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Abstract: Due to environmental fluctuations, the operating performance of complex industrial
processes may deteriorate and affect economic benefits. In order to obtain maximal economic benefits,
operating performance assessment is a novel focus. Therefore, this paper proposes a whole framework
from operating performance assessment to nonoptimal cause identification based on partial-least-
squares-based Granger causality analysis (PLS-GC) and Bayesian networks (BNs). The proposed
method has three main contributions. First, a multiblock operating performance assessment model
is established to correspondingly extract economic-related information and dynamic information.
Then, a Bayesian network structure is established by PLS-GC that excludes the strong coupling of
variables and simplifies the network structure. Lastly, nonoptimal root cause and and nonoptimal
transmission path are identified by Bayesian inference. The effectiveness of the proposed method
was verified on Benchmark Simulation Model 1.

Keywords: nonoptimal cause identification; Granger causality analysis; Bayesian network; partial
least squares

1. Introduction

Along with the continuous development of industrial technology, the requirements of
modern industry are increasing. Process monitoring is no longer limited to fault detection,
and the operating state of industrial process with low economic benefits needs detection.
Even though nonoptimal operating state is not as serious as faults, it still affects the economic
benefits of the process. In order to ensure the economic benefits of processes, a nonoptimal
operating state needs to be immediately detected. Due to production environment changes,
equipment aging, parameter drift, etc., industrial processes may deviate from the optimal
state, showing multimode characteristics. Therefore, operating performance assessment is
increasingly important, and it divides operating conditions into an optimal and multiple
nonoptimal grades according to the economic benefits of the corresponding states. Due to
the high complexity of industry processes, it is difficult to establish a model according to the
process mechanism alone. Data-driven methods are attracting increasing attention [1,2], and
many basic data-driven methods were applied in performance assessment, such as principal
component analysis (PCA) [3]. Then, with the enlargement of data, complex characteristics in
these data have gradually attracted the attention of researchers. For example, in consideration
of the nonlinearity of the process, Liu et al. [4] put forward a method based on kernel
total projection to latent structures and kernel-optimality-related variations. Considering
the existence of process noise and outliers, Chu et al. [5] proposed a total robust kernel
projection to the latent structure algorithm. The above methods aimed at single-process
characteristic problems, while operating performance assessment was oriented to complex
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industrial systems with multiple process characteristics. In order to evaluate performance in a
multiple-characteristic process, the whole process can be divided into multiple blocks [4,6–8].

In addition, in order to improve the comprehensive production profit, when the
process enters nonoptimal state, operators need to make adjustments according to dif-
ferent nonoptimal causes. The process of nonoptimal cause identification is similar to
fault diagnosis. Venkatasubramanian et al. [9] classified fault diagnosis methods into
qualitative-model-, quantitative-model-, and process-history-based methods. The most
popular quantitative-model-based method is contribution plots [10] , which calculates the
influence of each variable to the statistics to identify the cause variable. Because the basic
contribution-plot method suffers from the fault smearing effect, Cheng et al. [11] proposed
a moving average residual difference reconstruction contribution plot to identify the root
cause in wastewater treatment processes. In addition, due to the existence of dynamic
characteristics, Li et al. [12] proposed a dynamic time-warping-based causality analysis
method to perform root diagnosis for nonstanionary faults. However, these methods can
only find the most related variable to the fault. Detecting the cause–effect relationship be-
tween variables is needed, on which many studies were conducted [13]. The most prevalent
measure is Granger causality analysis (GC) [14]. Granger causality analysis was initially
used in the time series of economic studies, with the continuous research of other scholars,
it has shown promise in many other fields [15,16]. Because GC is only useful in linear pro-
cesses, aiming at nonstationarity and nonlinearity in industrial processes, Chen et al. [17]
embedded Gaussian process regression into a multivariate Granger causality framework.
Transfer entropy can also effectively solve nonlinear problems. Lindner et al. [18] proposed
a method to find the optimal parameters of transfer entropy by the dynamism of the process.
In addition to the above methods, Bayesian networks are also widely used in root-cause
identification [19] because they have the structure of directed acyclic graph (DAG), which
is very helpful in the identification of fault transmission paths. However, it is difficult to
construct Bayesian networks in a complex industrial process. Therefore, the hierarchical
approach was used in many studies. Chen et al. [20] constructed a hierarchical Bayesian
network structure, and built a statistical index for process monitoring and fault diagnosis.
Suresh et al. [21] proposed a hierarchical approach to capture cyclic and noncyclic features.

Although the above methods are effective, they also come with defects. For example,
GC can only be used for linear systems, transfer entropy is sensitive to parameters, and
BN is only suitable for directed acyclic graphs (DAGs). Chemical industrial processes
are composed of a large number of process variables with high correlation, so the causal
structure is probably not acyclic. Therefore, in this paper, contribution plots are used
to select some variables before constructing the causal network, which simplifies the
calculation and reduces the possibility of generating cynic structures. Then, considering
the strong coupling characteristics between process variables, partial least squares (PLS)
algorithm [22,23] is incorporated into the regression operation of GC to eliminate the
influence of the correlation between variables. This operation also reduces the number of
detected causal relationships, further reducing the possibility of generating cynic structures
in causal network. Lastly, on the basis of the causal structure established by PLS-GC,
the root cause can be identified through BN. The main contributions of this paper are
summarized as follows:

(1) A complete framework from operating performance assessment to nonoptimal cause
identification is established. Process data are divided into multiple operating grades,
so that field operators can detect operational states with poor economic benefits and
adjust them in time.

(2) In order to establish a causality network, contribution plots and Granger causality
analysis are used in this paper, which avoid the NP-hard problem of searching for the
causal network structure.

(3) PLS-GC method is proposed to replace simple GC, which can remove false causalities
caused by variable coupling and reduce the possibility of generating a cyclic structure
in causal networks.
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(4) Through Bayesian network inference, both nonoptimal causes can be identified, and
the transmission path of nonoptimal causes can be obtained.

The rest of this paper is organized as follows. In Section 2, the basic concepts of
GC and BN are introduced. Subsequently, Section 3 presents an operating performance
assessment strategy and the nonoptimal root-cause identification method. In Section 4,
the effectiveness of the method is proved on the basis of an experiment on Benchmark
Simulation Model 1. Section 5 concludes this work.

2. Preliminaries
2.1. Granger Causality Analysis

In the definition of GC [14], if a variable X1 causes another variable X2, knowing
the past of X1 is beneficial in predicting X2. Consider two time series, X1 and X2. If the
prediction of X1 considering the past information of X1 and X2 is more accurate than
that only considering the past information of X1, according to the definition of GC, X2 is
considered to be the Granger cause of X1.

An autoregression model that contains only the past information of X1 is constructed
as follows:

X1(t) = a0 +
p

∑
i=1

aiX1(t− i) + ε1, (1)

If the past information of X1 and X2 is taken into consideration, the union-regression
model is defined as follows:

X1(t) = b0 +
p

∑
i=1

aiX1(t− i) +
q

∑
j=1

bjX2(t− j) + ε12, (2)

where p and q are the lags of X1 and X2, respectively, which can be determined by the
Akaike or Bayesian information criterion. a0, b0, ai and bj denote the regression coefficient.
ε1(t) and ε12 represent the autoregressive residual of X1 and the union-regression residual
of X1 and X2, respectively.

According to the definition of GC, prediction accuracy is expressed by the variance
of residuals. Granger indicators from X1 to X2 can be constructed as follows:

FX2→X1= ln
var(ε1)

var(ε12)
. (3)

If FX2→X1 > 0, X2 can be considered the Granger cause of X1, and if FX2→X1 ≤ 0,
there is no causal relationship between X1 and X2.

Then, the statistical significance of FX2→X1 can be tested by F statistics:

Fstatistic =
(RSSAR − RSSUR)/p
RSSAR/(N − 2p− 1)

∼ F(p, N − 2p− 1), (4)

where RSSAR and RSSUR represent the residual sum of squares of autoregression and
union-regression respectively. N denotes the number of samples.

There are many variables in the actual industrial process. In order to solve multivariate
problems, researchers extended GC to multivariate conditional Granger causality analysis.
The past information of other variables is introduced into autoregression and union re-
gression in order to reduce their interference on causal analysis between X1 and X2. The
autoregression and union-regression models are calculated as follows:

X1(t) = a0 +
p

∑
i=1

ai1X1(t− i) +
m

∑
j=3

p

∑
i=1

aijXj(t− i)+ε1, (5)
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X1(t) = b0 +
p

∑
i=1

ai1X1(t− i) +
p

∑
i=1

ai2X2(t− i)

+
m

∑
j=3

p

∑
i=1

aijX2(t− i) + ε12

, (6)

where m is the number of variables, aij represents regression coefficient of variable j when
time delay is i. Similar to GC, the causal relationship between variables X1 and X2 can also
be analyzed by F statistics.

2.2. Bayesian Network

Bayesian network [24] is a direct graphical model composed by nodes and directed edges.
Through a directed acyclic graph, the conditional dependencies of a set of variables are
presented [25]. In the last few decades, BN has been widely used in fault diagnosis [26–28].
Because BN is a model based on a causal graph, it is suitable for root identification. Fault
transmission paths can be obtained through the causal relationship structure of BN.

2.2.1. Fundamentals of Bayesian Networks

BN consists of a qualitative and a quantitative part. The qualitative part is the Bayesian
network structure, and the quantitative part is the conditional probability table (CPT) that
represents dependencies between variables. The structure of BN can be expressed as follows:

BN = 〈G, P〉, (7)

where G represents the network structure, and P represents network parameters. G = 〈V, E〉,
where V denotes the variable set, and E denotes an unidirectional arc set that describes de-
pendencies between variables. In chemical processes with recycling, we can use duplicate
dummy variables [29] to remove the circular structure, as shown in Figure 1. Node A is
divided into two nodes so as to construct a directed acyclic graph.

Figure 1. Illustrative diagram of duplicate dummy nodes.

Considering n nodes of BN X = {X1, X2, · · · , Xn}, the general expression of Bayesian
networks is as follows:

P(X1, X2, · · · , Xn) =
n

∏
i=1

P(Xi|pa(Xi)), (8)

where pa(Xi) denotes the parent nodes of Xi, P(X1, X2, · · · , Xn) is joint probability distribution.
Network parameters consist of prior and conditional probabilities. Prior probabilities are

usually calculated according to expert knowledge observations. Conditional probabilities are
usually contained in CPT. For instance, a simple Bayesian network model is given in Figure 2.
On the left is a Bayesian network structure, and on the right is the CPT of node E, where E = 0
represents that probability E does not occur. Because C is a parent node of E, whether C occurs
should also be taken into consideration in the calculation.
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Figure 2. Inference diagram of Bayesian network.

2.2.2. Inference Algorithm of Bayesian Network

BN can perform backward inference through the Bayes theorem. The BN inference
problem is NP-hard, and many scholars conducted indepth research and achieved extensive
progress [30,31]. In general, inference algorithms can be divided into two categories: exact
and approximate inference. Exact inference, such as junction trees, can obtain the exact
probability value of each node, while approximate inference uses statistical methods to
compute approximate probabilities. Next, two exact inference algorithms are introduced:
variable elimination and belief propagation.

The variable elimination algorithm is a basic exact inference algorithm. The core idea
is dynamic programming. Conditional independence is used to reduce calculation. Through
changing the operational order of summation and product, the elimination order calculating
joint probability is changed. Figure 3a is an example, and X1, X2, X3, X4, X5 are nodes in BN.
If our target is calculating marginal probability P(X5), X1, X2, X3, X4 should be eliminated.

Figure 3. Schematic diagram of message passing in Bayesian network (a) variable elimination
algorithm (b) belief propagation algorithm.

P(X5) = ∑
X4

∑
X3

∑
X2

∑
X1

P(X1, X2, X3, X4, X5). (9)

According to the relationships between variables, it can be rewritten as:

P(X5) = ∑
X4

∑
X3

∑
X2

∑
X1

P(X1)P(X2|X1)P(X3|X2)P(X4|X3)P(X5|X3). (10)

If we change the calculation order, there is

P(X5) = ∑
X3

P(X5|X3)∑
X4

P(X4|X3)∑
X2

P(X3|X2)∑
X1

P(X1)P(X2|X1). (11)

Then, mij(Xj) is used to represent the intermediate results, in which i means it is
the result of summing Xi and j represents the other variables in this item. According to
this idea, the above formula can be transformed into P(X5) = m35(X5), which is only
related to X5. The calculation is simplified.
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A belief propagation exact inference algorithm is proposed on the basis of a variable
elimination algorithm to overcome redundant computation In belief propagation algo-
rithms, and summation operation is a process of message passing as shown in Figure 3b.
The process of message passing comprises two steps. First, a root node is assigned, and
messages are delivered to the root node from all leaf nodes until the root node receives
messages from all adjacent nodes. Then, the message is delivered from the root node
to leaf nodes until all leaf nodes receive messages. Because each variable node receives
information from adjacent nodes, we can calculate the edge probability distribution of
each variable.

3. Method Development

In order to obtain better economic benefits, we need to monitor the operational process
so as to detect nonoptimal operation states in time. When the operating process is nonop-
timal, it is necessary to identify its root cause for further adjustment. Complex industrial
processes are composed of a large number of high coupling process variables, many of
which may change during nonoptimal grades, but we need to find out which variable
causes the change in others, that is, the root cause of nonoptimal grades. Therefore, a
framework from operating performance assessment to nonoptimal cause identification is
established in this section.

3.1. Establishment of Operating Optimality Assessment Model

Inspired by the multiblock technique, mutual information is used to divide process
variables into two blocks. Then, dynamic and economic relevant information is extracted
from two blocks. The process of performance assessment is shown as Figure 4.

Figure 4. Schematic diagram of operating performance assessment.

First, training process data are divided into several operating performance grades
according to the comprehensive economic indicator (CEI). Here, we assumed that process
data were from three different performance grades. Then, the performance grade with
the highest economic benefit was labeled as good, and the two other grades are labeled
as medium or poor, and both are considered to be nonoptimal. According to the cor-
relation between variables and economic indicators, we divided process variables into
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economic-related (ERS) and economic-independent (EIS) subspaces. Correlation is mea-
sured by mutual information (MI). MI is a measure of interdependence between random
variables [32].

I(X, Y) = H(X)− H(X|Y), (12)

where H(X) represents the information entropy of X and H(X|Y) represents conditional
entropy, which means the uncertainty of X while Y is known. From the perspective of
probability, MI is represented as

I(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
), (13)

where p(x, y) denotes joint probability distribution, and p(x), p(y) denotes marginal prob-
ability distribution. Offline training data from one performance grade are denoted as
X = [x1, x2, · · · , xm]

T ∈ Rm×n , where m represents the number of process variables and n
represents the number of samples. The corresponding economic indicator (CEI) is repre-
sented as yCEI ∈ R1×n. According to the mutual information between each variable and
economic index, process variables are divided into two subspaces: economic subspace XE
and economic-independent subspace XD. ERS contains more directly related information to
the economic indicator, so canonical correlation analysis (CCA) is used to extract economic
information in ERS and construct T2

D statistics [33]. Although EIS contains less economic
related information, it covers a lot of process variation information. Therefore, slow fea-
ture analysis (SFA) [34] is used to extract dynamic features and construct T2

E statistics.
Then, for an input sample xk with statistics T2

l , the probability that xk belongs to operating
performance grade Cl is expressed as:

Pr[Cl |T2
l (xk)] =

Pr[T2
l (xk)|Cl ]Pr(Cl)

Pr[T2
l (xk)|Cl ]Pr(Cl) + Pr[T2

l (xk)|Cl ]Pr(Cl)
, (14)

where Pr(C1) is the probability that the current sample belongs to grade Cl , and Pr(C̄l) is
the prior probability that the current sample belongs to other grades. Pr[T2

l (xk)|Cl ] and

Pr[T2
l (xk)|Cl ] are likelihoods calculated as:

Pr[T2
l (xk)|Cl ] = exp(−

T2
l (xk)

T2
l

), (15)

Pr[T2
l (xk)|Cl ] = exp(−T2

l (xk)

T2
l

), (16)

Lastly, according to Bayesian inference, global probability can be obtained [35], which
is also the similarity index of xk to grade Cl :

SIl(xk) =

{
Pr[T2

l (xk)|Cl ]Pr[Cl |T2
l (xk)]

}
D +

{
Pr[T2

l (xk)|Cl ]Pr[Cl |T2
l (xk)]

}
E{

Pr[T2
l (xk)|Cl ]

}
D +

{
Pr[T2

l (xk)|Cl ]
}

E
, (17)

which combines the statistics of the two subspaces.

3.2. Nonoptimal Root Cause Identification

In order to maintain the best performance of an operating process, operators must
know the cause of nonoptimal states. In this section, a data-based cause identification
method is proposed. A system block diagram is given in Figure 5. Nonoptimal root
cause identification comprises two steps. First, a causal network is constructed. Then, the
evidence node is determined, and the nonoptimal root cause is identified.
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Figure 5. Schematic diagram of root-cause identification.

3.2.1. Causal Network Establishment

First, the network structure need to be constructed. Because chemical processes are
composed of complex structures, we conducted the preliminary screening of variables
with contribution plots and selected the candidate variables most related to the economic
indicators to reduce calculation. The PCA contribution plot method is simple and intuitive,
and was widely studied in fault diagnosis [4,10].

Assume that map matrix P of PCA was obtained. The T2 statistic of sample x is:

T2 = xT PS−1PTx, (18)

where S is covariance matrix of training data. Then, the contribution rate can be calculated as:

CT2

i =

(
ξT

i PS−1P
1
2 x
)2

, (19)

where ξi is a unit column vector. If the contribution rate is above average, the corresponding
process variable is included in the candidate variable set.

After selecting the candidate variable set, the network structure can be constructed
with PLS-GC. Because multivariate conditional Granger causality analysis only uses the
least-squares method to construct regression models, it is easy to mistakenly regard correla-
tion between variables as a causal relationship, which leads to wrong results.

Therefore, PLS is used to replace the autoregression model in GC, which can effectively
deal with union correlation in multiple variables, and construct a network structure with
clear causality relationships. Because GC requires variables to be stationary, we need
to ensure that candidate variables are all stationary. Generally, stationarity is tested by
whether there is a unit root in the time series. Therefore, the augmented Dickey–Fuller
(ADF) unit root test [36] was conducted in advance. Differential operation is performed on
nonstationary variables.

The specific process of network construction is given in Figure 6:

1. Candidate variables are selected for causality structure construction by PCA contribu-
tion plots.

2. ADF test is conducted to ensure that all variables are stationary
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3. For all stationary variables x1, x2, · · · , xn, we selected two variables xi and xj, i, j ∈
{1, · · · , n}, establish autoregression model and union-regression model by PLS and
calculate F statistics. If p value of F statistic is in the confidence interval β , there is a
causal relationship from xi to xj. Such a causality test is conducted on each pair of
variables in turn.

4. A causal network structure is constructed and adjusted according to expert knowledge.

Figure 6. Process of constructing network structure by PLS-GC.

3.2.2. Nonoptimal Cause Identification

Before nonoptimal cause identification, we need to calculate the network parame-
ters, that is, nonoptimal and conditional probabilities. Nonoptimal probability is gen-
erally determined by parameter learning with historical data. Since process data were
known, maximum likelihood estimation (MLE) could be used to learn the parameters of
the Bayesian network.

MLE is the most popular parameter learning method at present, which is effective
and suitable for large-scale datasets. The whole process contains optimal and nonoptimal
processes. Data in optimal state were considered within the threshold range, and data in
nonoptimal state were considered outside the threshold range. The threshold range of each
variable can be determined by kernel density estimation [37], so that each variable can be
divided into two states.

Given a sample set containing p variables, D=
{

u1, u2, · · · , up
}

, each of which contains
N samples, ui = {ui1, ui2, · · · , uiN}, i = 1, 2, · · · , p, MLE requires sample set D to satisfy
independent identically distributed hypothesis, so the joint probability can be written
as follows:

P
(
u1, u2, · · · , up|θ

)
=

p

∏
i=1

P(ui|θ) = L(Θ|D), (20)

where L(Θ|D) is the likelihood function of P(D|θ). If variable ui comprises ri values, and
its parent node πui is composed of qi different combination values, then the unknown

parameters can be expressed as Θ =
{

θijk|i = 1, · · · , p; j = 1, · · · , qi, k = 1, · · · ri

}
: where
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θijk represents the probability of ui being k when the parent node is j. In order to find the
parameters that satisfy the following condition:

Θ∗ = arg max
Θ

L(Θ|D), (21)

where the logarithmic likelihood function L(Θ|D) can be expressed as:

ln L(Θ|D) = ln
p

∏
κ=1

P(uκ |θ) =
N

∑
i=1

qi

∑
j=1

ri

∑
k=1

mijk lnθijk, (22)

where mijk is the number of ui in D with the value k and parent nodes with the value j.
Then calculate maximum likelihood values and obtain the CPT of each node.

After determining the network structure and parameters of BN, network inference
can be carried out. First, evidence nodes are determined according to expert knowledge
and contribution plots. Second, the posterior probability of each variable is calculated with
sum-product belief propagation, and the CPT of Bayesian network is updated. Detailed
steps of BN nonoptimal cause identification are given as follows:

1. On the basis of PCA contribution plots, select the candidate variable set.
2. Construct the network structure on the basis of PLS-GC.
3. Calculate the conditional probability and obtain CPT.
4. Determine evidence variable according to industry field experience and contribution

plots. Among the resulting variables in the causal network, the one with the largest
contribution is the evidence node. Then, update the network parameters with the
belief propagation method and identify the root nonoptimal variable.

4. Results and Discussion
4.1. Process Description

Benchmark Simulation Model 1 (BSM1) was developed by the International Water
Quality Association and the European Cooperation in the field of Scientific and Techni-
cal Research, and was widely used in control simulation and performance evaluation
of wastewater treatment process. Activated sludge model ASM1 and double index sec-
ondary sedimentation tank model were used to simulate the actual wastewater treat-
ment process. The research object of BSM1 is predenitrification biological nitrogen re-
moval technology, which is composed of five activated sludge reaction units and a sec-
ondary sedimentation tank. The structure diagram of the model is shown in Figure 7 [38].
The activated sludge reactor comprises two anoxic tanks and three aerobic tanks. Part of
the water from the reaction tank flows into the sixth layer of the secondary sedimentation
tank, wastewater is discharged from the tenth layer after sedimentation, and the excess
sludge is discharged from the bottom layer.

Figure 7. Structural schematic diagram of BSM1 model.



Processes 2022, 10, 909 11 of 20

In order to evaluate the performance of BSM1 under different operating conditions,
the model provides an overall cost index (OCI) [39], which reflects the overall cost of the
whole process during operation and is calculated as follows:

OCI = AE + rPE + 5× SP + 3× EC + ME, (23)

where AE is aeration energy consumption, PE is pump energy consumption, SP is sludge
production, EC is external carbon source consumption, and ME is mixing energy consumption.

4.2. Data Preparation

In order to verify the effectiveness of the proposed method, two training datasets with
three performance grades were simulated on BSM1. The dissolved oxygen concentration
of tank 5 was changed in Dataset 1, which was set to 2 , 3, and 4 gCOD/m3, respectively.
Nitrate and nitrite concentration of tank 2 was changed in Dataset 2, which was set to 1, 1.5,
and 2 gN/m3. According to the OCI of the training data, the operational state with higher
overall cost was of poor grade. In this way, training data were divided into three grades
(good, medium, poor).

All experiments were carried out on MATLAB. Process variables of training data are
given in Table 1. According to the structural schematic diagram in Figure 7, variable location
and relationships are given in Figure 8. In order to render the model more realistic, a delay
device with a delay factor of 0.001 was added after the first reaction tank of model BSM1.

Variables:

1,2,3,4,5

Variables:

6,7,8,9,10

Variables:

11,12,13,14,15

Variables:

16,17,18,19,20

Variables:

21,22,23,24,25, 

26,32

Settler

(No biochemical 

reaction)

Effluent data

Variables:28,29,31,

33,34,35,36

Tank1

Tank2

Tank3

Tank4

Tank5

nitrate internal 

recycle 

Organic carbon source, nitrate 

recycle

Figure 8. Causal relationship between variables according to process mechanism.

Table 1. Selected process variables.

Variable Number Variable Name

1, 6, 11, 16, 21 Dissolved oxygen concentration of Tanks 1–5 SOr1SOr5
2, 7, 12, 17, 22 Nitrate and nitrite concentrations of Tanks 1–5 SNOr1SNOr5
3, 8, 13, 18, 23 Concentration of Tanks 1–5 SNHr1SNHr5
4, 9, 14, 19, 24 Soluble biodegradable organic nitrogen of Tanks 1–5 SNDr1SNDr5

5, 10, 15, 20, 25 Granular biodegradable organic nitrogen of Tanks 1–5 XNDr1XNDr5
26 Aeration intensity of fifth reaction tank Kla5
27 Aeration energy consumption, AE
28 Pump energy consumption, PE
29 Effluent speed Qe
30 Internal reflux speed Qintrflow
31 Soluble biodegradable organic nitrogen in effluent SNDe
32 Effluent concentration of SNHe
33 Effluent Kjeldahl nitrogen concentration SNKe
34 Effluent concentration of nitrate and nitrite SNOe
35 Effluent concentration of dissolved oxygen SOe
36 Effluent particulate biodegradable organic nitrogen XNDe
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4.3. Operating Performance Assessment and Nonoptimal Cause Identification

First, performance grades were divided according to the average OCI of each states as
shown in Figure 9. The operating state with minimal OCI was considered to be of good
grade. Then, the mutual information between each variable was calculated, and process
variables were divided into two subspaces. Parameters are set as follows: window width,
10; threshold of mutual information, 0.3; threshold of similarity index, 0.95. The similarity
index of the test dataset is given in Figure 10. In order to prove the effectiveness of this
method, we conducted a comparative experiment on a test dataset. In this test dataset,
the grade of samples 1–192 was good, that of 194–385 was medium, and that of 386–672
was poor. Then, accuracy was calculated according to the known label of the test dataset.
Table 2 shows that CCA-SFA was more effective than CCA or SFA alone.

Figure 9. Scatter diagram of offline performance grade division.

Figure 10. Classification result of test dataset.

Table 2. Classification accuracy of test dataset.

Grades Accuracy of
Proposed Method Accuracy of Simple CCA Accuracy of Simple SFA

grade good 0.9896 0.9170 0.9010
grade medium 0.7601 0.6701 0.6963

grade poor 0.8741 0.8636 0.8601

In these three operating grades, grades of medium and grade poor were both con-
sidered to be nonoptimal. In follow-up experiments, the medium grade was taken as an
example for nonoptimal cause identification. Results of contribution plots are given in
Figure 11. The red line represents the average contribution rate, and we selected above
average variables as the candidate sets. According to Figure 11, variable set 1, 4, 6, 15, 21,
26, 27, 28, 29, 30, 33, 34, 35 was selected for Dataset 1, and variable set 1, 6, 7, 9, 12, 17,
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22, 28, 29, 30, 31, 32, 33, 34, 35, 36 was selected for Dataset 2. Then, the network structure
diagram was established with PLS-GC, delay factors were set to 2, and the number of
hidden variables in PLS was set to 6. The results of the two datasets are given in Figure 12,
where X axis represents cause variables, and Y axis represents result variables. The black
square in the i-th row and j-th column represents that the variable in the j-th column is
the Granger cause of the variable in the i-th row. As a comparison, the result of multi-
variate conditional Granger causality analysis is shown in Figure 13. By introducing PLS
into Granger causality analysis, many indirect causalities which may lead to complicated
causality networks are eliminated. According to Figure 12, corresponding causal networks
are shown in Figures 14 and 15. In order to show the accuracy of causality identification,
the causality diagram according to the process mechanism is given in Figure 16.

Figure 11. Contribution plots of (a) Dataset 1 changing SOr5 and (b) Dataset 2 changing SNOr2.
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(a)Relationships between variables of dataset 1
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Figure 12. PLS-based granger causality results of (a) Dataset 1 changing SOr5 and (b) Dataset 2
changing SNOr2.
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Figure 13. Multivariate conditional granger causality results of (a) Dataset 1 changing SOr5 and
(b) dataset 2 changing SNOr2.
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Figure 14. Causality network of Dataset 1.

Figure 15. Causality network of Dataset 2.
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Figure 16. Causal network based on BSM1 mechanism (only relevant variables drawn).
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As shown in Figures 14 and 15, causality in a causal network basically exists directly
or indirectly, as shown in Figure 16. With multivariate conditional Granger causality
analysis, the causal structure is much more complex, and there are many cyclic structures
(e.g., 1→ 30→ 4→ 1 in Figure 13a). Due to the decoupled effect of PLS, the causality
networks that we obtained were both directed acyclic graphs. Then, in order to find the root-
cause variable, causality relationships in Figures 14 and 15 were input into Bayesian network.

After constructing the causal network, we calculated the initial probability with MLE.
Then, an evidence node was selected. According to knowledge on the process mech-
anism, effluent variables AE and PE were highly related to process operation quality.
Therefore, one of the effluent variables with the highest contribution rate was considered
to be the evidence node. Effluent variables were variables 29 and 31–36. Then, according
to Figure 11, the evidence node of Dataset 1 was variable 27, and the evidence node of
Dataset 2 was variable 33. We set the probability of evidence node to 1 and updated
the network with a belief propagation algorithm. The results of Bayesian network in-
ference are shown in Figures 17 and 18, where the red part represents the probability
of a nonoptimal state, and the blue part represents the probability of an optimal state.
Detailed data are given in Tables 3 and 4.
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Figure 17. Network update results of Dataset 1.
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Figure 18. Network update results of Dataset 2.
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Table 3. Comparison of probability results before and after BN reasoning of Dataset 1.

Variables Initial Probability Updated Probability Difference

SOr1 0.6073 0.6076 0.0003
SOr5 0.8300 0.9943 0.1643
KLa5 0.7045 0.8392 0.1347
AE 0.7045 1 0.2955
Qe 0.0081 0.8392 0.8311

SNDe 0.0081 0.8392 0.8311
SNOe 0.0081 0 −0.0081
SOe 0.3401 0.3401 0

XNDe 0.0081 0 −0.0081

Table 4. Comparison of probability results before and after BN reasoning of Dataset 2.

Variables Initial Probability Updated Probability Difference

SNOr2 0.8178 0.9966 0.1788
SNDr2 0.8178 0.9966 0.1788
SNOr3 0.7585 0.9730 0.2145
SNOr4 0.5424 0.6434 0.1010
SNOr5 0.8178 0.9897 0.1719

Qe 0.0127 0.0017 −0.0110
SNDe 0.0042 0 −0.0042
SNHe 0.1314 0.1433 0.0119
SNKe 0.7966 1 0.2034
SNOe 0.8263 1 0.1737

For Dataset 1, the evidence node was variable 26, which only had one parent node:
variable 21. According to Table 3, after being updated, the probability of variable 21
changed from 0.83 to 0.9943. According to the result of PLS-GC, variable 21 had no parent
node, but from the perspective of the mechanism, it had an indirect causal relationship
with variable 1. This causal relationship is marked with a dashed line in Figure 14, but
variable 1 showed no obvious change in probability update. Therefore, the root cause was
variable 2, SOr5. The cause of the nonoptimal state was identified correctly.

For Dataset 2, results could be analyzed the same way. The evidence node was variable
33, which had four parent nodes: variables 12, 29, 31, 32. After being updated, only the
probability of variable 12 greatly increased, to 0.9730. The parent node of variable 12 was
variable 9, which increased to 0.9960. Therefore, the root cause was variable 7, SNOr2. The
nonoptimal root cause of Dataset 2 was identified correctly. We compared our result with
that of the traditional contribution-plots method. Figure 13 shows that the variables with
the largest contribution rate were variables 21 and 33. Only the root cause of Dataset 1
was correctly identified, while variable 33 was not the root cause of Dataset 2. Such a
comparison shows that the proposed method could identify the root cause.

5. Conclusions

In previous works, it was difficult to determine the causal relationship between variables
due to the complex variable coupling relationships in industrial processes. In this work, a com-
plete framework from operating performance assessment to nonoptimal cause identification
was established. This scheme could handle strong coupling between process variables by using
PLS in GC. We also employed BN to identify the root cause according to evidence nodes, which
could also find the transmission path of the nonoptimal cause in the causal network. This
root-cause identification method can help field operators in taking corresponding measures
to improve current operating performance. As a case study, we tested its effect on BSM1.
According to the results, the proposed method could correctly identify the root cause.

However, this method still has a few limitations to be improved. On the one hand,
because we used methods to transform the causal structure into an acyclic graph, these
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treatments may render the nonoptimal transmission path incomplete. This problem can be
improved by using suitable methods for cyclic problems, such as the dynamic causality
diagram. On the other hand, the process of root-cause identification still needs knowledge
on the process mechanism to assign an evidence node. It may be helpful to design an
evaluation index to select evidence nodes. In the future, we aim to conduct more indepth
studies on these aspects.
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