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Abstract: Development and optimization of biopharmaceutical production processes with cell cul-
tures is cost- and time-consuming and often performed rather empirically. Efficient optimization of
multiple objectives such as process time, viable cell density, number of operating steps & cultivation
scales, required medium, amount of product as well as product quality depicts a promising approach.
This contribution presents a workflow which couples uncertainty-based upstream simulation and
Bayes optimization using Gaussian processes. Its application is demonstrated in a simulation case
study for a relevant industrial task in process development, the design of a robust cell culture expan-
sion process (seed train), meaning that despite uncertainties and variabilities concerning cell growth,
low variations of viable cell density during the seed train are obtained. Compared to a non-optimized
reference seed train, the optimized process showed much lower deviation rates regarding viable cell
densities (<10% instead of 41.7%) using five or four shake flask scales and seed train duration could
be reduced by 56 h from 576 h to 520 h. Overall, it is shown that applying Bayes optimization allows
for optimization of a multi-objective optimization function with several optimizable input variables
and under a considerable amount of constraints with a low computational effort. This approach
provides the potential to be used in the form of a decision tool, e.g., for the choice of an optimal and
robust seed train design or for further optimization tasks within process development.

Keywords: Gaussian processes; Bayes optimization; Pareto optimization; multi-objective; cell culture;
seed train

1. Introduction

The development and optimization of biopharmaceutical production processes with
cell cultures is cost- and time-consuming, requiring substantial lab work. This necessitates
thorough planning of experiments and processes, taking into account existing process
knowledge. The need for model-based decision support in biopharmaceutical manufactur-
ing has been emphasized by the US Food and Drug Administration (FDA) [1,2], including
taking into account available prior know-how and experience within the decision process
and uncertainties [3]. Such methods are still not state-of-the-art for cell culture processes
during development or manufacturing [3,4], although first approaches have been proposed,
for example, in order to optimize the titer of a mammalian cell culture process [5]. This
highlights a need for improved methods and tools for optimal experimental design, optimal
and robust process design and process optimization for the purposes of monitoring and
controlling during manufacturing.

But also in other engineering fields such as chemical engineering or mechanical engi-
neering, process optimization plays an important role and is the subject of current research.
Some application examples rely on dynamic models, an example is the optimization of
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sustainable algal production processes [6] or the improvement of the vibration performance
of cold orbital forging machines [7]. Other approaches rely on machine-learning algorithms
such as those reported in [8–10].

The optimization of one objective criterion (e.g., final titer) is relatively straight for-
ward, i.e., building an objective function with a unique response variable and applying an
appropriate optimization algorithm to maximize this function. However, in industry, it
is typically desired to optimize several conflicting objectives at a time, leading to suitable
trade-offs and compromises. For example, when trying to maximize final titer via viable
cell density while minimizing cultivation time. Multi-objective optimization provides a
decision-making tool for optimal decisions in the presence of trade-offs between two or
more conflicting criteria.

However, multi-objective optimization is more challenging. Its application is still not
state-of-the-art in the context of cell culture processes, probably due to a lack of related stud-
ies and instructions. Moreover, within the manufacturing life cycle of biopharmaceuticals,
some phases are better investigated than others. Still very few investigations are reported
concerning the cell expansion process (seed train). It consists of several consecutive cultiva-
tion and passaging (transfer) steps, starting with a small amount of cell suspension because
cells are frozen in small vials until they are used for a production process. The goal is to
expand the number of viable cells in order to reach the required amount to inoculate (start)
the production bioreactor (e.g., 10,000 L at industrial scale) while keeping them in a healthy
and growing state. A high amount of operational requirements and constraints have to be
fulfilled and, as reported in literature [11,12], the cell expansion process critically effects
product quality and the amount of product at production scale. In [12] for example, the
passage duration, as well as the initial viable cell density for each passage are reported as
important parameters with high impact on process time and productivity at production
scale. A careful and optimal planning of a seed train is therefore essential. However, this is
not a trivial task due to the inherent variability concerning cell growth (cell growth differs
from cell line to cell line and also from cultivation run to cultivation run) and uncertainty
about the real state of the process due to considerable measurement uncertainties. This
requires the design of a reproducible process which is robust regarding viable cell density,
meaning that despite (initial) variabilities concerning cell growth, low variations of viable
cell density at the end of the seed train are obtained. The goal of this paper is to close
the gap between state-of-the-art optimization techniques and modern techniques from
machine learning to improve the biopharmaceutical production by allowing easy to use yet
powerful multi-objective optimization.

In most multi-objective optimization problems, no single best (unique optimal) solu-
tion exists, instead there is a set of optimal solutions (also called Pareto optimal solutions or
non-dominated solutions), meaning for each solution that one criterion cannot be improved
without degrading at least one of the other criteria. So, the decision maker has to choose
from the set of non-dominated solutions according to the most preferred or important
objective criterion. A promising approach to optimize objective functions, which are ex-
pensive to evaluate, is Bayes optimization. The methodology of Bayes optimization dates
back to the work of Harold Kushner in 1964 [13] and gained impact through the work of
Jones et al. in 1998 [14]. It is a probabilistic global optimization method for finding the
maximum of objective functions that are expensive to evaluate or unknown (black-box)
objective functions that are approximated using simulations [15].

In practice, the objective function could be the outcome of interest of a process,
for example, process productivity or control metrics to describe the quality of a prod-
uct. Input parameters can be process parameters needed to be optimized. Bayesian
optimization [16] creates a quick to evaluate model, the so-called surrogate model of the
objective function. In order to reduce the objective function evaluations, the surrogate
model is iteratively trained and updated on new data. The positions of this new data are
chosen by finding a trade-off between exploration (improving the surrogate model) and
exploitation (finding optimal points). Typical surrogate models are Gaussian processes.
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Gaussian processes (GP’s) are popular machine learning models [17] because, due to
their Bayesian nature, they work well with few data points [18]. Furthermore, they allow
the inclusion of expert knowledge [19,20] and can be used in dynamic systems [6,21]. GP’s
are very flexible non-parametric models, hence, they can approximate any function and do
not assume a predefined set of modeling functions.

Bayes optimization is successfully applied in many fields of research and
economics [22]. Moreover, applications of Bayes optimization in the field of bioprocess
engineering were published during the last decade [6,9,23,24]. Furthermore, this methodol-
ogy was shown to be efficient in solving multi-objective optimization problems [25] and
has also been applied for parameter estimation of kinetic parameters [26]. However, no
applications are reported so far applying model-based multi-objective Bayes optimization
within biopharmaceutical process development.

This contribution aims to present the concept of a workflow which couples uncertainty-
based upstream simulation and Bayes optimization using Gaussian processes and its
application in the form of a simulation case study to illustrate its applicability to a relevant
industrial task in process development.

This simulation case study addresses the question if a reference seed train setup
comprising five shake flask scales can be optimized through varying shake flask volumes
and how many shake flask scales, three, four or five, are recommendable in terms of
two objective criteria, seed train duration and deviation rate. Moreover it is investigated
how the results change if cells grow with 5% lower or 5% higher maximum cell-specific
growth rate.

Afterwards, two more objective criteria, titer (product concentration) and viability after
8 days in the production bioreactor, are added and seed train optimization is performed
regarding four objective criteria simultaneously.

Furthermore, the suitability of the proposed method and the required number of
iterations is evaluated with respect to the obtained information gain.

2. Methods

The main components of the applied methodology and the corresponding tools
are described.

2.1. Upstream Simulation

Upstream simulation comprises a simulation of the cell expansion process (seed
train) and simulation of the production scale. The reference upstream process taken as an
application example for the here presented simulation case study comprises five consecutive
shake flask scales followed by three bioreactor scales and one production scale, similar to
the upstream process investigated in [27]. Further specifications are listed in Table 1.

A mathematical model is required, describing cell growth and interactions with the
main limiting substrates and eventually inhibiting metabolites over time. A cell growth
model, a system of ordinary differential equations (ode), already adapted to an industrial
cell culture upstream process using a CHO cell line [27] has been used, which describes
the dynamic behavior of viable and total cell density, Xv and Xt, concentrations of glucose
cGlc, glutamine cGln, lactate cLac, ammonia cAmm and product (volumetric titer) ctiter (see
Table A1 in the Appendix A).

Moreover, such an upstream process includes several constraints, operation steps and
process parameters (e.g., concerning passaging intervals, substrate/nutrient concentrations,
initial viable cell densities and viable cell densities before transferring cells into the next
cultivation vessel, as well as the amount of cell suspension and fresh medium), which
have to be considered in the simulation workflow. A detailed description of the required
components and calculation routines are described in [28,29].

Besides these requirements, several passaging strategies can be applied, helping to
decide at which point in time cells should be transferred from one cultivation vessel into
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the next larger one and how to perform these passaging steps (e.g., which amount of cell
suspension should be mixed with how much fresh cell culture medium).

For the here presented simulation study, the passaging strategy for robust seed train
design was chosen, where robustness refers to the reproducibility of the seed train regarding
viable cell density, meaning that despite initial uncertainties and variabilities concerning
cell growth, low variations of viable cell density at the end of the seed train are obtained.
This strategy grounds on the objective of reaching the previously determined threshold
of viable cell density and corresponding probability distributions of viable cell density at
different points in time. These distributions are used in combination with a utility function
following the mean-variance principle, which grounds on the Markowitz mean-variance
portfolio optimization theory [30,31]: The utility function U(t) is defined as a function
of viable cell density Xv including the expected value E(Xv) and the variance Var(Xv) of
viable cell density, as well as a risk aversion parameter α which controls the amount of risk
(amount of uncertainty) the user is willing to bear. In the here presented example, the risk
refers to the probability that viable cell density differs from the expected value (predicted
mean). A risk aversion value of α = 1 would mean that the expected time profile minus
one time the standard deviation of Xv is considered.

The utility function is defined through:

U(t) = E(Xv(t))− α
√

Var(Xv(t)) (1)

Based on the simulated time profiles of the current cultivation scale (by solving the
corresponding ode system), Equation (1) is used to calculate the utility function value
U(t) per hour and to check if this value reaches or exceeds the required transfer viable cell
density Xv,transfer which is necessary to inoculate (start) the next cultivation scale fulfilling
the required seeding (initial) viable cell density and the filling volume.

In the next step, it is evaluated whether the calculated point in time lies within the
range of practically feasible points in time for cell passaging, Tp. Thus, the objective is
to find the minimum point in time out of the set of practically feasible points in time for
passaging, Tp, which fulfills:

U(t) ≥ Xv,transfer, (2)

subject to: t ∈ Tp. (3)

Based on the obtained point in time and the corresponding concentrations of viable
cells, total cells, substrates and metabolites at this point in time, starting concentrations
(=initial values of the system of ordinary differential equations) of the next cultivation
scale are calculated based on the defined configurations and constraints (e.g., working
volumes, acceptable range of seeding viable cell density and medium concentrations). This
calculation has to be performed for every cultivation scale and passaging step. For more
details refer to [27–29].

2.2. Bayes Optimization

A typical mathematical optimization problem is the following: Given an objective
function f : X → R over input space X ⊆ Rd, the aim is to find an argument x∗ ∈ X ,
which optimizes (minimizes or maximizes) f .

The idea behind Bayes Optimization consists of creating a simple, probabilistic and
cheap to evaluate model, a so-called surrogate model (substitute model), of the objective
function f [15,17,32]. Bayesian optimization reduces the number of evaluations of the
objective f via the following iterative approach: Before sampling f at another point, we take
into account a trade-off between exploration (i.e., sampling of areas of high uncertainties)
and exploitation (sampling from areas which are likely to move towards the optimum),
which is encoded in a so-called acquisition function. We can find such points quickly from
evaluation of the surrogate model.
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Within Bayes optimization the following steps are performed:

1. Generate a set of initial points and evaluate the objective function at these points.
2. Train the surrogate model based on all evaluated points.
3. Optimize the acquisition function, which determines the next candidate point xc to

be evaluated.
4. Compute f (xc), the objective function f at the candidate point xc.
5. Repeat steps 2–4 for N iterations

The key of Bayesian optimization is not to rely on local approximations as many other
optimization algorithms and instead to have a global viewpoint of also evaluating the
function at unknown positions.

The acquisition function is used to propose the next candidate point to be evaluated
based on specific criteria, for example the expected improvement of the optimization
criteria, and on the reduction in predictive uncertainty. As in the case of the kernels, there
is also a wide variety of possible acquisition functions to choose from. In this study, the
Expected Improvement (EI) acquisition function is used [33,34].

Gaussian processes (GPs) are well suited surrogate models when making few assump-
tions [15]. Just like a Gaussian distribution (a normal probability distribution) is fully
described by its mean m and variance σ2, a GP is fully described by a mean function m(x)
and a covariance function k(x; x

′
) [17]. A GP is an extension of a multivariate Gaussian (or

normal) distribution to distributions of functions in the sense that if a function y follows a
GP distribution, i.e., y ∼ GP(m, k), then every evaluation of the function follows a Gaus-
sian distribution y(x) ∼ N (m(x), k(x, x)). In particular, a GP returns mean and variance of
the possible function values (instead of just returning a scalar), and hence also provides
information about the uncertainty of a prediction. Moreover, GPs can take into account
uncertainty in the form of noise, the class of Gaussian processes is closed under Bayesian
updates, and such updates are computationally tractable [35].

The covariance function describes the assumed characteristics such as smoothness or
periodicity of the objective function f [16]. They are so-called positive-definite functions,
often also called kernels [17,36]. It specifies the relationship between two ‘points’ (vector of
the input space) x and x′ and the corresponding changes in f at these points. A covariance
function is described by a set of parameters, also called hyperparameters, describing a
specific behavior. This is how prior information is embedded in the Bayes optimization
procedure. Also in this work, the most commonly used covariance function, the Squared
Exponential (SE) kernel (often also referred to as Gaussian kernel) is used [32].

2.3. Problem Definition and Computational Procedure

The goal of the presented application example is to propose a concept and a numerical
procedure for optimal robust seed train design, where robustness refers to the reproducibil-
ity of the seed train regarding viable cell density, meaning that despite initial uncertainties
and variabilities concerning cell growth, low variations of viable cell density at the end of
the seed train are obtained.

First, seed train constraints are defined based on a chosen cell line and its characteristics
concerning optimal cultivation conditions and based on the operative possibilities (e.g.,
feasible points in time for cell passaging). Second, the optimizable input parameters and
objective criteria (objective response variables) applied in this study are defined (as also
illustrated in Figure 1), followed by the formulation of the mathematical optimization
problem. Thereafter, the optimization problem is solved using a workflow which connects
seed train simulation and Bayes optimization.
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Figure 1. Goal of the study is to propose a concept and a numerical framework for optimal robust
seed train design (blue box in the middle), including optimizable inputs (first gray box) as well as
objectives (objective criteria) used in this study (right gray box).

The following objective criteria were chosen to represent an optimal seed train: (I) a
minimum duration (d) (=required cultivation time) of the seed train and (II) a minimum
deviation rate (D) regarding viable cell density, i.e., the probability that the seed train will
run outside predefined ranges of viable cell density (for both, seeding viable cell density and
transfer viable cell density) (This is important to consider because in the case that specific
constraints are not fulfilled, the performance of the cells could decrease. The growth rate
could decrease and, furthermore, it has been observed that the violation of constraints could
also cause less viability of the cells in the production phase [12]) (compare to Figure 1 right
gray box). These two attributes shall enable an optimal start of the production scale. Note
that, in addition to these criteria, the growth rate is another important parameter affecting
an optimal start of the production scale and the growth rate should be high until the end
of the seed train. However, in this first optimization study it is not set as optimization
criterion because the here defined seed train setup (in terms of medium concentrations and
possible cultivation volumes per scale) together with the aim to reduce cultivation time
already supports good growth during the entire cultivation. However, for other seed train
setups, it might be advisable to include growth rate at the end of the seed train into the
optimization problem.

After consideration of the two mentioned objective criteria, a third and fourth objective
criterion, the product concentration (titer) and the viability at the end of the cultivation in
the production bioreactor (in this simulation study: after 8 days in batch mode, i.e., without
addition of nutrient feeds) are added to the optimization problem (see Figure 1 right gray
box (III)). Note: The authors are aware of the fact that cultivation in the production vessel
itself, which is often performed in fed-batch mode, is also influenced by several process
parameters having an impact on product quantity and quality. Moreover, data of further
attributes would be necessary to describe product quality (e.g., of a recombinant therapeutic
protein or antibody) but these are not provided and therewith not considered in this study.

The input variables that can be varied to optimize the recently mentioned objective
criteria, and thus the optimizable input variables, are the filling volumes in the first five
shake flask scales, V1, . . . , V5 (compare to Figure 1, the part of the seed train between
thawing cells from a small vial and inoculation of the first biorector). These target values
are important inputs of the seed train simulation process because they are used to calculate
points in time for cell passaging. Volumes in the finally proposed seed train protocol
(output of the seed train simulation) may vary within allowed working volume ranges and
these are also presented in this work.
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Formulation of the Mathematical Optimization Problem

The optimizable variables and therewith inputs of the optimization problem are the
filling volumes of the n shake flask scales, V1, . . . , Vn which are included in the input vector:

x = (V1, . . . , Vn)
T . (4)

Outputs of the optimization problem are the defined objective criteria. These are
seed train duration d and deviation rate D for the first optimization example. Thus, the
unknown objective function (which should be minimized) can be written as follows:

f (x) = ( f1(x), f2(x))T (5)

with f1(x) =̂ d and f2(x) =̂ D.
The second optimization example includes a third and fourth optimization criterion,

product concentration and viability at the end of the production scale (here after 8 days in
the production vessel). Thus f (x) expands to:

f (x) = ( f1(x), f2(x), f3(x), f4(x))T (6)

with f1(x) =̂ d, f2(x) =̂ D, f3(x) =̂ ctiter,end and f4(x) =̂Viabilityend.

2.4. Connecting Seed Train Simulation and Bayes Optimization

Uncertainty-based seed train simulation as described in Section 2.1 was coupled with
algorithms for Bayes optimization as described in Section 2.2. The workflow integrating
both components is illustrated in Figure 2. The inputs of the combined framework are
the input variables: Boundaries for the optimizable variables (here filling volumes) and
objective criteria (here seed train duration, deviation rate and in the second example
also product concentration at the end of production scale) given all required seed train
configuration settings and constraints (e.g., initial concentrations, practically feasible points
in time for cell passaging, acceptable ranges for viable cell density, . . . ).

Figure 2. Scheme showing the applied computational workflow comprising: (A) a Bayes optimization
algorithm which is coupled with (B) a seed train simulation routine. Input and output values are
shown in the blue boxes above and below.
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First points (=combinations of optimizable variables) are determined using a Latin
Hypercube design distributing these points within the design space (see Figure 2, Box A).
Seed train simulations are performed at these points in order to obtain the corresponding
objective criteria values. Input values together with output values form a data set. An
unknown model describing the relationship between inputs and outputs is approximated
through a Gaussian process (GP) which has to be trained (see Figure 2, Box A) based on the
given data set. Therefore, the Gaussian process proposes a point that has to be evaluated
next (see Figure 2, Box B).

A robust seed train is simulated, using a mechanistic process model, and the objective
criteria are calculated. This output is then returned to the Bayes optimization (Box A) to
update the GP. Usually, experiments are performed to return the experimental output. The
present approach instead exploits the advantages of the model-based upstream simulation
in order to reduce the experimental effort to a minimum.

These steps are repeated various times, e.g., until a previously defined number of
maximum iteration steps is reached. The latter depends on the resources (human and
financial resources in case of laboratory experiments or computational resources in case of
in silico experiments). In every iteration the Gaussian process chooses a new point aiming
to move to the optimum and at the same time to reduce model uncertainty.

Results of this optimization framework are the set of Pareto optimal setups (also called
Pareto front) and their corresponding response values.

2.5. Numerical Solvers and Tools

The programming language and numeric computing environment MATLAB [37] was
used for the seed train simulations. The code for the optimization workflow was written in
Python [38] using the MATLAB Engine API for Python to call MATLAB as a computational
engine from Python code. To perform Bayes optimization within this workflow, the library
GPflow [39] was used.

3. Results and Discussion
3.1. Optimization of Cultivation Vessels Regarding Number of Shake Flask Scales and Filling
Volumes for Five, Four and Three Shake Flask Scales

In this section, it is investigated which cultivation filling volumes should be used
for the flask scales in order to obtain optimal results in terms of seed train duration and
deviation rate, here defined as the probability that the seed train will run outside the
predefined acceptable ranges for initial viable cell density (VCD) and transfer VCD (final
VCD before transfer into the next cultivation vessel) per scale. The latter is a measure for
the robustness of the seed train regarding viable cell density.

For assessment of the optimization results, a conventional reference seed train com-
prising five shake flask scales was simulated based on a non-optimized design. Therefore,
a common passaging interval of 3 days per cultivation scale was fixed and filling volumes
were determined following a conservative layout (i.e., choosing not too huge differences
between one cultivation scale and the next to ensure that enough viable cells are generated
even if they grow a little bit slower than expected).

In the first step, the optimal combination of filling volumes for five shake flask scales
is investigated and the results are compared to the reference seed train. Afterwards, it is
investigated if a reduction in shake flask scales from five to four or three shake flask scales
leads to similar or even better results in terms of seed train duration and deviation rate. The
number of bioreactor scales was kept fixed. Three bioreactors with filling volumes of 40 L,
320 L and 2100 L were used as pre-stages before inoculation of the production bioreactor
with 9600 L. The assumed seed train setup is given in Table 1.
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Table 1. Specification of the exemplary seed train setup providing information concerning cultivation
vessels, required viable cell densities and the transfer of cells from one cultivation vessel into the next
larger one, assumed in this work.

Seed Train Setup

Flask scales: 3, 4 or 5 flask scales between 0.014 L and 8 L filling volume
Bioreactor scales: 3 bioreactor scales, 38 L, 302 L and 2054 L filling volume
Production bioreactor: 9500 L filling volume
Optimal range for
viable seeding cell density: 3× 108–3.5× 108 cells L−1 (3× 105–3.5× 105 cells mL−1)
Optimal range for
transfer viable cell density: 0.1× 1010–1× 1010 cells L−1 (0.1× 107–1× 107 cells mL−1)
Target seeding (initial)
viable cell density: 3.15 × 108 cells L−1 (3.15 × 105 cells mL−1)

(=minimum viable seeding VCD + 5%)

Strategy concerning point ‘Xv transfer’, i.e., passaging as soon as the calculated
in time for cell passaging: required viable transfer cell density is reached
Practically feasible Passaging between 48 and 120 h possible
points in time for passaging: (flexible ranges)
Strategy concerning Discard cell suspension during the passaging step, if
current and new volume: required to start within an optimal seeding

cell density range

To find the optimal solution, multi-objective Bayesian optimization coupled with
uncertainty-based seed train simulation, as described in Section 2.1, was applied. First,
a Latin hypercube design for nlhs design ‘points’ (combinations of filling volumes, here
nlhs = 10) was initiated and seed train simulation was applied to calculate the objective
criteria values, here, deviation rate D and seed train duration d (replacing the normally
required experimental cultivation runs) at each point. Within the Bayes optimization
procedure, Gaussian processes were trained based on the simulation outcomes and an
acquisition function was calculated in each iteration step in order to propose which point
should be evaluated next. The input space for shake flask filling volumes (here the opti-
mizable variables) was defined as described in Table 2, assuming the possibility of using
several shake flasks in parallel for one shake flask scale and also considering their working
volumes ranges.

Table 2. Input space for the shake flask filling volumes, containing the possible filling volumes per
scale, given for optimization runs with 5, 4 or 3 shake flask scales.

Filling Volumes

Range for Range for Range for
5 Shake Flask Scale [L] 4 Shake Flask Scales [L] 3 Shake Flask Scales [L]

V1 0.014–0.015 0.014–0.015 0.014–0.015
V2 0.05–0.15 0.1–1 0.1–2
V3 0.15–1.5 1.5–4 4–8
V4 1.5–4 4–8 -
V5 4–8 - -

3.1.1. Optimization of Five Shake Flask Scales

The first optimization was performed for a seed train comprising five shake flask
scales. Figure 3 shows the objective criteria values for each evaluated point, whereby the
outcomes based on the initial Latin hypercube space are illustrated by blue dots and the
outcomes for the proposed points based on the trained Gaussian processes are illustrated
through yellow crosses. The optimal solutions are those near to the lower left corner aiming
to minimize seed train duration and the deviation rate. The Pareto optimal solutions, also
called non-dominated solutions, are illustrated through green circles. A solution (seed



Processes 2022, 10, 883 10 of 28

train setup/combination of filling volumes) is called non-dominated if no solution exists
leading to better (here lower) objective criteria values. As described previously, several
Pareto optimal solutions can be obtained because when considering two or more objective
criteria then for two different solutions one criterion might have better (here lower) value
then the other solution for the same objective, while the other criterion has worse (here
higher) values. The set of all Pareto optimal solutions is called Pareto front.

Figure 3. Algorthmically determined solutions and Pareto front of the two objective criteria seed
train duration and deviation rate. (optimizable variables, here combinations of 5 shake flask filling
volumes). Blue dots show an initial Latin hypercube design (LHC); yellow crosses are the points
proposed by the algorithm; green circles are Pareto optimal solutions (=Pareto front).

For the investigated scenario (five shake flask scales and the seed train configuration
according to Table 1) five Pareto optimal solutions were obtained (see green circles in
Figure 3). It can be seen that comparing two of these solutions (green circles) each, one
solution has a lower (here better) seed train duration value than the other solution and the
opposite holds for the deviation rate.

The corresponding values for the optimizable variables, here shake flask filling vol-
umes (V1, V2, V3, V4 and V5), and the corresponding objective criteria values, here deviation
rate D and seed train duration d, are listed in Table 3.

Table 3. Pareto optimal solutions concerning the choice of filling volumes in shake flask scales, for
three scenarios for 5 flask scales. The following bioreactor filling volumes are 40 L, 320 L and 2210 L.
The averaged filling volumes in L and the resulting deviation rate (D) in % and seed train duration
(d) in h are listed for each Pareto optimal solution.

Filling Volumes

Solution Vol. 1 Vol. 2 Vol. 3 Vol. 4 Vol. 5 D d
[L] [L] [L] [L] [L] [%] [h]

1 0.015 0.065 0.904 2.355 7.78 537 4.9
2 0.015 0.115 0.451 1.672 7.89 521 6.1
3 0.015 0.104 0.340 1.614 6.85 524 5.2
4 0.014 0.103 0.369 1.582 7.87 523 5.3
5 0.015 0.114 0.431 2.026 7.97 520 6.7

Filling volumes of reference seed train
Reference 0.015 0.08 0.30 2 4 41.7 576

The filling volume of the first scale was limited to a very narrow range (14–15 mL) (A
higher variation after cell thawing was not expected). Most obtained solutions start with



Processes 2022, 10, 883 11 of 28

the maximum value of this range (see Table 3, first column). The filling volume of flask
scale 2 varies between 0.065 and 0.115 L, the filling volume of flask scale 3 between 0.340
and 0.904 L, the filling volume of flask scale 4 between 1.582 and 2.355 L and of flask scale
5 between 6.85 and 7.97 L. All five combinations lead to a deviation rate D of less than 7%
and to a seed train duration between 520 to 537 h.

A more detailed illustration of the obtained results is presented in Figures 4 and 5. For
two optimizable variables and one objective criterion each (deviation rate in Figure 4 and
seed train duration in Figure 5), a contour plot is shown which illustrates the objective value
for each calculated point (combination of the two variables), using the trained Gaussian
processes, through colored isolines.

For example, the diagram in the top left of Figure 4 shows the deviation rate for
each combination of V1 (filling volume in flask scale 1) and V2 (filling volume in flask
scale 2) through colors representing the corresponding values in %, as indicated in the
color bar. The results obtained through seed train simulations are shown by dots. The red
dots represent the non-dominated (optimal solutions), optimal with respect to the defined
multi-objective optimization problem. The dark blue area indicates combinations of V1 and
V2 leading to a lower deviation rate. It can be seen that values above 0.1 for V2 combined
with any value of V1 (within the given range) lead to the lowest deviation rates (below
6.2%, see dark blue area). Moreover, the optimal solutions (red dots) are mostly located in
the area with higher filling volumes for shake flask 2, V2, except one (red dot at V2 ≈ 0.065).

For some combinations, a closer delimitation is possible. For example, the middle
diagram in the second row (V3 over V2) shows a limited region (dark blue area) and
therewith a specific combination of V3 and V2 that leads to the lowest deviation rates
(<5.6%). These are around 0.3 L for V3 and around 0.105 L for V2. Furthermore, two optimal
solutions (red dots) out of the set of Pareto optimal solutions (considering both objective
criteria, seed train duration and deviation rate) are located in this region. The remaining
red dots are located outside of the dark blue regions (see turquoise regions in the same
diagram), meaning that they have higher deviation rates. Analogously, Figure 5 shows the
contour plots for the second objective criterion, seed train duration. The dark blue areas
show the combinations with the lowest seed train durations (approximately below 528 h).
It can be seen in these diagrams that most red dots are located in the dark blue regions. For
some combinations the dark blue areas are wider, distributed over several possible values
for one variable, e.g., the diagram in the top center, top left, center, and center right.

Other combinations show narrower regions with low seed train durations as can be
seen in the diagram showing V4 over V3. The lowest seed train duration is obtained for
filling volumes between 1.5 and 2.5 L for shake flask 4 in combination with filling volumes
between 0.2 and 0.8 L for shake flask 3.

Overall, these diagrams give an overview of the impact of two combined optimizable
variables each on a specific objective criterion.

In addition to this information, simulated time profiles (predictive mean in green, 90%
prediction bands in blue) of viable and total cell density as well as concentrations of glucose,
glutamine, lactate and ammonium (see Figure 6) can be obtained for each solution, as well
as a seed train protocol containing information about the calculated passaging intervals,
amount of medium, etc.



Processes 2022, 10, 883 12 of 28

Figure 4. Contour plots showing two optimizable variables on x and y-axis and one objective (here
Deviation rate D in %), assigned to each combination of the two variables, through colored isolines.
For example, the diagram in the top left shows the deviation rate for each combination of V1 (filling
volume in flask scale 1) and V2 (filling volume in flask scale 2) through colors representing the
corresponding values in %, as indicated on the color bar. Moreover, the results obtained through seed
train simulations are shown by dots. The red dots represent the non-dominated (optimal solutions).
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Figure 5. Contour plots showing two optimizable variables on x and y-axis and one objective (here
seed train duration (d) in h), assigned to each combination of the two variables, through colored
isolines. For example, the diagram top left shows the deviation rate for each combination of V1

(filling volume in flask scale 1) and V2 (filling volume in flask scale 2) through colors representing the
corresponding values in %, as indicated on the color bar. Moreover, the results obtained through seed
train simulations are shown by dots. The red dots represent the non-dominated (optimal solutions).



Processes 2022, 10, 883 14 of 28

Figure 6. Seed train showing viable cell density (VCD) and total cell density, as well as substrate
(glucose and glutamine) and metabolite (lactate and ammonium) concentrations over time and over
the whole seed train (5 shake flask scales and three bioreactor scales), based on the shake flask
filling volumes according to solution 1. The green lines represent the mean time course and the blue
lines show the corresponding 90%-prediction band (5%- and 95%-quantiles). The plot (top left) also
includes the filling volumes and the acceptable ranges for seeding VCD and transfer VCD, illustrated
through dashed lines.

It can be seen in the top left of Figure 6 that based on the given filling volumes in
addition to the flexibility to choose individual points in time for cell passaging in each
scale, it is possible to set the seeding viable cell density at the beginning of each cultivation
scale on the desired value with low variability, allowing to stay within the corresponding
acceptable ranges for seeding VCD (see yellow dashed lines). Moreover, transfer VCDs
lie within the corresponding acceptable range with high probability (see lower boundary,
gray dashed line). Moreover, it can be seen that substrate concentrations are not depleted
and according to [27], values of 20 mmol/L lactate and 5 mmol/L ammonium are not yet
inhibiting concentrations for this cell line.

For a better assessment, the obtained results are compared to the reference seed train
which is also defined in this work for five shake flask scales and illustrated in Figure 7. It
grounds on a (non-optimized) configuration setup for five shake flask scales using fixed
passaging intervals of 72 h each (common practice) and filling volumes of 15 mL (flask
scale 1), 80 mL (flask scale 2), 300 mL (flask scale 3), 2000 mL (flask scale 4) and 4000 mL
(flask scale 5). This choice grounds on a rather conservative approach aiming to avoid the
risk of reaching too low transfer cell densities at the end of a cultivation scale but without
the inclusion of probabilistic simulations.

The proposed method instead includes risk calculations and a passaging strategy
aiming to minimize this risk but at the same time identifying a seed train configuration
which is optimal regarding further objectives such as seed train duration in the present case.

A comparison of the seed train solutions obtained after optimization and the reference
seed train shows that deviation rate is much lower after optimization (4.9–6.7% instead
of 41.7%) and seed train duration could be reduced by 56 h from 576 h to 520 h. Figure 7,
diagram top left shows where seeding or transfer viable cell density do not lie fully within
the acceptable ranges (see red circles). This is different for the optimized solutions, e.g.,
solution 5, as illustrated in Figure 6, where seeding VCD lies within the acceptable range
and also transfer VCD lies above the lower bound of the acceptable range for transfer
VCD. This significant reduction in time (≈2 days per seed train) would contribute to a
meaningful acceleration of the production process.
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Figure 7. Reference (non-optimized) seed train showing viable and total cell density, as well as
substrate (glucose and glutamine) and metabolite (lactate and ammonium) concentrations over time,
based on a reference configuration setup for 5 shake flask scales using passaging intervals of 72 h
each. The green lines represent the mean time course and the blue lines show the corresponding
90%-prediction band (5%- and 95%-quantiles).

3.1.2. Optimization of Three and Four Shake Flask Scales

In the next step, the number of shake flask scales was reduced from five to four and
then to three shake flask scales and the same optimization procedure was applied. The
aim was to investigate if less cultivation vessels would lead to comparable results and
if so, which target and filling volumes should be chosen. This is of interest because less
operations (such as transferring cells from one scale into another one) signify less risk of
failure and deviations.

Figure 8 shows the obtained values for the objective criteria deviation rate and seed
train duration for different combinations of filling volumes for three (left) and for four shake
flask scales (right). Furthermore, here, the solutions based on the initial Latin hypercube
design are shown by blue dots and Pareto optimal solutions are highlighted through
green circles.

It can be seen that for both scenarios, combinations of filling volumes could be found
leading to an overall seed train cultivation time between 519 and 530 h. However, the
scenario of using four shake flask scales, leads to lower deviation rates (D < 10%) compared
to the scenario of using three shake flask scales (23% < D < 26%).

The corresponding filling volumes and the obtained filling volumes (based on the
underlying passaging strategy) of the Pareto optimal solutions are listed in Table 4 together
with the results for five shake flask scales from Table 3. The results are sorted as discovered
by the optimization algorithm. The obtained filling volumes for four shake flask scales are
very similar, except for shake flask scale 4 ( V1 = 15 mL, V2 = 158–200 mL, V3 = 1.51–1.60 L
and V4 = 4.81–7.58 L). Some of the obtained solutions would be seen or treated as equal in
practice, because the differences are rather small. For example it would not be distinguished
between 0.190 and 0.195 L. Probably 200 mL would be used instead. However, the applied
optimization algorithm works on a continuous input space and differentiates between the
solutions listed in the Table 4, even though the differences are very low. The obtained
optimal filling volumes for three shake flask scales also look similar, but with a bit more
variation for shake flask 3 (4.45–5.58 L).
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Figure 8. Algorithmically determined solutions and Pareto front regarding seed train duration and
deviation rate for 3 resp. 4 shake flask scales on top resp. bottom. Blue dots show an initial Latin
hypercube design (LHC); yellow crosses are the points proposed by the algorithm; green circles are
Pareto optimal solutions (=Pareto front).

Comparing the results for the three scenarios (three, four and five shake flask scales)
endorses a decision against the three flask scales-scenario due to the higher deviation rates
(>20%), which stands for less process robustness. Between the other two scenarios (four or
five shake flask scales) only little differences with respect to deviation rates are observed
for the determined optimal solutions (4.9–6.7% for five shake flasks, 5.9–9.2% for four shake
flasks). Using five shake flask scales would lead to more or less similar cultivations times
(520–537 h) but one operational step more would be required.

This information, together with the corresponding seed train protocol, provides a
solid basis to take a decision for one of the proposed optimal seed trains designs, taking
into account seed train duration, robustness (expressed through deviation rates) and
operational steps.
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Table 4. Pareto optimal solutions concerning the choice of filling volumes in shake flask scales, for 3,
4 and 5 shake flask scales. The following bioreactor filling volumes are 40 L, 320 L and 2210 L. The
averaged filling volumes in L, the resulting deviation rate (D) in % and seed train duration d in h are
listed for each solution.

Filling Volumes

Solution Vol. 1 Vol. 2 Vol. 3 Vol. 4 Vol. 5 D d
[L] [L] [L] [L] [L] [%] [h]

5 flask scales
1 0.015 0.065 0.904 2.355 7.78 4.9 537
2 0.015 0.115 0.451 1.672 7.89 6.1 521
3 0.015 0.104 0.340 1.614 6.85 5.2 524
4 0.014 0.103 0.369 1.582 7.87 5.3 523
5 0.0015 0.114 0.431 2.026 7.97 6.7 520

4 flask scales
1 0.015 0.195 1.60 7.58 9.2 520
2 0.015 0.190 1.51 5.39 8.0 521
3 0.015 0.169 1.52 6.33 7.5 522
4 0.015 0.158 1.59 4.81 5.9 528

3 flask scales
1 0.015 0.733 4.45 23.0 522
2 0.015 1.046 4.85 23.8 521
3 0.015 1.103 5.26 24.8 520
4 0.015 0.934 4.77 23.0 522
5 0.015 1.110 4.65 22.2 523
6 0.015 1.306 5.58 26.4 519

3.2. Application to Further Cell Lines with Potentially Different Growth Rates

The optimization examples presented in the previous subsection were applied to a
specific CHO cell line with growth characteristics described by a set of model parameters
derived from an industrial cell culture process which was investigated in [27]. If a different
cell line or a clonal cell population with potentially differing growth behavior is used, then
the optimization has to be performed for this specific cell line. In the following simulation
study, a cell line having a 5% lower and a cell line having a 5% higher maximum cell-specific
growth rate compared to the reference maximum growth rate (µmax = 0.028 h−1 for the first
bioreactor scale and µmax = 0.029 h−1 for the remaining seed train scales) are assumed and
the optimization is applied for both scenarios.

The results for the obtained/proposed filling volumes, as well as the corresponding
seed train duration and deviation rate are listed in Table 5.

As expected, cells which grow faster (higher maximum growth rate µmax) would
require less time until reaching a specific target cell density. This can be seen in the right
column of Table 5. Using five flask scales, the optimal required seed train duration would
lie between 494 and 503 h for a cell line with a 5% higher growth rate compared to the
reference cell line which would need 520–537 h (see Table 3). Correspondingly, cells with
a 5% lower growth rate would need more time (550–568 h). The same is observed when
using four or three shake flasks.

With respect to the deviation rates which represent the robustness of the seed train
design regarding variability of viable cells, it can be seen that low deviation rates of between
4.1% and 11.6% can be reached when using five or four flask scales, even if the maximum
growth rate varies ±5%. A critical limit was identified for the combination of using three
shake flask scales for a slower growing cell line. The corresponding optimal solution shows
a comparatively higher deviation rate (19.2–29.1%) together with a high seed train duration
(548–552 h).
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Table 5. Pareto optimal solutions concerning the choice of filling volumes in shake flask scales, for 3,
4 and 5 shake flask scales, for two different scenarios. Scenario 1 assumes a 5% lower and scenario 2 a
5% higher cell-specific maximum growth rate compared to the reference maximum growth rate. The
bioreactor filling volumes which follow after the shake flask scales are 40 L, 320 L and 2210 L. The
filling volumes in L, the resulting deviation rate (D) in % and seed train duration (d) in h are listed
for each solution (several Pareto optimal solutions can be obtained per setup).

Filling Volumes

Solution Vol. 1 Vol. 2 Vol. 3 Vol. 4 Vol. 5 D d
[L] [L] [L] [L] [L] [%] [h]

5 flask scales
5% lower growth rate
1 0.015 0.083 0.45 2.06 6.67 7.3 550
2 0.014 0.072 0.30 2.78 6.23 7.0 551
3 0.014 0.105 0.45 2.53 6.77 6.1 553
4 0.015 0.119 0.84 2.96 6.21 5.5 568
5 0.014 0.122 0.56 2.64 6.62 5.8 559
5% higher growth rate
6 0.015 0.08 0.354 1.52 7.24 6.2 495
7 0.014 0.09 0.560 1.89 7.19 4.6 502
8 0.014 0.14 0.545 1.89 7.16 4.1 503
9 0.015 0.06 0.313 1.63 7.72 6.5 494
10 0.014 0.09 0.312 1.82 7.08 5.3 496
11 0.014 0.13 0.564 2.16 7.41 4.8 501

4 flask scales
5% lower growth rate
12 0.015 0.158 1.99 7.6 8.8 551
13 0.015 0.147 1.59 7.7 7.7 552
14 0.015 0.132 2.00 7.8 7.6 553
15 0.015 0.167 1.56 7.5 9.8 550
16 0.015 0.180 1.58 7.4 11.6 548
5% higher growth rate
17 0.015 0.199 1.59 5.2 5.3 501
18 0.015 0.246 1.53 7.9 10.5 493
19 0.015 0.215 1.53 7.2 7.7 494
20 0.015 0.193 1.56 6.8 6.8 496
21 0.015 0.191 1.60 5.6 5.8 498
22 0.015 0.210 1.56 7.5 7.3 495
23 0.014 0.183 1.71 6.1 5.4 499

3 flask scales
5% lower growth rate
24 0.015 0.174 4.14 20.0 550
25 0.015 1.011 4.03 25.7 549
26 0.015 0.151 4.02 19.2 552
27 0.015 0.929 4.34 29.1 548
5% higher growth rate
28 0.015 0.235 4.277 11.13 496
29 0.015 0.987 7.683 25.5 493
30 0.015 0.267 4.589 14.9 495

3.3. Optimization Regarding Four Objectives Including Product Concentration

To show the applicability of the proposed method to more than two objectives, a
third and a fourth objective criterion, titer concentration and viability at the end of the
production vessel (after 8 days) was added. Whereas the first two objective criteria (seed
train duration and deviation rate) are related to the seed train itself, the third and fourth
criterion refer to the generated product in the production vessel and to the viability of
the cells in the production vessel. Product concentration, as well as product quality can
be influenced by many factors (seeding cell density, substrate concentrations and nutri-
ent feeds, metabolite production, temperature, pH, dissolved oxygen and carbon dioxide
concentration, osmolality and more) and also by the amount and the state of the cells at
the end of the seed train. Since no data describing product quality are available, product
concentration and viability are considered in this study. A further simplification that was
made is the assumption that the production vessel is performed in batch-mode (meaning
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without any addition of nutrient feeds or medium renewals). The reason for this simplifica-
tion is to avoid confounding effects. The authors are aware of the fact that many factors
affect product concentration and product quality and when data of other critical process
parameters or quality attributes are available, these could also be considered in the same
manner. The main purpose of the present simulation example is to demonstrate how the
proposed method can be applied to more than two objectives and how the corresponding
results can be illustrated and interpreted.

To obtain a visual overview for multiple objective criteria in one figure, a so-called
spider plot (or net plot) can be used, which is shown in Figure 9.

Figure 9. Spider plot showing the objective criteria values (seed train duration, deviation rate, titer
and viability after 8 days in the production vessel) for the Pareto optimal solutions for 5 shake
flask scales.

The horizontal axis shows the values of the deviation rate (on the right) and of the viability
(on the left). The vertical axis shows the values of the seed train duration (above) and of the
titer (below). The aim of the optimization was to minimize seed train duration and deviation
rate and to maximize viability and titer. Each color (hyperplane) represents one of the Pareto
optimal seed train configurations (based on the optimal combinations of filling volumes in
shake flask scales). Since seed train duration and deviation rate should be minimal and titer
and viability should be maximal, hyperplanes covering the lower left area would be desired.
However, no such solution (hyperplane) was obtained. The reason is that the optimization
problem contains conflicting objective criteria, meaning that an improvement of one criterion
leads to a degradation of another criterion. The here presented solutions are all non-dominated
(see the green circles in the figures for two objective criteria). For all shown solutions, the
deviation rate is rather low (4.9–7.3%), the seed train duration lies between 521 and 562 h
and a titer of approximately 430–433 mg/L (assuming here a cell-specific production rate of
qtiter,max = 3.9× 10−10 mg cell−1 h−1, as reported in [40]) and a viability of 52–53% is reached
after 8 days in the production vessel (here via batch-mode). Of course, the obtained values
depend a lot on the real process conditions (production bioreactor probably performed in
fed-batch model) and the model parameter values obtained after model validation. However,
the presented simulation example shall illustrate how the proposed approach can be applied
for risk-based decision making under consideration of several criteria that should be optimal.
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3.4. Impact of Performed Iterations during Bayes Optimization

For the example of three shake flask scales, (followed by three bioreactor scales) and
optimizing filling volumes for all shake flask scales with respect to the two objective criteria:
seed train duration and deviation rate, the number of performed iterations during the
optimization procedure was varied. First, 10 initial points (combinations of filling volumes)
distributed based on a Latin hypercube design were evaluated, followed by 10 Bayes
iterations, which means that 10 times the algorithm updates the black box model (the
Gaussian process), calculates the acquisition function and proposes the next point based
on the outcome of this calculation. Then, the optimization was performed again for the
same seed train setup but using 20 and then 30 Bayes iterations. The obtained solutions are
illustrated in Figure 10.

Figure 10. Algorthmically determined solutions and Pareto front of the two objective criteria seed
train duration and deviation rate (optimizable variables, here combinations of 3 shake flask filling
volumes) for 10 (top left), 20 (top right) and 30 (bottom left) Bayes iterations; blue dots showthe
initial Latin hypercube design (LHC); yellow crosses show the points proposed by the algorithm;
green circles are the Pareto optimal solutions (=Pareto front).

Increasing the number of iterations from 10 to 20 helped to identify one solution that
has not been discovered when running only 10 iterations. This can be seen when comparing
the green circles in the diagram top left and the green circles in the diagram top right. The
solution with D ≈ 22 and d = 523 cannot been found in the diagram top left.

Increasing the number of iterations from 20 to 30 did not lead to an improved optimum
as can be seen when comparing the green circles in the Figure 10 top right diagram and
bottom left diagram. This underlines the efficiency of the Bayes optimization. In the present
example, only 10 initial points (distributed randomly according to a Latin hypercube design)
and 20 Bayes optimization iteration steps were required to obtain the results which were
confirmed when applying 30 iteration steps.

3.5. Summary

The objective of the first optimization problem was to design a robust seed train (cell
expansion process), which means a seed train layout (including the number of cultivation
scales, filling volumes and passaging intervals) leading to a reproducible seed train with
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low variability regarding viable cell density and with a minimum seed train duration.
The obtained solutions were compared to a non-optimized reference seed train and a
comparison showed that the deviation rate is much lower after optimization (<10% instead
of 41.7%) and seed train duration could be reduced by 56 h from 576 h to 520 h, which
means a significant reduction of more than 2 days.

Addressing the question of if variation of the number of shake flask scales (and
therewith the number of passaging steps) would lead to similar results in terms of deviation
rates and seed train duration, it turned out that a reduction to three shake flask scales,
would mean an increase in deviation rate and is therefore not recommended, at least under
the assumed working volume ranges.

In industrial practice, typically more than one cell line is in use (different cell lines may
be used to produce different molecules/products). Since growth rates of different cell lines
differ, it was investigated how optimal seed train designs would differ for cell lines with
5% higher or lower growth rates. It turned out that the same optimization procedure could
be easily adapted (by modification of the model parameter maximum growth rate) and
applied to the modified setup revealing critical limits, e.g., for the combination of using
three shake flask scales for a slower growing cell line. The latter shows comparatively high
deviation rates (19.2–29.1%) together with high seed train durations (548–552 h instead of
519–523 h for the reference growth rate).

To show the applicability of the proposed method to more than two objective criteria,
a third and fourth objective criterion, product concentration (titer) and viability after 8 days
in the production phase, were added and the optimization was performed regarding four
objective criteria in total. These are seed train duration, deviation rate (i.e., the probability
that the seed train will run outside the predefined criteria), titer and viability at the end of
the production phase.

Moreover, it was investigated for one seed train configuration (three shake flask scales
and two objectives using the reference cell growth rate) if increasing the number of Bayes
iterations would identify different optima. A number of 20 Bayes iterations turned out
to be sufficient, because running 20 or 30 Bayes iterations showed similar results, which
underlines the efficiency of the Bayes optimization approach.

In the present case study, the volumes are considered as fixed after optimization. If
the production process allows for more flexibility in terms of adapting the volume within a
specific range in the case that cells grow slower than the expected mean, then a reduction
in the deviation rate can be achieved because varying the volumes allows for regulation
of the inoculum viable cell density. However, this flexibility is not always given due to
regulatory requirements and therefore not considered in the present study.

4. Conclusions

A concept has been developed to use process models in combination with algorithms
for Bayes optimization using Gaussian processes to solve multi-objective optimization
problems in the context of biopharmaceutical production processes. To illustrate this
approach, a relevant exemplary optimization problem was chosen and solved using the
proposed method.

The goal was to find optimal combinations of filling volumes for the shake flask
scales of a seed train leading to a minimum deviation rate regarding viable cell densities
and a minimum process duration. Compared to a non-optimized reference seed train,
the optimized process showed much lower deviation rates regarding viable cell densities
(<10% instead of 41.7%) using five or four shake flask scales and seed train duration could
be reduced by 56 h from 576 h to 520 h.
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Overall, it is shown that applying Bayes optimization to a multi-objective optimization
function with several optimizable input variables and under a considerable amount of con-
straints, lead to revealing results with a low computational effort. This approach provides
the potential to be used in form of a decision tool, e.g., for the choice of an optimal and ro-
bust seed train design but also to further optimization tasks within process development.

It should be noted that Bayes optimization and the corresponding computational
modules could also be applied, even if no mechanistic process model is available, following
a slightly different workflow. Instead of performing model-based in silico experiments
(process simulations), real lab experiments would be performed and fed back to update the
black box model (here the Gaussian process). This adaptive procedure (also called Bayesian
experimental design or experimental design with Bayesian optimization [41]) or further
related optimization methods might be promising tools to support experimental planning,
process characterization, process transfer or optimization of cell culture processes but they
still require further research and being embedded in software solutions that are easy to use
for operators.
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Abbreviations
The following abbreviations are used in this manuscript:

CHO Chinese hamster ovary
EI Expected improvement
FDA Food and Drug Administration
GP Gaussian process
LHS Latin hypercube sampling
ode Ordinary differential equations
SE Squared exponential
VCD Viable cell density
List of symbols
α Risk aversion parameter (-)
µ Cell-specific growth rate (h−1)
µd Cell-specific death rate (h−1)
µd,max Maximum cell-specific death rate (h−1)
µd,min Minimum cell-specific death rate (h−1)
µmax Maximum cell-specific growth rate (h−1)
µref Reference maximum cell-specific growth rate (h−1)
σ2 Variance
cAmm (cAmm,0) (Initial) ammonia concentration (mmol L−1)
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cGlc (cGlc,0) (Initial) glucose concentration (mmol L−1)
cGln (cGln,0) (Initial) glutamine concentration (mmol L−1)
cLac (cLac,0) (Initial) lactate concentration (mmol L−1)
ctiter (ctiter,0) (Initial) volumetric titer (product concentration) (mg L−1)
d Dimension of the input space, number of optimizable variables

= seed train duration (h)
D Data, Deviation rate
E(·) Expectation value
f Objective function (-)
fi Component i of a multidimensional objective function (-)
Fsample Change of volume due to sampling (L h−1)
i Running index (-)
k Covariance function
KAmm Correction factor for ammonia uptake (-)
KLys Cell lysis constant (h−1)
KS,Glc Monod kinetic constant for glucose (mmol L−1)
KS,Gln Monod kinetic constant for glutamine (mmol L−1)
kGlc Monod kinetic constant for glucose uptake (mmol L−1)
kGln Monod kinetic constant for glutamine uptake (mmol L−1)
m (m(·)) Mean (mean function)
n Number of shake flasks (-)
N Number of iterations (-)
N Normal distribution (-)
nlhs Number of latin hypercube points (-)
qAmm (qAmm,uptake,max) (Maximum) cell-specific ammonia uptake rate (mmol cell−1 h−1)
qGlc (qGlc,max) (Maximum) cell-specific glucose uptake rate (mmol cell −1 h−1)
qGln (qGln,max) (Maximum) cell-specific glutamine uptake rate (mmol cell −1 h−1)
qLac (qLac,uptake,max) (Maximum) cell-specific lactate uptake rate (mmol cell−1 h−1)
qtiter (qtiter,max) (Maximum) cell-specific product production rate (mg cell−1 h−1)
R Set of real number
t Time (h)
Tp Set of feasible points in time for passaging
U(·) Utility function
V Volume (L)
Vi Volume in shake flask scale i
Var(·) Variance
xc Candidate point
x, x′ Multidimensional points (vectors) of the input space
x∗ Argument that maximizes f (s)
Xt Total cell density (cells L−1)
Xv Viable cell density (cells L−1)
Xv,i Viable cell density at point in time with index i (cells L−1)
X Input space
y Arbitrary function (-)
Y Arbitrary random variable (-)
YAmm/Gln Kinetic production constant for ammonia (mmol mmol−1)
YLac/Glc Kinetic production constant for lactate (mmol mmol−1)
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Appendix A

Table A1. Mechanistic model [27,42–45] for description of cell growth, cell death, substrate uptake,
metabolite production and antibody production applicable to batch and fed-batch mode.

Balance Equations Kinetic Equations

Biomass
dXv
dt = Xv · (µ− µd)− FGlc+FGln+FMedium

V · Xv µ = µmax · cGlc
cGlc+KS,Glc

· cGln
cGln+KS,Gln

, if t > tLag

µ = µmax · cGlc
cGlc+KS,Glc

· cGln
cGln+KS,Gln

− (1− t
tLag

) · aLag · µmax,
if t ≤ tLag

dXt
dt = Xv · µ− KLys · (Xt − Xv) µd = µd,min + µd,max ·

KS,Glc
KS,Glc+cGlc

· KS,Gln
KS,Gln+cGln

− FGlc+FGln+FMedium
V · Xt

Substrates
dcGlc

dt = −Xv · qGlc +
FGlc
V · cGlc,F +

FMedium
V · cGlc,Medium qGlc = qGlc,max · cGlc

cGlc+kGlc

− FGlc+FGln+FMedium
V · cGlc

dcGln
dt = −Xv · qGln + FGln

V · cGln,F +
FMedium

V · cGln,Medium qGln = qGln,max · cGln
cGln+kGln

− FGlc+FGln+FMedium
V · cGln

Metabolites
dcLac

dt = Xv · qLac − FGlc+FGln+FMedium
V · cLac qLac = YLac/Glc · qGlc · cGlc

cLac
− qLac,uptake ·

µmax−µ
µmax

with qLac,uptake = 0, if cGlc > 0.5 mmol L−1

with qLac,uptake = qLac,uptake,max, if cGlc ≤ 0.5 mmol L−1

dcAmm
dt = Xv · qAmm − FGlc+FGln+FMedium

V · cAmm qAmm = YAmm/Gln · qGln · cGln
cAmm

−KAmm · qAmm,uptake,max ·
µmax−µ

µmax

with KAmm = 0, if (cGln > cAmm)
with KAmm = 1, if (cGln ≤ cAmm) and (µ > µd)
with KAmm = −kAmm (constant), if (µ ≤ µd)

Product titer and volume
dctiter

dt = Xv · qtiter − FGlc+FGln+FMedium
V · ctiter qtiter = qtiter,max

dV
dt = −FSample + FGlc + FGln + FMedium

Appendix B

Application to Other Cell Lines with Potentially Higher and Lower Maximum Growth Rates

(a) (b)

Figure A1. Cont.
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Figure A1. Cont.
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(i)

Figure A1. Pareto solutions for 3, 4 and 5 shake flask scales and for three different growth rates,
reference maximum growth rate (left column), a 5% lower (middle column) and a 5% higher growth
rates (right column) showing the objective criterion seed train duration over objective criterion
deviation rate, using 20 optimization iterations; Blue dots: based on the initial Latin hypercube
(LHC) design; Yellow crosses: based on the proposed points (by the algorithm); Green circles: Pareto
optimal solutions. (a) 5 sf, µ,max,ref. (b) 5 sf, µ,max,95%. (c) 5 sf, µ,max,105%. (d) 4 sf, µ,max,ref. (e) 4 sf,
µ,max,95%. (f) 4 sf, µ,max,105%. (g) 3 sf, µ,max,ref. (h) 3 sf, µ,max,95%. (i) 3 sf, µ,max,105%.
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