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Abstract: Soil cyclic degradation is a serious issue that should be considered in engineering design
and maintenance. The hysteretic response causes strength degradation and excessive settlement of soil
structure in engineered and natural geosystems. Hysteresis is essentially the coupling deformation of
elastic and plastic components during reloading and unloading processes. Conventional hysteretic
models for sand in the elastoplastic framework rely highly on yield surface or potential surface
evolution and fall short on complexity and inaccuracy. This study proposes a decoupling method
to describe the hysteretic response of sand. In contrast to the conventional elastoplastic approach,
this decoupling method can directly decouple the elastic and plastic components by determining
the boundary between the elastic strain extension domain and the plastic strain extension domain
for each stress cycle. In this way, the elastic and plastic stress–strain branches during cyclic loading
can be separately obtained, and the corresponding elastic and plastic parameters are employed to
characterize mechanical behavior. With the respective evolution of elastic and plastic strains, the
hysteretic behavior of sand is reproduced by combining all the branches. Finally, this decoupling
method is validated by three conventional cyclic loading tests. The predictions are consistent with
the experiments, indicating that the decoupling method is generally effective in describing the
hysteretic behavior under cyclic loading. This decoupling method provides new insight to obtain
elastic and plastic deformation behaviors separately, without recourse to complicated plastic surface
and hardening law.

Keywords: cyclic degradation; hysteresis response; decoupling method; sand

1. Introduction

The cyclic degradation of soil structure caused by cyclic loads is a serious issue that
should be considered in engineering design and maintenance, which has a potentially high
risk in terms of safety [1,2]. Excessive settlement and excess pore pressure accumulation
are the ultimate direct results of soil cyclic degradation, hence deteriorating the long-term
functionality of soil structure in engineered and natural geosystems [3,4]. For example,
pavement cracking from fatigue is caused by the deterioration of the subgrade under
long-term cyclic loading with coupling-resilient deformation and accumulated plastic
deformation [5,6]. Soil cyclic degradation can also endanger the stability of a foundation in
undrained conditions, in which the effective stress decreases with the accumulation of pore
water pressures due to cyclic shearing [7]. The soil cyclic degradation process is presented
well by the hysteresis response. The hysteretic response is a significant mechanical behavior
performance during the cyclic degradation process, which is often regarded as an extensive
research object. Therefore, it is of great significance to describe the hysteresis behavior
accurately in cyclic loading.
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Hysteresis constitutes coupling elastic and plastic behaviors in the unload–reload
process. The conventional elastoplastic models from static analysis assume purely elastic
deformation within the interior of the yield surface in response to external stress change.
They work well in the static analysis but are not applicable in the cyclic analysis. One
typical feature in hysteresis is the phenomenon that the unload–reload cycle with constant
stress amplitude can result in a gradual accumulation of permanent strain. The different
behavior in cyclic loading inevitably limits the application of the conventional elastoplastic
constitutive models on the hysteretic response. For example, in classical critical-state
models, as well as in modified-state surface approach models, large plastic strains occur
only on primary loading (the first loading), and elastic strains are assumed on subsequent
unload–reload cycles within the yield surface [8–11]. To better describe the hysteresis
response, extensive endeavors have been made by introducing the hardening modulus
theories, such as multiple yield surface plasticity [12,13], kinematic hardening [14,15],
sub-loading surface [16], and finally boundary surface plasticity [17–19] and generalized
plasticity [20,21]. In those continuum-based theories, hardening modulus is associated
with either specified yield surface, potential surface, or directly defined, which obscures
the deformation mechanism of particular soils in hysteretic response. Particles soils are
found to yield in the unloading process, with a relatively large stress increment exceeding
the transient elastic limit [22–24]. Hence, the evaluation of the elastic parameters directly in
the unloading process seriously affects the accuracy of the subsequent plastic parameter
calibration. Moreover, the pseudo-elasticity obtained during the unloading process depends
on the stress history, resulting in the arbitrariness of the parameters of the hardening
modulus calibration. In fact, the constitutive theory focuses on the yield surface or potential
surface in the elastoplastic framework, and cannot directly apply to soils compared with
continuum materials [25]. Thus, the hysteretic behavior needs to be understood directly
from the evolution process of elastic and plastic deformation during reload–unload cycles.

The reload–unload cycle constitutes the loading and unloading branches in each
cycle, and each branch has a coupling of elastic and plastic deformations. It is noted
that plastic deformation (strain) develops during unloading in a contractive nature [21].
Each axial strain increment in loading or unloading is the sum of elastic and plastic strain
components, and the strain increments accumulate with increasing stress levels. Therefore,
the accumulated strain can be separated into the elastic strain extension domain and
the plastic strain extension domain. These two domains are demarcated by loading or
unloading elastic curves. If this elastic curve is obtained, the elastic strain and plastic
strain at any stress level can be readily calculated, as schematically shown in Figure 1.
Combining the elastic and plastic parts of each cycle, a continuous hysteretic response is
reproduced immediately.
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Motivated by the need to characterize the hysteresis process accurately, the objective of
this study was to propose a decoupling method to accurately obtain the strain components
on both sides of the elastic curve at any stress level during each stress cycle. As opposed to
the aforementioned methods, the advantage of our method lies in directly describing the
elastic and plastic behaviors for all branches in cyclic loading without assumptions about
yielding surface expansion or hardening laws. The elastic and plastic strains are obtained
directly. First, the elastic dividing curve is determined to decouple the elastic and plastic
components during each loading or unloading branch. Then, empirical formulas on elastic
and plastic parameters are employed to describe the corresponding variations of strains;
therewith, the hysteretic behavior of sand is reproduced by combining all the branches.
Finally, this decoupling method is validated by three conventional cyclic loading tests.

2. Details of the Decoupling Method
2.1. Determining the Elastic Curve

The elastic curve delineates the boundary between the elastic strain extension domain
and the plastic strain extension domain at all stress levels (see Figure 1). The region between
the elastic curve and the total stress–strain curve bounds the plastic stress–strain response.
Therefore, it is significantly important to capture the elastic curve.

Determining the elastic curve is essential for obtaining the elastic response of the soil.
Tatsuoka and Shibuya [26] showed that the deformation of geomaterials (soils) measured
at strains smaller than about 0.001% is essentially strain-rate-independent and recover-
able, i.e., elastic. Generally, it is assumed that the elastic domain exists at the strain
below 0.001% [26–29], which is acknowledged in a small strain regime. However, in large
strain regime, the elastic domain continues to extend beyond the 0.001% limit during
shearing, and it is also coupled with plastic strain. Elastic behavior in the extended elastic
domain is usually characterized by the triaxial compression test, in which a single or multi-
ple unload–reload cycles having small amplitudes of cyclic strain with the order of 10−5 or
even 10−6 are applied at different stress or strain points [22,30–33]. However, this measure-
ment cannot fully characterize the continuous nonlinear elastic behavior of the soil due to
the limited stress points. Another commonly used method for testing elastic properties is
dynamic testing. In the dynamic testing, the elastic properties can be evaluated by resonant
column tests [34–37] or wave propagation tests [38–40], which often treat the test material
as elastic and isotropic [41,42]. The dynamic testing generally measures the small strain
elastic properties of low strain levels under the isotropic stress state, but direct application
to the extended elastic domain is unreasonable. In this regard, within a large strain regime,
an alternative quasi-elastic curve is obtained from the quasi-elastic domain to approximate
the real elastic curve. The quasi-elasticity, rather than pure elasticity mentioned here, takes
into account the energy dissipation in the nonzero area of the closed hysteresis loop. It is ev-
idenced by experiments and numerical simulations [43–46] that the soil gradually exhibits
elastic behavior under cyclic loading; therewith, the quasi-elastic domain can be obtained
when the specimen reached a deformation steady state. In the deformation steady state, the
stress–strain curve is a closed hysteretic loop showing the elastic behavior, and the shape
of the hysteresis loop does not change dramatically in response to the subsequent stress
cycles [46]. In this study, if the strain increment of two adjacent cycles is lower than 10−5

(the normal elastic strain limit), the specimen is considered to reach the deformation steady
state, and the quasi-elastic curve is obtained. It is noted that the issue of whether this
quasi-elastic curve can be directly regarded as the elastic curve mentioned above still needs
further demonstration regarding the influence of cyclic stress history on the evolution of
elastic behavior of sand.

Extensive studies have shown that soils show a gradual hardening behavior under
cyclic loading. However, few studies have focused on the evolution of elastic behavior in
cyclic loading. Karg and Haegeman [3] stated that the elastic properties of the soil remain
almost constant during cyclic loading within the small strain regime. Xia, et al. [47] also
draw a similar conclusion based on the periodic static triaxial test that the axial elastic
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strain increment within small strain regime is a constant in the subsequent stress cycles.
Furthermore, Xia, et al. [48] experimentally compared the differences between the quasi-
elastic curves obtained at different deformation steady states, showing that the quasi-elastic
curves are not sensitive to the influence of cyclic stress history. Pradhan, et al. [49] directly
assume that elasticity remains constant during cyclic loading based on simplification
considerations. Similarly, the same assumption is made here, that the elastic behavior is
independent of the loading cycles. Therefore, the quasi-elastic curve in the deformation
steady state can be shifted to any stress cycle, as shown in Figure 2.
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2.2. Decoupled Plastic Stress–Strain Curve

The total stress–strain relation is decoupled into elastic and plastic branches, as
schematically shown in Figure 3. The elastic branch is obtained directly from the de-
formation steady state and remains unique. Thereafter, the plastic stress–strain relation
is readily obtained by subtracting from the total stress–strain relation. It should be noted
that the plastic branch in different cycles is different depending on the hardening behavior.
The elastic and plastic parameters are employed to describe the elastic and plastic strain
increments, respectively. Elastic parameters are the (axial) elastic modulus E and strain
ratio v (different from Poisson’s ratio); plastic parameters are (axial) plastic modulus Ep and
plastic strain ratio vp. They are defined as the tangent slope of the corresponding curves, as
shown in Figure 3. Besides, elastic bulk modulus K and plastic bulk modulus Kp are used
in isotropic cyclic loading conditions.
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2.3. Implementation Procedures of Decoupling Method

Figure 4 shows the procedures of the decoupling method. Axial incremental strain
∆ε is the sum of the elastic strain increment ∆εe and plastic strain increment ∆εp. The first
step is to obtain the alternative quasi-elastic curve from the deformation steady state. The
alternative elastic strain increment at the deformation steady state is denoted as (∆εe)′

for each stress increment. Then, shift the quasi-elastic curve to the origin of each cycle.
∆εe is approximated at each stress level by (∆εe)′. The corresponding plastic strain can
be calculated as ∆εp = ∆ε − (∆εe)′. The separated elastic and plastic strain increments
are then expressed as the function of elastic and plastic parameters. Immediately, total
strains can be achieved by integrating the elastic and plastic parameters over the input
stress history. Finally, evolution prediction of hysteresis behavior of sand under cyclic
loading is reproduced by combining all the branches. This data iteration process can be
implemented easily through Excel. The following sections demonstrate the effectiveness of
the decoupling method considering different cyclic loading conditions.
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3. Application in the Cyclic Triaxial Test (CTT)
3.1. Elastic Parameters E and v

Due to the difficulty in reaching a complete elastic state, many alternative elastic
parameters are defined to approximate the elastic properties [46]. To quantify soil deforma-
tion, an accurate description of E and its dependence on influencing factors is necessary.
An empirical formulation for this dependent relation is an effective way and is widely used.
Some researchers [50–52] have studied E and proposed different empirical formulations for
its dependency on influencing factors. Generally, it is believed that E, defined for major
elastic principal strain increments in a certain direction, is a unique function of the normal
stress in that direction [22,32,53,54].

In this study, a new representation of E is used to formulate the elastic stress–strain
relation in standard triaxial (axisymmetric) stress conditions, which is formulated from the
deformation steady state [47,55], as follows:

E
pa

= E0 + α · σ1

pa
(1)

where E0 is a constant which is related to the initial state, σ1 is the axial stress, α is the
material parameter, and pa is the atmospheric pressure. In comparison with E, the existing
empirical formula on v is rare. It is believed that v is not a constant but increases with the
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stress level in the shear direction [32,56–58], sometimes even exceeding 0.5 [56,58]. It is
observed that the strain ratio increases linearly with the deviatoric stress in the deformation
steady state [59], which is composed of two parts, as follows:

ν = ν0 + β · q
pa

(2)

where v0 is the initial strain ratio, β is the coefficient, and q = σ1 − σ3 is deviatoric stress.
The initial strain ratio was determined by confining pressure and initial void ratio, while
the incremental part is related to deviatoric stress. Thus, four elastic parameters can be
obtained from the deformation steady state.

3.2. Plastic Parameters Ep and vp

As important as elastic parameters, both Ep and vp play key roles in accurately describ-
ing plastic responses. According to the decoupled plastic branches, in standard triaxial
stress condition, Ep in reloading can be expressed as [55]:

Ep

h(N)
= b · (q− qu), h(N) = exp(δ · N) (3)

where qu is reloading ultimate deviatoric stress, b (<0) is reloading coefficient, h(N) is the
reloading plastic modulus hardening function in which δ is a constant and N is the number
of cycles. On the other hand, although the plastic behavior in the reloading is different from
that in the unloading, the plastic modulus changes linearly with the deviator stress, that is,
it decreases linearly in the reloading and increases linearly in unloading, but corresponds
to different parameters, as follows:

Ep

h′(N)
= b′ ·

(
q− qu

′), h′(N) = exp
(
δ′ · N

)
(4)

where qu
′ is unloading ultimate deviatoric stress, b′(>0) is the unloading coefficient, and

h′(N) is the unloading plastic modulus hardening function in which δ′ is a constant. The
existing study on vp is limited. By definition, the plastic strain ratio is calculated by
plastic strains. Generally, in continuum mechanics, it is assumed that the plastic volume
is incompressible, and the corresponding vp is a constant of 0.5 [60]. However, this is
not accurate for porous materials, because the plastic deformation is mainly due to the
changes in the relative position between the particles, which will inevitably cause changes
in the void volume; consequently, vp of porous materials is not constant. Few studies
have reported vp of microporous metallic foams; however, vp of granular materials (soils)
has not been reported. In this paper, in standard triaxial stress condition, the empirically
formulated vp in reloading is expressed as follows:

νp

g(N)
= µ +

(
ν0,p − µ

)
· e

λ· q
pre f , g(N) = exp(−ω · N) (5)

where v0,p is the initial plastic strain ratio in reloading and pref is the reference pressure
(in this paper pref = 1 kPa), µ, ω, and λ are constants, and g(N) is the plastic strain ratio
hardening function in reloading. Moreover, the plastic strain ratio in unloading is expressed
by the same formulation, as follows:

νp′

g′(N)
= µ′ +

(
ν0,p
′ − µ′

)
· e

λ′ q
pre f , g′(N) = exp

(
−ω′ · N

)
(6)

where v0,p
′ is the initial plastic strain ratio in unloading, µ′, ω′, and λ′ are constants,

and g(N)′ is the plastic strain ratio hardening function in unloading.
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3.3. Simulation

By combining Equations (1), (3) and (4), the axial stress–strain relations are reproduced,
and the radial–axial strain relation is reproduced by combining Equations (2), (5) and (6).
The empirical model parameters are calibrated through the Solver module in Excel, where
the solution iteration method is a nonlinear GRG. The details of the experimental results se-
lected can be found in [46]. The simulations and experimental results are shown in Figure 5.
The predictions are consistent with the experiments, indicating that the decoupling method
is effective in describing the hysteretic behavior under cyclic triaxial stress conditions. The
constants of the empirical model are shown in Table 1.
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Table 1. Parameters for empirical formulations in CTT.

CTT

Parameter E0 α υ0 β b/b′ qu/qu
′

Value 33.8 2.5 0.35 0.016 −4.9/15.2 310/3.2
Parameter δ/δ′ µ/µ′ υ0,p/υ0,p

′ λ/λ′ ω/ω′

Value 0.24/0.13 0.13/0.02 0.17/0.32 0.001/0.15 4.8/12
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4. Application in the Cyclic Isotropic Compression Test (CICT)

Isotropic compression tests are also very common, providing a continuous relation
between deformation modulus (bulk modulus) and pressure (confining pressure). In the
cyclic isotropic compression test (CICT), the hysteresis loops indicate that, in both reloading
and unloading, the deformation is a coupling of elastic and plastic components, as shown in
Figure 6. The elastic and plastic components are calculated using the elastic bulk modulus K
and plastic bulk modulus Kp, respectively. Additionally, the K is obtained from the elastic
curve corresponding to the tangent slope of the elastic branch at the deformation steady
state, while the Kp is obtained from the decoupled plastic stress–strain curve corresponding
to the tangent slope of the plastic branch. To present the performance of this decoupling
method in describing the hysteresis response during the CICT, the empirical formulas for K
and Kp need to be formulated first.
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Researchers have proposed some empirical formulas for volumetric stiffness. For
example, Qubain, et al. [61] proposed a quasi-linear elastic constitutive model to describe
the behavior of sand well below failure based on isotropic compression tests. García and
Medina [62] performed detailed simulations of stress–strain relations in unconsolidated
granular packs under unload–reload cycles, in which the power function was used to de-
scribe the bulk elastic modulus which scales with pressure with a 1/2 power law exponent
in the limited cycle (i.e., deformation steady state). Figure 7a shows the variation of K with
pressure, where (K/pa)2 changes linearly with mean pressure. Therefore, K is expressed as:

K
pa

= (φ + ϕ · p
pa

)
1
2 (7)

where p is mean pressure (p = 1/3(σ1 + 2σ3)), and σ1, σ1, and σ3 are principal stresses. In
the isotropic compression test, p = σ1 = σ2 = σ3 holds. φ and ϕ are constants. The details of
the experiment for the cyclic isotropic compression test are presented in [63].

On the other hand, the decoupled bulk plastic modulus is expressed as:

Kp

h(N) · pa
= (ψ + ξ · p

pa
)

1
2 (8)

where ψ and ξ are reloading bulk constants. Similarly, the bulk plastic modulus in unload-
ing is expressed as:

Kp
′

h′(N) · pa
= (ψ′ + ξ ′ · p

pa
)

1
2 (9)
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where ψ′ and ξ ′ are unloading bulk constants. The variation of bulk plastic modulus with
pressure is plotted in Figure 7b. By combining Equations (8) and (9), the prediction is
presented in Figure 8, which is consistent with the experimental results. The constants of
the empirical model are shown in Table 2. Note that the large deviation has occurred during
the final phase of the first unloading cycle, where the prediction highly underestimates
the experiment. The possible reason is that the unloading empirical model has large
errors at low stress levels in the primary unloading, resulting in smaller unloading strain.
However, this deviation gradually weakens with increasing cycle number, indicating that
the unloading empirical model also couples with the effect of cyclic stress history.
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5. Application in Cyclic Oedometric Compression Tests (COCT)

The oedometric compression test can be regarded as a special triaxial test in which
the confining pressure is variable in proportion to the axial stress. The elastic and plastic
moduli presented in triaxial stress conditions are employed herein. Note that the axial
plastic modulus includes the influence of the confining pressure but is expressed by the
axial stress, as follows:

Ep

h(N) · pa
= b1 · (

σ1

pa
)

n
− b2 · (

σ1

pa
)

n+1
(10)

Ep
′

h′(N) · pa
= b1

′ · ( σ1

pa
)

n′
− b2

′ · ( σ1

pa
)

n′+1
(11)

where b1, b2, and n are the reloading constants, and b1
′, b2

′, and n′ are the unloading
constants. The performance of the empirical formulas in the oedometric compression test
is shown in Figure 9, indicating that the decoupling method is also effective in describing
the hysteretic behavior under cyclic oedometric compression stress condition. The details
of the experiment for the cyclic oedometric compression test are presented in [47]. The
constants of the empirical model are shown in Table 3.

Processes 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

Table 3. Parameters for empirical formulations in COCT. 

COCT 
Parameter 𝐸଴ α 𝑏ଵ/𝑏ଵ′ 𝑏ଶ/𝑏ଶ′ 𝑛/𝑛′ 𝛿/𝛿′ 

Value 120 328 110/2000 0.6/10 0.01/0.01 0.3/0.3 

 
Figure 9. Comparison of prediction with experimental results of silica sand in a cyclic oedometric 
compression test. 

6. Limitations of the Decoupling Method 
Although this decoupling method abandons the yield surface as the study object and 

can accurately describe the strains in each cycle, there are still some limitations. It can be 
seen from the above verification cases that the decoupling method is suitable for a single 
changing stress condition (here, the axial direction), such as in CTT, but the prediction 
results do not match well with the experimental results in the cases with changing multi-
directional stress. The possible reason is that the empirical formulas established for the 
elastic and plastic parameters are not the most effective. Therefore, the deviation of pre-
diction is closely related to the determination of the quasi-elastic curve, as well as the em-
pirical formulas of elastic and plastic parameters for each branch. Considering more com-
plex cyclic loading patterns is necessary to further verify the effectiveness of the decou-
pling method in the future. 

7. Implications of This Work 
By the decoupling method, the evolution of plastic strain with stress level and stress 

history is directly presented, which has implications for the development of elastic–plastic 
theory in assuming the hardening laws for soils. The descriptions of the hysteresis process 
can also facilitate the understanding of the soil shakedown limit analysis. Generally, the 
most likely cyclic stress is selected as the plastic shakedown limit by observing the trend 
of permanent strain accumulation, during which the reference and judgment criteria for 
selection are extremely important. At present, the reference or judgment criteria are em-
pirical and variable, which is inseparable from the fact that researchers only focus on the 
final result of the permanent strain accumulation and ignore the mechanical response dur-
ing the shakedown process in cyclic loading. Due to the lack of understanding of the evo-
lution of the plastic mechanical behaviors with stress cycles, the mechanical properties of 
the hysteresis response or shakedown process cannot be revealed, in essence, which in 
turn leads to the lack of a unified and effective criterion when evaluating the plastic shake-
down limit. With the decoupling method presented in this study, research on this topic 
has more possibilities. Nevertheless, further verification work is needed. 

  

Figure 9. Comparison of prediction with experimental results of silica sand in a cyclic oedometric
compression test.

Table 3. Parameters for empirical formulations in COCT.

COCT
Parameter E0 α b1/b1

′ b2/b2
′ n/n′ δ/δ′

Value 120 328 110/2000 0.6/10 0.01/0.01 0.3/0.3

6. Limitations of the Decoupling Method

Although this decoupling method abandons the yield surface as the study object and
can accurately describe the strains in each cycle, there are still some limitations. It can be
seen from the above verification cases that the decoupling method is suitable for a single
changing stress condition (here, the axial direction), such as in CTT, but the prediction
results do not match well with the experimental results in the cases with changing multi-
directional stress. The possible reason is that the empirical formulas established for the
elastic and plastic parameters are not the most effective. Therefore, the deviation of
prediction is closely related to the determination of the quasi-elastic curve, as well as
the empirical formulas of elastic and plastic parameters for each branch. Considering
more complex cyclic loading patterns is necessary to further verify the effectiveness of the
decoupling method in the future.
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7. Implications of This Work

By the decoupling method, the evolution of plastic strain with stress level and stress
history is directly presented, which has implications for the development of elastic–plastic
theory in assuming the hardening laws for soils. The descriptions of the hysteresis process
can also facilitate the understanding of the soil shakedown limit analysis. Generally,
the most likely cyclic stress is selected as the plastic shakedown limit by observing the
trend of permanent strain accumulation, during which the reference and judgment criteria
for selection are extremely important. At present, the reference or judgment criteria are
empirical and variable, which is inseparable from the fact that researchers only focus on
the final result of the permanent strain accumulation and ignore the mechanical response
during the shakedown process in cyclic loading. Due to the lack of understanding of the
evolution of the plastic mechanical behaviors with stress cycles, the mechanical properties
of the hysteresis response or shakedown process cannot be revealed, in essence, which
in turn leads to the lack of a unified and effective criterion when evaluating the plastic
shakedown limit. With the decoupling method presented in this study, research on this
topic has more possibilities. Nevertheless, further verification work is needed.

8. Conclusions

In this study, a decoupling method for describing the hysteresis response of sand is
proposed, in which the elastic and plastic strain components are directly decoupled by
the boundary between the elastic strain extension domain and the plastic strain extension
domain. This boundary can be obtained directly in a deformation steady state. From
the performance in three application cases, the decoupling method is generally effective
in describing the hysteretic behavior under cyclic loading. However, the deviation of
prediction is closely related to the determination of the quasi-elastic curve, as well as
the empirical formulas of elastic and plastic parameters for each branch. Considering
more complex cyclic loading patterns is necessary to further verify the effectiveness of the
decoupling method in the future.
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