only if there admit K and
P > 0 satisfying the following equation

P = Q + (A + BK)P(A + BK)′ + σ2 AdCKPK′C′(A′)d, ∀Q > 0. (10)

(b) System [A, B, C|d] is stabilizable in the mean square sense, if and only if there exists a constant

matrix K such that |ρ(F [A,B,C|d]
K )| < 1.

(c) The mean square stabilization of system [A, B, C|d] is equivalent to that of the following delay
free system

zk+1 = Azk + Buk + ek AdCuk.

(d) The mean square stabilizable of system [A, B, C|d] is equivalent to the following DARE

P = A′PA− L′U−1L + Q, ∀R > 0, Q > 0. (11)
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admits a unique stabilizing solution Ps > 0, where L and U satisfy (9).

By Lemma 1, the stabilization of [A, B, C|d] is equivalent to the existence and unique-
ness of stabilizing solution to DARE. It is remarkable that in contrast to the standard
algebraic Riccati equation (ARE) or modified ARE, how to calculate this stabilizing solution
to the DARE remains an open problem. Until now, to the best of our knowledge, there have
been no firm results to these related problems.

3. The Necessary Condition of Asymptotic Mean Square Stabilization

In this section, we propose an algorithm for numerically solving the unique stabilizing
solution of DARE, which is based on the asymptotic properties of the stabilizing solution.
To begin with, for system [A, B, C|d], let G [A,B,C|d]

K be a linear operator from Sn to Sn, and it
is defined as

G [A,B,C|d]
K (M) = (A + BK)′M(A + BK) + K′RK + Q +

d−1

∑
k=0

σ2K′C′(A′)k+1QAk+1CK

+ σ2K′C′(A′)d(M−Q)AdCK + σ2K′C′QCK,

where Q > 0, R > 0. Then the linear operator G [A,B,C|d]
K can be defined in terms of (6) as

G [A,B,C|d]
K (M) = F ∗K(M) +

_

Q > F ∗K(M), (12)

where

_

Q = K′RK + Q +
d−1

∑
k=0

σ2K′C′(A′)k+1QAk+1CK− σ2K′C′(A′)dQAdCK

+ σ2K′C′QCK > 0.

When the gain is defined by KM = −U−1L, (8) can be written as

R[A,B,C|d](M) = A′MA− L′U−1L + Q

= (A + BKM)′M(A + BKM) +
d−1

∑
k=0

σ2K
′
MC′(A′)k+1QAk+1CKM

+ σ2K
′
MC′(A′)d(M−Q)AdCKM + σ2K

′
MC′QCKM + K

′
MRKM + Q

= G [A,B,C|d]
KM

(M). (13)

By utilizing the definitions of the delay-dependent algebraic Riccati operatorR[A,B,C|d]

and the linear operator G [A,B,C|d]
K , we have the following lemmas. Since the proof is similar

to that of Lemmas 3 and 4 in [30], the details are omitted here.

Lemma 2. Suppose d > 0, then one has the following statements.

(a) For any M ≥ 0,

R[A,B,C|d](M) = min
K
G [A,B,C|d]

K (M). (14)

(b) If M2 ≥ M1 ≥ 0, then,
R[A,B,C|d](M2) ≥ R[A,B,C|d](M1).

(c) For system [A, B, C|d], define Xk+1 = R[A,B,C|d](Xk) and Yk+1 = R[A,B,C|d](Yk), then, for
any k ≥ 0,

X0 ≥ Y0 ≥ 0⇒ Xk ≥ Yk ≥ 0.
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Lemma 3. Suppose there exists K and M̄ > 0, such that M̄ > F ∗K(M̄). For any M ≥ 0, there is a
limit satisfying lim

k→∞
F ∗K(F ∗K(· · · F ∗K︸ ︷︷ ︸

k

(M))) = 0.

Below, by exploiting Lemmas 2 and 3, the stabilizing solution of DARE can be obtained
immediately.

Theorem 1. For Pk (k ≥ 0) that satisfies Pk+1 = R[A,B,C|d](Pk), where the initial value P0 ≥ 0 is
arbitrary, it is bounded and converges to the unique stabilizing solution Ps > 0 of DARE (11), if
the stochastic system [A, B, C|d] is mean square stabilizable, where Q > 0 and R > 0.

Proof. Suppose system [A, B, C|d] is stabilizable in the mean square sense where Q > 0,
R > 0. It follows from (d) of Lemma 1 that there admits a unique stabilizing solution
Ps > 0 for DARE, which implies that Ps = R[A,B,C|d](Ps) holds.

Define the gain KPs = −U−1
s Ls. By (12) and (13), one has

Ps = R[A,B,C|d](Ps) = G [A,B,C|d]
KPs

(Ps) = F ∗KPs
(Ps) +

_

Qs > F ∗KPs
(Ps), (15)

where

_

Qs = KPs
′RKPs + Q +

d−1

∑
k=0

σ2K
′
Ps

C′(A′)k+1QAk+1CKPs − σ2K
′
Ps

C′(A′)dQAdCKPs

+ σ2K
′
Ps

C′QCKPs ≥ 0.

Lemma 3 means that there exists KPs and Ps > 0, such that Ps > F ∗KPs
(Ps). In this case,

we have
µPs > F ∗KPs

(Ps),

where 0 < µ < 1, which implies that

F ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k+1

(Ps))) < µF ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k

(Ps))) < · · · < µk+1Ps. (16)

For any P0 ≥ 0, according to (12)–(14), one has

Pk+1 = R[A,B,C|d](Pk) = G
[A,B,C|d]
KPk

(Pk) = min
K
G [A,B,C|d]

K (Pk)

≤ G [A,B,C|d]
KPs

(Pk) = F ∗KPs
(Pk) +

_

Qs. (17)

Similarly, we have

Pk ≤ F ∗KPs
(Pk−1) +

_

Qs,

Pk−1 ≤ F ∗KPs
(Pk−2) +

_

Qs,

...

P1 ≤ F ∗KPs
(P0) +

_

Qs. (18)



Processes 2022, 10, 989 6 of 15

Via (18), the inequality (17) leads to

Pk+1 ≤ F ∗KPs
(Pk) +

_

Qs ≤ F∗KPs
(F ∗KPs

(Pk−1) +
_

Qs) +
_

Qs

= F∗KPs
(F ∗KPs

(Pk−1)) +F ∗KPs
(
_

Qs) +
_

Qs

≤ · · ·

≤ F∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k+1

(P0))) +F ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k

(
_

Qs)))

+ F∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k−1

(
_

Qs))) + · · ·+F ∗KPs
(
_

Qs) +
_

Qs. (19)

For P0 ≥ 0, one has P0 ≤ δ0Ps where δ0 is a normal number. Similarly, for
_

Qs ≥ 0, one

has
_

Qs ≤ δQs Ps where δQs is a normal number. Therefore, we have

F ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k+1

(P0))) ≤ δ0 F ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
k+1

(Ps))) < µk+1δ0Ps. (20)

Similarly, for 1 ≤ i ≤ k, it follows that

F ∗KPs
(F ∗KPs

(· · · F ∗KPs︸ ︷︷ ︸
i

(
_

Qs))) < µiδQs Ps. (21)

According to the method of inequality scaling and (19)–(21), it can be seen that {Pk} is
bounded.

To give the stabilizing solution of (11), set X0 and Y0 to be 0 and P0 + Ps, respectively.
Then one has X0 ≤ P0 ≤ Y0.

Suppose X0 = 0, by (b) in Lemma 2, it is known that

X1 = Q ≥ X0 = 0,

which implies that
Xk ≥ Xk−1 ≥ · · · ≥ X1 ≥ X0.

Note it has been proved that {Xk} is bounded. Then the sequence {Xk}must have a
limit, i.e.,

lim
k→∞

Xk = R[A,B,C|d]( lim
k→∞

Xk−1) = X̄,

where X̄ is the limit of sequence {Xk}. As as result, the above equivalent can be rewritten as

X̄ = R[A,B,C|d](X̄),

and the unique stabilizing solution Ps > 0 of (11) is equal to its positive definite solution
in [30]. Thus, X̄ = Ps.

Suppose Y0 = P0 + Ps, by (b) and (c) in Lemma 2, it is known that

Y1 = R[A,B,C|d](P0 + Ps) ≥ Ps,
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which implies that Yk − Ps ≥ 0 (k ≥ 0). So, together with (17) and Lemma 3, we have

Yk − Ps ≤ F ∗KPs
(Yk−1 − Ps) ≤ F ∗KPs

(F ∗KPs
(· · · F ∗KPs︸ ︷︷ ︸

k

(Y0 − Ps))),

lim
k→∞
F ∗KPs

(F ∗KPs
(· · · F ∗KPs︸ ︷︷ ︸

k

(Y0 − Ps))) = 0.

That is, lim
k→∞

Yk = Ps is established.

By item (b) in Lemma 2, one has Xk ≤ Pk ≤ Yk, and it is known from the Squeeze
Theorem

lim
k→∞

Pk = Ps,

which ends this proof.

4. Critical Stabilization

Next, we introduce another concept of stochastic stabilization which will be called
critical stabilization and use DLE to give necessary and sufficient conditions for judgment.

Definition 2. System [A, B, C|d] is said to be critically stabilizable, if there is a feedback control
vk−d = Kx̂k|k−d−1, k ≥ d such that |ρ(F [A,B,C|d]

K )| ⊂ D[0, 1].

Now, we will use the resize method to prove the following theorem to judge critical
stabilization. For the sake of discussion, we introduce the following stochastic dynamics
notated as [A, B, C|d, α]

xk+1 = (
A√

α
)xk + (

B√
α
)vk−d + ek(

C√
α
)vk−d. (22)

Correspondingly, for system [A, B, C|d, α], define FK
[A,B,C|d,α] be a linear operator from

Sn to Sn satisfying

FK
[A,B,C|d,α](M) = (

A√
α
+

B√
α

K)M(
A√

α
+

B√
α

K)′ + σ2(
A√

α
)d C√

α
KMK′

C′√
α
(

A′√
α
)d. (23)

The spectral set of F is represented by

ρ(FK
[A,B,C|d,α]) = {λα,FK

[A,B,C|d,α](M) = λα M, M ∈ Sn, M 6= 0}. (24)

Theorem 2. The following statements are equivalent.

(i) System [A, B, C|d] is critical stabilization.
(ii) There exists matrix K, K ∈ Sn, such that for any α > 1 and Q > 0, the following DLE

P = Q + (
A√

α
+

B√
α

K)P(
A√

α
+

B√
α

K)′ + σ2(
A√

α
)d C√

α
KP[(

A√
α
)d C√

α
K]′, (25)

admits a unique positive solution P ∈ Sn, P > 0.
(iii) There exists matrix K, K ∈ Sn, such that for any α > 1, the following inequality

P− (
A√

α
+

B√
α

K)P(
A√

α
+

B√
α

K)′ − σ2(
A√

α
)d C√

α
KP[(

A√
α
)d C√

α
K]′ > 0, (26)

admits a positive solution P ∈ Sn , P > 0.
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(iv) There exists matrices K, K ∈ Sn, such that for any α > 1 and Q > 0, the following inequality

P = Q + (
A√

α
+

B√
α

K)′P(
A√

α
+

B√
α

K) + σ2K′
C′√

α
(

A′√
α
)dP(

A√
α
)d C√

α
K, (27)

admits a unique solution P ∈ Sn, P > 0.

Proof. Interestingly, (ii)⇔(iii), what we have to do is to prove (i)⇔(ii), (iii)⇔(iv). First, we
give a simple proof to show (i)⇔(ii).

Sufficiency : From the conditions, it can be seen that (25) has a unique solution
P ∈ Sn, P > 0 which is equivalent to the asymptotically mean square stabilization of the
following system

zα
k+1 =

A√
α

zk +
B√
α

uk + ek(
A√

α
)d C√

α
uk. (28)

From Theorem 2 in [29], it can be seen that the system (28) is asymptotically mean
square stabilizable, which is equivalent to that system [A, B, C|d, α] is stabilizable. By
applying (b) in Lemma 1, it is easy to know that |ρ(F [A,B,C|d,α]

K )| < 1. Then, let α→ 1, with

the continuity of spectrum, it follows that |ρ(F [A,B,C|d]
K )| ≤ 1, which completes the proof of

Sufficiency part.
Necessity: Using the Kronecker product theory and the definition of the spectrum

yields the following formula

λ~X = [(A + BK)⊗ (A + BK) + σ2 AdCK⊗ (A)dCK]~X.

Compared with

λα~X = [σ2(
A√

α
)d C√

α
K⊗ (

A√
α
)d C√

α
K + (

A√
α
+

B√
α

K)⊗ (
A√

α
+

B√
α

K)]~X, (29)

where
−→
X is a column monomial matrix by all elements of X, one obtains that the relationship

between λ and λα can be inferred as λ ≥ λα, which means that |λα| < 1. Combining with
(a) and (b) in Lemma 1, the necessity of the proof is proved.

Next, we prove that (iii) and (iv) are equivalent. From Theorem 1 in [31], it is easy to
find that (iii) and (iv) are equivalent when system [A, B, C|d, α] is stabilizable.

It is worth noting that the condition of critical stabilization is weaker than that of
asymptotic mean square stabilization. According to the distribution of the spectrum of the
operator on the complex plane, in the next section, we will propose the concept and related
properties of the essential destabilization.

5. Essential Destabilization

In this section, we focus on an interesting concept of stochastic stabilization which
will be called essential destabilization with the spectrum technique. More importantly, the
Lyapunov-type necessary and sufficient conditions will be proposed.

We start this section by defining essential destabilization. The following definition
and lemmas are necessary to establish our main theoretical results.

Definition 3. System[A, B, C|d] is called to be essentially destabilizable, if for any feedback vk−d =
Kx̂k|k−d−1, the closed-loop dynamic system xk+1 = Axk + [B + ekC]Kx̂k|k−d−1 is essentially
unstable, i.e., there exists λi ∈ ρ(FK

[A,B,C|d]) satisfying |λi| > 1.

For any Xn = (xij)n×n ∈ Sn, define two column vectors
−→
Xn and X̃n, where

−→
Xn is with

all elements of Xn and X̃n formed by different elements of Xn. T(n2, n(n+1)
2 ) denotes the

transform matrix from X̃n to
−→
Xn.
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As stated in [21], T(n2, n(n+1)
2 ) has the following properties

• Matrix T(n2, n(n+1)
2 ) has column full rank.

• Matrix T′(n2, n(n+1)
2 )T(n2, n(n+1)

2 ) is invertible.

Besides, let us define

=(T(n2,
n(n + 1)

2
), A, B, C|d) = [T′(n2,

n(n + 1)
2

)T(n2,
n(n + 1)

2
)]−1T′(n2,

n(n + 1)
2

)

× [(A + BK)⊗ (A + BK) + AdCK⊗ AdCK)]T(n2,
n(n + 1)

2
).

Lemma 4 ([31]).

ρ(F [A,B,C|d]
K ) = ρ(=(T(n2,

n(n + 1)
2

), A, B, C|d)).

Lemma 5. Assume that λi 6= 1 holds for any λi ∈ ρ(F [A,B,C|d]
K ). Then for any given symmetric

matrix Q ∈ Sn, the following delay-dependent equation

(A + BK)P(A + BK)′ + σ2(AdCK)P(AdCK)′ − P = Q, (30)

has a unique solution P ∈ Sn.

Proof. First, Let us define the following Jordan canonical form of
=(T(n2, n(n+1)

2 ), A, B, C|d)

J =


J1

J2
. . .

Js


with Jordan blocks

Ji =


λi 1

. . . . . .
. . . 1

λi


ki×ki

where
s
∑

i=1
ki =

n(n+1)
2 . Then, take the basis B = {v1

1 · · · v1
k1

, v2
1 · · · v2

k2
, · · · , vs

1 · · · vs
ks
} of

C
n(n+1)

2 and define V = [v1
1 · · · v1

k1
, v2

1 · · · v2
k2

, · · · , vs
1 · · · vs

ks
], where v1

1 · · · v1
k1

, v2
1 · · · v2

k2
, · · · ,

vs
1 · · · vs

ks
are linear and independent eigenvectors to λi, i = 1, 2, · · · s. It follows that

V−1=(T(n2,
n(n + 1)

2
), A, B, C|d)V = J,

or equivalently

=(T(n2,
n(n + 1)

2
), A, B, C|d)V = V J. (31)

Then it follows that X1
1 · · ·X1

k1
, X2

1 · · ·X2
k2

, · · · , Xs
1 · · ·Xs

ks
consititute a complete basis

B of Sn. Moreover, it follows that{
FK

[A,B,C|d](Xi
1) = λiXi

1, i = 1, 2, · · · , s
FK

[A,B,C|d](Xi
ij) = λiXi

j + Xi
ji−1, ji = 2, 3, · · · , ki

(32)
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Now, we begin to show that the symmetric solution of (30) exists and is unique. Since
B is a basis of Sn, each matrix Q in Sn can be uniquely expressed as

Q = [c1, c2, c3 · · · cn(n+1)/2]



x1
1

...
x1

k1
...
xs

ks


(33)

Without losing generality, it is assumed that P follows the following structure

P = [b1
1, · · · , b1

k1
, b2

1, · · · , b2
k2

, · · · , bs
1 · · · bs

ks
]



x1
1

...
x1

k1
...
xs

ks


=

s

∑
i=1

ki

∑
ji=1

bi
jix

i
ji. (34)

Due to the fact that (31) is linear w.r.t. P, when we take (33) and (34) into (30), we
obtain that

s
∑

i=1

ki
∑

ji=1
bi

jiFK
[A,B,C|d](xi

ji)−
s
∑

i=1

ki
∑

ji=1
bi

jix
i
ji = [c1, c2, c3 · · · cn(n+1)/2

]



x1
1

...
x1

k1
...
xs

ks


that is

[b1
1, · · · , b1

k1
, b2

1, · · · , b2
k2

, · · · , bs
1 · · · bs

ks
]J′ − [b1

1, · · · , b1
k1

, b2
1, · · · , b2

k2
, · · · , bs

1 · · · bs
ks
]

=[c1, c2, · · · cn(n+1)/2],

or equivalently

PJ′ − PI = Q. (35)

By this condition, it is known that λi 6= 1. Note that J′ − I is invertible, then P exists
and is unique.

Theorem 3. System [A, B, C|d] is essentially destabilizable, if and only if for any K and W > 0,
there exists a constant α > 1, such that the following DLE

V + W = (
A√

α
+

B√
α

K)V(
A√

α
+

B√
α

K)′ + σ2(
A√

α
)d C√

α
KVK′

C′√
α
(

A′√
α
)d, (36)

admits a unique symmetric matrix V with at least one positive eigenvalue.

Proof. First, let’s generalize a further relationship between λ and λα. Utilizing Kronecker
matrix theorem, (7) can be rewritten as

[(A + BK)⊗ (A + BK) + σ2 AdCK⊗ AdCK]~X = λ~X.
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Compared with

[(
A√

α
+

B√
α

K)⊗ (
A√

α
+

B√
α

K)+σ2(
A√

α
)

d C√
α

K⊗ (
A√

α
)

d C√
α

K]~X = λα~X, (37)

one obtains the following relationship

λi

αd+1 < λα,i <
λi
α

< λi, (38)

where the λi ∈ ρ(F [A,B,C|d]
k ), λα,i ∈ ρ(FK

[A,B,C|d,α]), and
−→
X is a column monomical matrix

constructed by all elements of X.
Sufficiency: We assume that the system [A, B, C|d] is stabilizable. Then |ρ(FK

[A,B,C|d,α])|
< 1 can be derived from item (b) in Lemma 1 and the former statements.

Compared with condition, we have

− (V + W) = (
A√

α
+

B√
α

K)(−V)(
A√

α
+

B√
α

K)′ + σ2(
A√

α
)d C√

α
K(−V)K′

C′√
α
(

A′√
α
)d.

We can conclude that the matrix −V is positive definite, that is, V is a negative
definite matrix, which contradicts the problem condition. Therefore, [A, B, C|d, α] is not
asymptotically mean square stabilizable.

From the former result, we can find a λα,i ∈ {λα, |λα| ≥ 1}. Denote λ∗α,i to be the
maximum spectrum in λα. With the condition α > 1 and the the relationship between λα

and λ, there exists a |λ| > 1, which implies that the system is essentially destabilizable.
Necessity: Set β = min{|λj|, λj ∈ ρ(F [A,B,C|d]

K ), |λj| > 1}. Clearly, we have β > 1,
since the possible value of λj is finitely many, there exists a αd+1 ∈ (1, β) such that α ∈ (1, β),

for any λi ∈ ρ(F [A,B,C|d]
K ).

According to such α, conbined with (38), for any λj ∈ ρ(F [A,B,C|d]
K ), |λj| > 1, we have

λα,j > 1. Moreover, for any λi ∈ ρ(F [A,B,C|d]
K ), |λi| ≤ 1, it is easy to get λα,i 6= 1. It follows

from Lemma 5 that for any given W > 0, (36) has a unique solution V′ = V, which implies
that V is not a negative definite matrix by item (a) in Lemma 1.

To show the existence of positive eigenvalues of V, we have the following discussions.

(i) When ker(V) = 0, V is a column full rank matrix. Since V is not a negative definite
matrix, V must have a positive eigenvalue.

(ii) When ker(V) 6= 0, for any non-zero x0 ∈ ker(V), pre-multiplying x′0 and post-
multiplying x0 on both sides of (36), we have

x′0(
A√

α
+

B√
α

K)V(
A√

α
+

B√
α

K)′x0 + x′0σ2((
A√

α
)d C√

α
K)V((

A√
α
)d C√

α
K)′x0

= x′0Wx0.

Together with the positive definiteness of W, since V is not a negative definite matrix,
We have that V must not be a zero matrix. That is, V has a positive eigenvalue.

6. Simulation

In this section, we will verify the validity of the developed theoretic results, including
Theorem 1 and Theorem 3, through two illustrative examples.

Example 1. Consider system [A, B, C|d], with d = 1, σ2 = 1, Q = I, R = I and A, B and C
respectively meet the values as shown in Table 1.
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First, we need to verify the mean square stabilization for each system in Table 1. Similar to
Theorem 2 in [29], we have that system [A, B, C|d] is stabilizable if and only if there exist matrices
H and Z > 0 satisfying  −Z ∗ ∗

AZ + BH −Z ∗
σ2 AdCH 0 −Z

 < 0, (39)

where ∗ represents the corresponding transpose part. By using the LMI toolbox in MATLAB, we
can obtain the corresponding values of H, Z > 0 for three different stochastic systems as shown in
Table 1, which illustrates that each system is stabilizable.

Table 1. Three sets of values of real system parameters in stochastic system [A, B, C|d].

A B C

1
[ 1

3 0 ; 0 − 1
5
] [

1 1
5 ; 0 − 1

3
] [

− 1
5

1
3 ; 0 1

5
]

2
[
1 − 1

5 ; 1 − 1
7
] [

1 1
4 ; 2 1

4

] [ 1
3

1
5 ; 0 2

]
3

[
1 − 1

4 ; 1 1
7
] [

2 − 1
3 ; 1 1

2
] [

1 − 1
2 ; 1

3
1
4

]
It is remarkable that for DARE with Q > 0 and R > 0, Theorem 1 defines a numerically

iterative algorithm for obtaining the unique stabilizing solution, i.e., for any initial value P0 ≥ 0,
the matrix sequence satisfying Pk+1 = R[A,B,C|d](Pk) can converge to the unique solution. In
Table 2, the value of P0 is assumed to be positive semi-definite. Then, for any state dimension case,
we can choose any positive semi-definite P0 ≥ 0 as an initial value. Perform iterative calculation
Pk+1 = R[A,B,C|d](Pk) until Pk0+1 = Pk0 . In this case, we have Pk0+1 = Pk0 = Ps. Besides, to
illustrate the effectiveness of the developed algorithm, we provide the iteration N in Table 3. Based
on the simulations, the convergence rate is fast.

Table 2. Three sets of simulation results of LMI toolbox.

H Z P0

1
[
−174.5693 52.8967
−11.6459 −276.5355

] [
532.7641 0.3806

0.3806 531.4675

] [
1 2
2 4

]
2

[
−44.0803 6.0853
−150.2109 29.4270

] [
109.7799 1.6274

1.6274 115.1478

] [
4 6
6 9

]
3

[
−69.6452 1.8577
−113.4397 −18.3662

] [
117.1685 2.5141

2.5141 117.3061

] [
1 0
0 1

]

Table 3. Results of three sets of simulation series.

limx→∞ Pk N

1
[

1.0304 0.9834
0.9834 1.0120

]
> 0 11

2
[

1.6470 0.8792
0.8792 1.0231

]
> 0 27

3
[

2.6428 0.8405
0.8405 1.0700

]
> 0 19

By introducing the obtained lim
k→∞

Pk into Equation (11), we can verify that the limit is the

stabilizing solution of DARE.

Example 2. For system [A, B, C|d], we take the following matrix coefficients into account

A =

[
−1 5
1 3

]
, B =

[
−1 0
2 0.7

]
, C =

[
−1 2
1 −1

]
, d = 1.
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In this case, one obtains that the control law follows

vk−1 = Kx̂k|k−2 = K(Axk−1 + Buk−2).

To begin with, we first check the given system is not stabilizable in the mean square sense by
utilizing inequality (39). Then, to study the essential destabilization, we choose different feedback
gain Ki as shown in Table 4. It follows from Theorem 3, the following inequality holds for each Ki,
which can be solved by LMI in Matlab with

V − (
A√

α
+

B√
α

K)V(
A√

α
+

B√
α

K)′ − σ2(
A√

α
)d C√

α
KVK′

C′√
α
(

A′√
α
)d > 0.

Table 4. Results of three kinds of feedback design for the system.

K 10−8 W 10−6 V 10−5 λV

1
[

1 0
0 1

] [
0.3936 0.0582
0.0582 1.8208

] [
6.5492 6.8033
6.8033 6.8989

] [
−0.8200 135.00

]
2

[
5 0
0 5

] [
0.6375 −0.2810
−0.2810 1.8007

] [
0.5420 0.48857

0.48857 0.476510

] [
0.0398 9.8566

]
3

[
0.5 0
0 0.5

] [
0.6467 0.5164
0.5164 2.5623

] [
6.0390 22.4000

22.4000 31.8010

] [
−692.0000 447.5900

]
For the given matrix M, there exist α = 2 and a unique symmetric matrix, such that (36)

holds. Utilizing the conventional calculation method, one obtains that V has at least one positive
eigenvalue. Figure 1 shows the essential destabilization of the considered system.

0 10 20 30 40 50 60 70 80 90

0

5

10

15

10
6

K
1

K
2

K
3

Figure 1. Simulation of lim
k→∞

E||xk||2 with K1.

7. Conclusions

We study the stochastic stabilization problems with the co-existence of input delay and
multiplicative noise in the control variable. First, as the necessary condition of asymptotic
mean square stabilization, we derive an iterative algorithm to solve the DARE. Then,
the concepts of critical stabilization and essential destabilization are defined by operator
spectrum theory. Utilizing DLE, the necessary and sufficient conditions are developed for
dynamic models under consideration. However, how to utilize the spectrum theory and
Lyapunov technology to study the stochastic stabilization for a more general time-delay
stochastic system with multiplicative noises remains an open question, which defines a
meaningful research direction. On the other hand, applying online Reinforcement Learning
(RL) technology to solve DARE with partial system information is another promising
research direction.
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