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Abstract: In recent decades, manufacturers’ intense competitiveness to suit consumer expectations
has compelled them to abandon the conventional workflow in favour of a more flexible one. This new
trend increased the importance of master production schedule and make-to-order (MTO) strategy
concepts. The former improves overall planning and controls complexity. The latter enables the
production businesses to reinforce their flexibility and produce customized products. In a production
setting, fluctuating resource capacity restricts production line performance, and ignoring this fact
renders planning inapplicable. The current research work addresses the MPS problem in the context
of the MTO production environment. The objective is to resolve Rough-Cut Capacity Planning by
considering resource capacity fluctuation to schedule the customer’s order with the minimum cost
imposed by the company and customer side. Consequently, this study is an initial attempt to propose
a mathematical programming approach, which provides the optimum result for small and medium-
size problems. Regarding the combinatorial intrinsic of this kind of problem, the mathematical
programming approach can no longer reach the optimum solution for a large-scale problem. To
overcome this, an innovative agent-based heuristic has been proposed. Computational experiments
on variously sized problems confirm the efficiency of the agent-based approach.

Keywords: master production scheduling; make-to-order; mathematical programming; agent-based;
overtime; earliness; tardiness

1. Introduction

In the last few decades, the interest of industry and academia has led to a stable
increase in the production planning (PPC) area, as this is considered one of the most central
and relevant choices faced by firms [1,2]. A traditional PPC problem originates with the
details of a customer demand that must be covered with a specific production plan by
managing different resources and constraints (i.e., demand, process, and supply) while
minimizing costs [3]. Mula et al. (2006) identified five main PPC areas: (i) Master Produc-
tion Schedule (MPS), (ii) Material Requirement Planning and Manufacturing Resources
Planning (MRP); (iii) Supply Chain Planning; (iv) Aggregate Production Planning and
(v) Hierarchical Production Planning [4]. MPS defines the optimal production plan by meet-
ing customer demand and minimizing holding and set-up costs. MRP accomplishes PPC
components by using a bill of materials (BOM) and the MPS outputs. An additional com-
ponent, the Rough-Cut Capacity Plan (RCCP) module, can be used to check the feasibility
of the MPS plan. However, due to the supply chain complexity and the increasing need for
integration and coordination among supply chain players, Supply Chain Planning modules
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have been introduced in the last decades to manage multisite PPC. Finally, Hierarchical
Production Planning is used to distinguish between several planning levels, and Aggregate
Production Planning to establish production, inventory, and workforce levels. Manufac-
turing businesses encounter complicated production planning problems due to a growing
focus on customer requirement and service and a rise in product complexity. A high degree
of manufacturing flexibility is also necessitated due to short product life cycles, ongoing
market volatility, and unpredictable demand. Understanding operational interdependence
and reacting effectively to market or demand shifts is even more crucial in an ever-complex
environment [5]. In today’s competitive market, manufacturing companies are striving
to modify their production strategy to enhance their market share by responding to a
broader variety of client needs. One supporting strategy in this regard is Make-To-Order
(MTO). MTO enables business owners to produce customized products according to what
is desirable for customers, and can be facilitated through the implementation of Industry
4.0 technologies [6]. The higher the customer satisfaction and the more needs are met,
the more successful the company will be in attracting higher number of customers and
increasing its market share [7–9]. According to the capability of MTO to confront market
competitiveness and MPS to handle intrinsic uncertainty in production, their accompani-
ment could play a noteworthy role for manufacturers in the direction of overcoming the
above-mentioned challenges. Therefore, the goal of this paper is to focus on an MPS/RCCP
problem similar to that proposed in [10], where the authors developed a decision support
framework to improve the MPS process in a MTO environment. They extended the RCCP
functionalities of Microsoft Navision by implementing an Extended-RCCP based on a
Genetic Algorithm (GA). In this paper, instead of using the GA, we present an innovative
agent-based heuristic, and we compare its results versus a mathematical programming
approach. The paper is organized as follows; the next section depicts the state of art
related to MPS, MTO problems, the focus of this research, and the main characteristics
of the agent-based heuristic. Section 3 describes the model formulation and the solution
approach. Section 4 presents the comparison between results obtained by the mathematical
programming approach and agent-based heuristics applied to some problem instances in
‘real’ industrial cases. Finally, Section 5 presents conclusions and future outlook.

2. Literature Review

The MPS process defines production plans for product families or products regarding
fluctuating demands [11]. The results of demand planning and forecasting influence the
MPS as it aims to balance the demand and available capacities. In return, the resulting
plans determine purchased parts for the MRP and the production volume for the lot sizing.
In the literature for the MPS, various mathematical optimization models can be found,
most of which are used in linear programming, integer linear programming, and mixed-
integer linear programming [12]. Basic MPS models consider a single-period single-stage
case [13]. However, there are many extensions as practical examples; there are usually
many different stages, with planning horizons spanning from a few months up to one year.
Therefore, multi-period multi-stage models are considered contributions. Additionally, the
insertion of capacity restrictions is the state of the art for MPS models. In this scenario,
to allow demand to be met, the number of stored products needs to be determined [14].
Different models consider further additional adjustments for uncertainties, such as quality
issues, rework, and uncertain demand. An example of this can be found in Taşkın and
Ünal (2009) [15]. They describe an MPS model applied within the glass industry. They
come up against the problem of inconsistent product qualities and downgrade substitution
to meet demand. The reworking of rejects is integrated into the MPS by Inderfurth, Lindner
and Rachaniotis (2005) [16]. At present, many models focus on existing uncertainties in
tactical and operational planning, though at the forefront are those focusing on demand. Re-
searchers can broadly be split into two groups: those who consider non-cost-based objective
functions like flow time, job tardiness, job earliness and schedule makespan [17], and those
who consider combined cost-based and non-cost-based objective functions [18,19]. Among
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the latter group, some recent studies [20,21] indicate that smoothed series of production
volumes, through the minimization of (i) ‘total variations in production volumes’; (ii) the
total cost; and (iii) other objectives; are sought by production managers. Driven by the
complexity of the automotive industry, Mansouri, Golmohammadi, and Miller (2019), in
their paper, first examine how the throughput of complex job shop systems can be fore-
casted based on problem characteristics and different MPS methods [22]. Next, they analyse
how different MPS approaches balance the relationship between problem characteristics
and throughput. A mixed-effects model based on operational characteristics and the MPS
development method was established to obtain these objectives and predict the system’s
throughput. The analyses are based on a real case study taken from the automotive industry
and two complex job shop systems in the literature. The experimental results indicate
that the throughput of job shop systems can be predicted with a high level of accuracy.
Golmohammadi (2013) developed a neural network model focused on detailed scheduling
for analysis of job shop scheduling. Instead of a simulation model, which is a costly and
complex approach for scheduling, the output of the model proposed by the author helps
managers estimate the throughput based on historical data with a trained neural network
model [23]. The main shortcoming of the research is that the prediction results may not be
accurate due to the training data set potentially not comprising new problem character-
istics. The paper by Guillaume, Thierry and Zieliński (2017) focuses on the tactical level
by examining the MPS and MRP planning processes; specifically, they work on the CLSP
(for the MPS process) and MLCLSP (for the MRP process), both with back-ordering, with
uncertain cumulative demand [24]. An essential difficulty for the production planning
systems is the issue of tactical production and capacity planning under uncertainty in
demand. In the paper, the authors cover (i) the MPS (CLSP) under small uncertainty in the
cumulative demand; (ii) the MRP (MLCLSP) problems under uncertainty in the cumulative
demand. The model of uncertainty in the cumulative demand enables us to take into
account simultaneously the imprecision on order quantities and dates. For both problems,
linear programming models, including back-ordering and the cumulative demand, have
been presented. Efficient methods for evaluating the impact of uncertainty on production
plans and linear programming for computing optimal robust production plans for MPS
and MRP problems in the cumulative demand are proposed. The authors prove that the
computational complexity of optimization processes, with the min-max criterion, is not
significantly increased when introducing uncertainty in the cumulative demand, compared
with the deterministic counterparts–they remain polynomial solvable. Therefore, they
can be applied in the industrial context, namely in the manufacturing planning tools us-
ing linear programming solvers. Sahin, Powell Robinson and Gao (2008) explored the
MPS problem in a MTO environment [25]. They developed a simulation model to anal-
yse cost and schedule metrics and design specific advanced order commitment policies.
They conducted full-factorial experiments to define the main drivers of MPS policy cost
and schedule stability. Powell Robinson, Sahin, and Gao (2008) also develop a two-stage
rolling schedule environment with a particular focus on the policy related to the schedule
flexibility in the non-frozen time intervals [26]. Sawik (2007) explored the same topic by
developing multi-objective, long-term production scheduling in an MTO environment
and a lexicographic approach with a hierarchy of integer programming formulations [27].
The goal was to assign customer orders with different due dates to minimize tardiness
and maximize the input and output inventory. The same topic is explored by Nedaei and
Mahlooji (2014), who developed a multi-objective MPS and rolling schedule policies in
a two-stage MTO environment [28]. Finally, very recent articles address MPS and MTO
problems in connection with Industry 4.0. Indeed, Yin, Stecke and Li (2018) explained that
due to the relevance of the mass-customization trend and due to the difficulties companies
are experiencing with the current manufacturing systems, Industry 4.0 technologies can
enable and facilitate a MTO environment as a typical strategy of customization [29]. Gu
and Koren (2022) stated that internet of things, cyber physical systems, machine learning
and deep learning technologies should be integrated to develop a mass-individualisation
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MTO [30]. Mladineo et al. (2022) stated that companies need to advance their product con-
figurators to satisfy customer needs and to keep the whole process economical and efficient.
In this regard, data integration is defined as a fundamental requirement for MTO, especially
in the context of horizontal and vertical integration of the value chain [9]. Kundu, Rossini
and Portioli-Staudacher (2018) discussed the importance of Industry 4.0 technologies in
workload control for MTO companies. They stated that the first condition is to implement
production automation to improve flexibility, then they highlighted the importance of
cyber physical systems as a representation of physical components. To this end, sensors are
considered one of the core technologies to enable cyber physical systems. Finally, they em-
phasised the importance of a proper communication network within the factory to improve
data sharing between manufacturing processes and production orders [31]. Lee et al. (2019)
implemented an MTO strategy in the context of Industry 4.0. They developed a product
configuration system to match customer demands and manufacturer orders [32]. Rahman,
Janardhanan and Nielsen (2019) focused on real-time order acceptance and scheduling
as key concepts of MTO in an Industry 4.0 environment. They developed a real time
system capable of accepting orders and scheduling decisions through a hybrid genetic
algorithm and particle swarm optimization model [33]. Micieta et al. (2019) designed an
innovative approach to products segmentation in an MTO environment based on Industry
4.0 concepts. This approach allowed companies to reduce work in progress lead time
and increase efficiency [34]. Woschanka, Dallasega and Kapeller (2020) aimed to enhance
logistics performance in a MTO environment by using real data and analysing several
planning granularity levels. The approach has been validated through a discrete event
simulation model [35].

2.1. Main Focus of the Proposed Research

This study aims to closen the MPS problem in the context of MTO to the real production
environment. Various limitations that frequently occur in the production factories have
been imposed to realize this goal. For example, limited resource capacity is one of the most
frequent challenges that restrict the production rate and affect customer order delivery date.
There are also other kinds of constraints that make the production setting more complicated.
More details and clarification have been explained in the rest of the paper. This extension
and modification enable a manufacturer to achieve more practical results. To achieve these
results, two solution approaches, including Mathematical Programming (MP_RCCP) and
an Agent-Based approach (AB_RCCP), have been presented. Garey and Johnson have
proven that when capacity and setup limitations are imposed, the MPS problem is taken into
account as an NP-hard problem. In practice, this implies that the processing time required
to answer such issues will swiftly and tremendously increase as the problem size rises [36].
Following this, achieving the optimal solution through mathematical programming with
increasing instances’ size is quite complicated (MP_RCCP). To overcome this challenge, an
AB_RCCP has been developed to perform an acceptable solution in a reasonable time.

The ‘conceptual’ generated problem instance is described as follows:

• Customer Order (CO): this is the customer’s request. It is managed in an MTO environ-
ment. Each customer order presents a due date and a specific quantity that needs to
be satisfied.

• Bill of material (BOM): this lists the raw materials, parts, and components needed to
make a product. It presents different levels according to the customer order.

• Bill of the process (BOP): this is comprised of detailed plans explaining the manufactur-
ing processes for a particular product. These plans contain in-depth information on
machinery, plant resources, equipment layout, configurations, tools, and instructions.

• Resources: these can be physical (work centers, tooling, process materials) or skills.
Each resource presents its capacity and feature.
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2.2. The Main Characteristics of the Proposed Approach

The Cooperative Supply Chain (Coop SC) framework is a prototype capable of sup-
porting a decision-making process through adequate, modern, and flexible tools, capable of
hosting algorithms from third parties [37]. CoopSC includes an RCCP engine to optimize
multi-site contexts using a modified multi-agent architecture by adopting three different
levels of supervision: demand, production sites, and resources.

Starting from the highest planning levels (Figure 1), the Demand Management and
Inventory Management modules generate medium and long-term forecasts for macro-
families and/or product types related to a CO. The Inventory Management is a collection
of inventory planning tools and applications that can optimize the mix and quantity of
planned inventory. They provide a validation of the input required to satisfy the CO for a
set of KPI. The MPS component is, therefore, able to provide decision-making support for
the resolution of typical business constraints, generated by conflicts between the company
needs and the constraints of a multi-plant/multi-supplier context. The requests, processed
by CoopSC, can be defined manually or imported by an external forecasting module [38]
capable of forecasting the sales and use of the products (appropriately divided into pro-
duction lots by the Inventory Management level) so that they can be purchased or made in
adequate quantities in advance. The production and procurement commitments, which are
required by the estimate of future requirements, are simulated according to the capacity
of the resources, the planning cycles, and the actual processing bills, and considering the
supply and transport constraints (RCCP module). The CoopSC MPS/RCCP component is
based on the Service Lanes Planning (SLP) concept [39]. It articulates the evaluation of cus-
tomer service levels by identifying service lanes based on assignment criteria and heuristics
that verify inventory availability and production plans in the processing, production and
supply stages. The SLP develops a proposal by considering a multi-constrained context
as depicted in Figure 2, the goal of which is to provide a feasible solution that takes into
consideration the available stock, the CO, the production constraints, and the SL.
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The CoopSC MPS component provides two analyses:

1. Allocate CO by using an infinite capacity approach;
2. Execute a master planning activity with a finite capacity and develop several proposals

to satisfy CO and several production constraints.

In the first case, CoopSC MPS can satisfy the SL, but it doesn’t take into account the
capacity of resources. In the second case, the tool splits up the proposals defining the
allocation rules that make it possible to move the individual planning lots to respect the
finished capacity, always according to the service level. Therefore, CoopSC MPS divides the
proposal into minimal lots and, by early and tardy times, attempts to change the allocation
of the lots to meet the SL and the capacity of resources.
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Therefore, the goal of the CoopSC MPS is to minimize capacity overflows by using
several levers, or the user can force a proposal to make the allocation feasible. If there is
a capacity overflow, the system allocates the CO to the next bucket and executes a new
backward assignment of that CO.

The backward assignment is based on an AB_RCCP heuristics where a set of agents
can solve the planning problem by simulating the resources allocation to meet the objec-
tive function.

Here, two solution approaches, namely Mathematical Programming (MP_RCCP) and
Agent-Based approach (AB_RCCP), have been described in detail in Sections 2 and 3, respectively.

3. Problem Description and Solution Approaches

The production environment characterized by the MTO strategy possesses a high
level of flexibility concerning satisfying the customer requirement. This specification
supports business owners to cover a wide range of customers’ needs by customizing their
requirements into the product features and enabling them to maintain and raise their
market share in today’s competitive market [7].

In the make-to-store (MTS) strategy, the factory could produce the products in advance
and store them in the warehouse. This feature enables more efficiently handling of demand
fluctuations. Establishing a balance between resources and production line within MTS is
more achievable [40], while in the MTO strategy the factory will proceed with production
after receiving the customer order. It is obvious, regarding the limitation of the resources,
that if fluctuation occurs in the customer order, the production process will encounter
the challenge of instituting balance in the factory’s resources [8]. In this regard, the main
concentration of current research is presenting an efficient solution approach for coping
with this kind of challenge in the MTO production setting. Sections 2.1 and 2.2 have been
dedicated to the description of MP_RCCP and AB_RCCP, respectively.

3.1. The Mathematical Programming Approach (MP_RCCP)

In this section, the MILP model presented by [41] has been extended according to
the MTO production strategy. In the context of MTO, each customer could customize
their order. Each customer order (CO) consists of the sequence of operations and due
date. The resources have a limited capacity for processing the operations in the real
production environment. Concerning this fact, this model aims to plan/schedule the orders
to minimize tardiness and overtime cost.

To apply the approach, it is required to formulate a mathematical model of the produc-
tion environment. In the current study, the first requirement has been satisfied in Section 2.
Depending on the managers’ preference, whether this preference can originate from the
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customer side or the production environment, or both, the goal of mathematical model is
adjusted accordingly and production line features are introduced as the series of constraints.
At this stage, the optimal solution is achieved by relying on the optimizing software and
coding the formulated mathematical model.

Other assumptions of the proposed model are as follows:

• There is no priority for each customer order.
• Each resource could process only one operation at a time.
• Each operation is eligible to operate with only one resource.
• Resumption of operations is possible.
• The orders are processed in the batch.
• Resources have limited capacity.
• Resources are available from time zero.

The index, parameters, and variables of the model are as follows:

Index

Customer i ∈ {1 , . . . , C }
Resource j ∈ {1 , . . . , M }
Operation o ∈ {1 , . . . , O }
Time horizon t ∈ {1 , . . . , T }

Parameters

Customer
Di The quantity of customer order i
DDi The due date for customer order i
TardiCi Tardiness cost for customer order i

Resource
CAPt

j The capacity of resource j in time bucket t
OvertCj The overtime cost of resource j
ACAPt

j Equal to 1 if overtime is allowed, otherwise 0

Operation
PTio Processing time operation o of customer order i

ERj
io

Equal to 1 if resource j is eligible to process operation o of
customer order i, otherwise 0

other
Dur The length of each time bucket
N A very large number

Variables

lot
io The length of the time that operation o of customer order i is performed in time bucket t

αt
io Equal 1, if operation o of customer order i is begun in time bucket t

β
tj
ioíó

Equal 1 if operation o of customer order i is started in time bucket t before operation ó of
customer order í and ERj

io == ERj
íó

stt
io Start time operation o of customer order i in time bucket t

ctt
io Completion time operation o of customer order i in time bucket t

lstio A lower bound for starting time of operation o of customer order i
uctio A upper bound of completion time of operation o of customer order i
li The amount of lateness related to customer order i
ott

j The amount of overtime related to resource j in time bucket t

The proposed model is as follows:
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Min Z = ∑i TardiCi∗ li+ ∑t ∑j OvertCj∗ ott
j (1)

∑t lot
io = Di ∗ PTio ∀ i, o (2)

lot
io ≤ N ∗ αt

io ∀ i, o , t (3)
ctt

io = stt
io + lot

io ∀ i, o , t (4)
uctio ≥ ctt

io −
(
1− αt

io
)
∗ N ∀ i, o , t (5)

lstio ≤ stt
io −

(
1− αt

io
)
∗ N ∀ i, o , t (6)

lsti(o+1) ≥ uctio ∀ i, o (7)

β
tj
ioíó

+ β
tj
íóio
≥ αt

io + αt
íó
− 1 ∀i, o, í, ó , j, t (8)

ctt
io ≤ stt

íó
+
(

1− β
tj
ioíó

)
∗ N ∀i, o, í, ó , j, t (9)

stt
io ≥ (t− 1) ∗ Dur ∀ i, o , t (10)

f t
jh ≤ t ∗ Dur ∀ i, o , t (11)

uctiO ≥DDi + li ∀ i, O : last operation (12)

∑i ∑o lot
io∗ ERj

io ≤ CAPjt + ott
j

∀ j, t (13)

ott
j ≤

(
Dur− CAPt

j

)
∗ ACAPt

j
∀ j, t (14)

lot
io ≥ 0, stt

io ≥ 0, ctt
io ≥ 0, lstio ≥ 0, uctio

≥ 0, li ≥ 0, ott
j ≥ 0

∀ i, o , j, t (15)

αt
io ∈ {0, 1},βtj

ioíó
∈ {0, 1} ∀ i, o , í, ó, j, t (16)

The objective function (1) involves the cost related to tardiness and overtime and tries
to minimize it with respect to the constraints. Constraint (2) ensures that the summation
of processing time in the all-time bucket should satisfy the whole quantity of customer
orders. Through constraint (3), the value for the variable αt

io is determined. This variable
is used to avoid overlapping in scheduling. Constraint (4) calculates the completion time
of each operation in each time bucket. Constraints (5) and (6), define the upper bound
for completion time and lower bound for starting time of operation o in time bucket t.
Constraint (7) ensures the sequence of operations. It means that the next operation cannot
be started unless the previous operation is completed. Constraints (8) and (9) jointly
arrange the sequence of operations from different customer orders on the same machine.
Constraints (10) and (11) define the start and completion time boundaries. Constraint (12)
computes customer order lateness. Constraint (13) ensures that resource loading does not
exceed the available capacity. Constraint (14) limits the amount of resource overloading.
Constraints (15) and (16) define the non-negative and binary variables.

3.2. The Agent Based Approach (AB_RCCP)

The AB_RCCP aggregates the individual proposals into minimum planning batches
and, according to previously defined lead times or delays, tries to shift the allocation of
production batches to provide the required level of service and ensure compliance with the
finite capacity.

The proposed multi-agent heuristics is distinguished by efficient interactivity and
computational convergence thanks to the optimized simulation engine, and the ability to
work in ‘back and forth’ allocation to time.

The planning process, developed through the backward loading of the production
sites and the macro resources associated with them, is carried out by two supervising
agents (plant and resource). Their goal is to choose the production site where the demand
will be allocated and then decide which production resources will be destined for the batch
to be produced according to the CO and their feature and capacity. This process is depicted
in Figure 3.

Each agent has information related to (i) the production system and (ii) the option for
exchanging data with other agents to start the negotiations. They are also equipped with
a decision-making system to determine the planning of tasks based on the information
defined above.
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The same logic is applied at the hierarchical level of resources. The final goal is to
define which resources will perform which operations in which buckets. The supervisory
agents (plants and resources) engage in negotiations with their level agents to satisfy the
CO and optimize a specific target objective function. Therefore, the plant and resource
agents sell a service to satisfy their load profile.

Accordingly to these mechanisms, the AB_RCCP of CoopSC calculates different “sce-
narios” by applying several planning heuristics parameters. Then, allowing for the com-
parison of the plans through a set of performance indicators.

4. Computational Results

This section evaluates the performance and efficiency of the MP and AB approaches.
The MP approach was coded in General Algebraic Modeling System (GAMS) software, and
the CPLEX solver was employed. The AB approach has been developed on Net (C#). Both
approaches are executed on a laptop characterized by Intel(R) Core(TM) i7-10750H CPU @
2.60 GHz processor and 16 GB memory to achieve comparable results.

In order to quantify this evaluation, two measurement indexes, including “Service
level” and “Average Resource Overtime” have been formulated. The former, presented by
Equation (17), assesses how well the company is able to deliver customer orders on time.
The latter one, presented by Equation (18), focuses on resource utilization and calculates
how much additional resource capacity is used on average.

Service Leveli =
Due datei

Due datei + latenessi
(17)

Average Resource overtime =

(
∑j

Imposed Overtimej
Max Overtimej

)
Number resource

(18)

The “Service level” value would be (0, 1]. The higher the service level value, the more
successful the factory has been in delivering the customer’s orders on time.
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The “Average Resource Overtime” value would be [0, 1]. The less the average Resource
overtime receives, the less load will be applied to the resources. Consequently, the factory
is more successful in establishing balance on the production line.

The proposed MP approach tries to find the best solution for the resource capacity
constraint while trying to minimize tardiness and overtime. These two objective functions
simultaneously seek to satisfy the customer’s expectations and improve resource usage.

The AB approach enables anticipating the production planning by considering earli-
ness besides tardiness and overtime. This approach by imposing earliness is more flexible.
The earliness is activated within the AB approach when the factory has enough space for
holding the final products until their due date.

4.1. Systematic Generation of Test Instances

In this section, various random instances, according to Table 1, have been generated to
evaluate the performance of the MP and AP approaches. To make these two approaches
comparable, it is assumed that the earliness is diactive in the AB approach.

Table 1. Parameter adjustment.

Parameters Notation The Function of Generation

The quantity of customer orders i Di The uniform distribution between [1, 10]
The due date for customer order i DDi The uniform distribution between [5, 25]
Tardiness cost for customer order i TardiCi The uniform distribution between [0.625, 2.5]
The overtime cost of resource j OvertCj The uniform distribution between [2.5, 10]

In this study, the size of instances is defined through the number of customers. By
increasing the number of customers, the size of the problem will increase from small to
medium and large. In this regard, ten instances will be generated in three different sizes.

4.2. Results for Systematically Generated Test Instances

In this section, the two proposed approaches are evaluated through executing in-
stances generated in Section 3.2. Two measurement indexes presented in Section 3 have
been calculated to provide a clear evaluation. These quantities enable managers to have
an explicit vision of the planning. While Tables 2–4 provide details of the calculations,
Figures 4–6 illustrate an overview of how these two approaches work.
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Table 2. Result of small size problem (EC PART I).

INS Service Level
Average Resource

Overtime Time (s)

MP AB MP AB MP AB
01 0.9976 0.9937 0.0080 0.0161 15 9

02 0.9950 0.9891 0.0009 0.0000 18 9

03 1.0000 0.9947 0.0000 0.0000 17 9

04 0.9979 0.9882 0.0066 0.0000 15 9

05 1.0000 0.9903 0.0057 0.0123 15 9

06 0.9953 0.9896 0.0038 0.0000 14 10

07 0.9855 0.9585 0.0099 0.0204 18 10

08 0.9988 0.9944 0.0071 0.0118 18 9

09 0.9933 0.9760 0.0038 0.0000 14 9

10 0.9938 0.9706 0.0090 0.0000 18 11
Avg 0.9927 0.9845 0.0055 0.0061 16.2 9.4

Table 3. Result of medium size problem (EC PART II).

INS
Service Level Average Resource

Overtime Time (s)

MP AB MP AB MP AB
01 0.9975 0.9896 0.0208 0.0771 1004 15

02 0.9969 0.9921 0.0885 0.1084 1004 14

03 0.9899 0.9883 0.1354 0.1382 1007 13

04 0.9891 0.9867 0.1283 0.1387 1025 13

05 0.9963 0.9781 0.0918 0.0946 1004 11

06 0.9950 0.9791 0.0430 0.0454 1004 10

07 0.9996 0.9917 0.0724 0.0809 1007 9

08 0.9980 0.9865 0.0080 0.0108 1004 10

09 0.9994 0.9878 0.0184 0.0213 1005 8

10 0.9986 0.9983 0.0123 0.0179 1003 10
Avg 0.9960 0.9878 0.0618 0.0733 1006.7 11.3
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Table 4. Result of large size problem (EC PART III).

INS
Service Level Resource Overtime Time (Second)

MP AB MP AB MP * AB
01 0.9403 0.9928 0.0971 0.0724 More than 3600 16

02 0.9566 0.9895 0.1458 0.1501 More than 3600 19

03 0.9296 0.9865 0.1941 0.1828 More than 3600 20

04 0.9510 0.9937 0.1847 0.2093 More than 3600 17

05 0.9651 0.9940 0.1226 0.1321 More than 3600 18

06 0.9417 0.9927 0.1117 0.1387 More than 3600 16

07 0.9550 0.9924 0.1960 0.2334 More than 3600 15

08 0.9854 0.9909 0.1875 0.0180 More than 3600 17

09 0.9745 0.9938 0.1728 0.1198 More than 3600 16

10 0.9642 0.9929 0.1747 0.1705 More than 3600 15
Avg 0.9573 0.9919 0.1587 0.1427 > 3600 16.9

* The Mp approach requires more than 3600 s to provide an optimum result. The best result at 3600 s has been
presented in this column.
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4.3. Sensitivity Analysis of MP Approach

The proposed MP approach in this study aims to schedule the customer orders in a way
that tries to satisfy the demands according to the company’s beneficiaries. The company’s
beneficiary is specified through the penalty value for tardiness and overtime. The MP
approach behaves differently with respect to the various value of penalties to establish
the best balance. As the analysis of medium-sized instances has shown in Figures 7–10 by
raising the penalty value for tardiness, the mathematical model struggles to compensate by
applying more overtime. This conduct is also valid for overtime penalty value.
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4.4. Case Study and Sensitivity Analysis of AB Approach

According to the revealed information in Section 3.2, by increasing the dimension
of instances, the required time for discovering an optimum solution by the MP approach
will increase impressively. Since, in the real production environment, the number and the
diversity of customer orders are far from what has been supposed previously, the case
study was scrutinized in this section to unfold how the AB approach provides the solution
for real-world production planning problems under various scenarios stemming from
manager’s priorities.

Here, the case of production planning for the “Table production factory” for a one-
year time horizon has been reviewed. This company accepts up to 35 customer orders in
each time bucket (each time bucket is equal to the length of the month). The production
procedure of this company is split into several main operations, which could be attributed
to fabricating legs and top, constructing frames, and assembling and colouring the main
body. The design features of each piece could be customized according to the customer’s
desire. Figure 11 shows the Table production diagram.
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In order to assess the performance of the AB approach for the real problem, five differ-
ent scenarios have been developed according to combinations of management’s priorities to
discover how the AB approach reacts to various circumstances. These scenarios have been
presented in Table 5. One notable feature of the AB approach is that the earliness strategy
could be initiated if the production factory contains enough storage space. Following this,
the proposed solution by the AB approach could easily make itself compatible with the
nature of the production environment.
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Table 5. Scenarios for case study.

Scenario Over Time Tardiness Earliness

High Priority Less Priority High Priority Less Priority High Priority Less Priority

A
A1 3 3 is not activated

A2 3 3 is not activated

B

B1 3 3 3

B2 3 3 3

B3 3 3 3

In Table 5, scenario type A supposes that the factory does not contain enough storage.
Hence, producing the customers’ orders in advance is not possible, while strategy B
assumes enough space for storing, and the company could anticipate production orders
by imposing earliness. Strategy A and B include two and three subcategories, respectively.
In each combination, one out of three criteria, including “Overtime”, “Tardiness”, and
“Earliness,” has a high level of priority for the manager. In contrast, the rest of them have
less priority. Inside each combination, the AB approach tries to find the proper solution
by imposing the planning burden on low-level priority criteria and avoiding high-level
priority criterion occurrence.

Table 6 reports the computational result for the “case study” under various scenarios.
As has been exhibited in this table and Figures 12 and 13, the reaction of the AB approach
is adjusted according to what is desirable for managers.

Table 6. Computational results for “Case study”.

Scenario Over Time (h) Tardiness (h) Earliness
(h)

Run Time
(s)

A
A1 2822 0 is not activated 19

A2 660 2843 is not activated 20

B
B1 2822 0 308 19

B2 563 2920 232 22

B3 437 0 3655 23
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5. Conclusions

In today’s technologically advanced world, the variety of products available to the
market is rising. As a result, customers’ expectations are always shifting and evolving. In
this environment, if the manufacturers want to maintain and enhance their market share,
they need to align their production strategies with customers’ expectations. Among various
production strategies with their own special pros and cons, MTO’s production strategy
strives to cover a wide range of customers’ expectations by relying on customization. The
proper solution for its MPS should be provided to make this alignment successful.

In addition to the complex nature of MTO, the fluctuation in resource availability in
the real production environment, which has been ignored by previous studies, restricts
the production activities and makes MPS more complicated, and the previous result not
applicable. Following this, the main concentration of this study is proposing a proper
approach to respond to this requirement.

To this end, the mixed-integer linear programming model was formulated, which is
capable of presenting the optimum solution for small and medium-sized factories that
receive limited number of orders, while for the large-sized factories, where the amount
and diversity of client orders are far from the rest, the MP approach is no longer capable
of providing the optimum solution reasonably. To overcome this weakness, an innovative
AB heuristic has been developed which provides an effective and flexible MPS planning.
The striking feature that distinguishes the AB approach from MP is that it could anticipate
the production planning by considering earliness when the factory has enough space to
store the final products until their due date. Computational experiments on variously sized
problems confirm the proposed AB approach’s efficiency, even for increasingly complex
industrial instances in terms of flexibility and running time.

One outstanding point of this study is that a MPS which is defined through AB
and MP approaches not only enables the businesses owner to maintain and raise their
market share by maximizing customers’ service level, but also improves resource utilization.
Both of these fulfillments which address the managers’ external and internal desires are
accomplished by setting the goal of AB and MP approaches for MPS planning in the
direction of minimizing tardiness and overtime cost.

This current study could be extended in various aspects. One limitation of this
study is ignoring the operator availability for imposing the overtime on the resource. In
some manufacturing environments, the production procedure is operators-dependent and
overlooking this fact would make the results not applicable.

From the manufacturing perspective, this study could be extended for those factories
that prepare a series of semi-finished products in advanced and assemble them according
to customers’ orders.
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From the supply chain viewpoint, an inevitable crucial requirement for establishing
successful production is supplying the raw materials at the right time and in the sufficient
quantity. This prerequisite could be combined with the current problem in future research
studies, and broader planning could be provided for the manufacturers.
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