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Abstract: In the era of Industry 4.0, numerous AI technologies have been widely applied. However,
implementation of the AI technology requires observation, analysis, and pre-processing of the
obtained data, which takes up 60–90% of total time after data collection. Next, sensors and features
are selected. Finally, the AI algorithms are used for clustering or classification. Despite the completion
of data pre-processing, the subsequent feature selection and hyperparameter tuning in the AI model
affect the sensitivity, accuracy, and robustness of the system. In this study, two novel approaches of
sensor and feature selecting system, and hyperparameter tuning mechanisms are proposed. In the
sensor and feature selecting system, the Shapley Additive ExPlanations model is used to calculate
the contribution of individual features or sensors and to make the black-box AI model transparent,
whereas, in the hyperparameter tuning mechanism, Hyperopt is used for tuning to improve model
performance. Implementation of these two new systems is expected to reduce the problems in
the processes of selection of the most sensitive features in the pre-processing stage, and tuning of
hyperparameters, which are the most frequently occurring problems. Meanwhile, these methods are
also applicable to the field of tool wear monitoring systems in intelligent manufacturing.

Keywords: intelligent manufacturing; milling tool wear; SHAP; feature selection; hyperparameter
optimization

1. Introduction

In the recent decades, owing to the development of AI technology, intelligent manufac-
turing technology has rapidly evolved, including automation, digitization, and intelligence,
however, many challenges remain to be overcome. These include the collection of in-line
manufacturing data in industry, the long-time consuming in pre-processing, the selection
of sensors, features, and AI models, and the tuning of hyperparameters.

A Tool Condition Monitoring (TCM) system has been performed using advanced
sensors and computational intelligence to predict and avoid adverse conditions for cutting
tools and machinery [1–13]. The sensors are indispensable parts of intelligent manufac-
turing. First, the signals of sensors are obtained; second, after a series of data processing
techniques, the desired data can be obtained; finally, the obtained data can be input into the
AI model to classify or cluster the target topic. However, selection of the suitable sensors
is crucial. There are many sensors in the world, including accelerometers, microphones,
thermocouples, proximity sensors, acoustic emission sensors, pressure sensors, gas sensors,
and position sensors. Use of an excessive number of sensors can increase cost and decrease
the performance of the system, whereas using a few important sensors on the tool machine
can increase their contribution by adopting features, reducing the cost incurred during
sensor installation, model computing, and research. In addition, it would improve the
robustness and performance of the system. However, this is a chicken-and-egg conundrum;
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that is, it is not feasible to clearly judge the suitability of the sensors before installation.
Except for the domain knowledge required, the selection of sensors is usually done by
sensitivity analysis after acquiring the relevant data, and even the selection of time-domain
or frequency-domain features in the sensors. Over the past few decades, statistical methods
including Pearson, Spearman, and ANOVA (analysis of variance) correlation coefficient
analyses have been commonly used. Moreover, the algorithms in tree family, namely
the decision tree, isolation forest, gradient boosting decision tree, and the light gradient
boosting machine, have recently been used to compute the feature contribution of data.
However, finding the importance of each feature in a neural network model, which is
commonly known as a black box, poses a considerable problem. Fortunately, a technique
known as Shapley Additive ExPlanations (SHAP) has been proposed to overcome this
challenge [14]. The solid theoretical foundation of SHAP can explain any models from
tree or neural networks, irrespective of whether the learning model is shallow or deep
learning. Therefore, in this study, we compared two traditional analysis methods with
SHAP to determine the importance of the features of five different sensors. With the AI
models explained, the suitable sensor for reduction of the above cost and improvement
of the performance of the system can be determined. The traditional Shapley value has
been used for feature selection as early as 2005 [15] and for sensor selection in 2009 [16],
but it has not been applied to the field of wear prediction. Until SHAP was invented, some
scholars, such as Wang [16], applied SHAP to elucidate the contribution of each feature in
the model, except for the intelligent manufacturing domain.

The sensor systems used for monitoring tool wear condition are dynamometers,
accelerometers, acoustic emission sensors, current and power sensors, image sensors,
and other sensors. Using the processed data obtained from the sensor, the following
algorithms are among the most referred methods of deep learning in recent years: Deep
multilayer perceptron (DMLP), long-short-term memory (LSTM), convolutional neural
network (CNN), and deep reinforcement learning (DRL) [17].

Weili [18] in 2020 designed a nonlinear regression model to predict tool wear based on
a new input vector. This method is validated on both NASA Ames milling data set and
the 2010 PHM Data Challenge data set. Results show the outstanding performance of the
hybrid information model in tool wear prediction, especially when the experiments are
conducted under various operating conditions.

However, Serin used a genetic algorithm for feature selection, which is a type of opti-
mization algorithm that requires various parameters for tuning, and Weili used empirical
rules for feature extraction. Furthermore, neither Serin nor Weili focused on the hyperpa-
rameter tuning of the model. It is important to understand that AI modeling must adhere
to the garbage in garbage out principle. Both the feature selection and the hyperparameters
of the model will affect the final model performance. In this study, we propose solutions
for these two cases.

The current problem is that if a new problem domain is applied with machine learning
and deep learning, we have to consider what kind of framework to use at first. After all,
deep learning is very sensitive to many different hyperparameters, such as optimizers. The
choice of algorithm may even require setting 20 to 50 parameter settings to train a model
system with good performance.

Moreover, in addition to the abovementioned feature selection problem, the tuning
of hyperparameters is another topic of significance. AutoML seeks to automatically com-
pose and parametrize machine learning algorithms to maximize a given metric, such as
predictive accuracy [19–24]. The available algorithms are typically related either to pre-
processing (feature selection, transformation, imputation, etc.) or to the core functionality
(classification, regression, ranking, etc.)

In the past, empirical rules have been used to improve the robustness of the models
by gradually adjusting the hyperparameters with experienced AI modeling researchers
to reduce the occurrence of underfitting and overfitting. Later on, optimization methods
such as Simulated Annealing, Particle Swarm Optimization, and Genetic Algorithm were
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gradually used for the field of Hyperparameter Optimization (HPO), until 2011, when
scholars such as James Bergstra [25] successfully applied the Bayesian optimization method
for treed Parzen estimators to achieve a bright performance, followed by Frank Hutter [26]
in 2011, and Kevin Swersky [27] in 2013 for searching kernel functions.

In this study, the new cloud-based TCM system is established by using the LSTM
model for non-indirect milling cutter monitoring, and the service will eventually propose
a recommended optimized hyperparameter and show the improvement in the model
performance. In the newly proposed cloud services, users could operate with an interactive
and visualized cloud service user interface to tune hyperparameters via a web browser, and
the AI model optimization process will be carried out fully automatically by integrating
container management and Kubernetes in high-speed computers.

2. Experimental Setup

In this study, an experiment was conducted to analyze the contribution of five different
sensors in an intelligent milling machine. As illustrated in Figure 1, the experimental setup
consisted of two accelerometers, one condense microphone (not visible in the figure), and
one thermocouple installed on the rotating table of a Hardinge VMC 1000 II milling machine;
simultaneously, the spindle load was acquired by the NI’s data acquisition module. Since a
hydrostatic worktable was installed on the milling machine, the temperature of oil in the
worktable was also considered.
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Figure 1. Sensors installed on Hardinge VMC 1000 II milling machine.

The experiment was performed using a Hardinge computer numerical control (CNC)
milling machine. The workpiece material was SUS 304 stainless steel, and a JSK 4 tooth
carbide end mill milling cutter of straight-line slot milling type was used. The workpiece
was processed until each cutter was rendered unusable, and the wear and tear of the tools
along with the signals of the five sensors were recorded. The suitability of the sensors
was examined based on the assumption that a tool condition monitoring system would be
developed using this intelligent tool machine.



Processes 2022, 10, 862 4 of 14

To increase the variance of the system, four commonly used cutting parameters were
used in the manufacturing processes. Table 1 provides the experimental conditions of
each tool order before the cutter was rendered unusable; namely, spindle speed, feed rate,
cutting depth, and milling times. Moreover, each cut was recorded with Charge Coupled
Device (CCD) photos and the real wear was calculated. We obtained 22, 30, 35, and 75
data points from each cutting condition. The information of specifications and installation
location of the sensors is shown in Table 2, and the milling path is shown in Figure 2.

Table 1. Experimental Cutting Parameters.

Tool Number Spindle Speed
(rpm)

Feed Rate
(mm/min) Depth (mm) Number of

Path

1 800 40 0.3 33
2 600 20 0.3 20
3 400 20 0.3 35
4 800 20 0.3 75

Table 2. Sensor Information.

Sensor Frequency Range Install Location

Accelerometer 0–8 kHz Spindle
Accelerometer 0–8 kHz Worktable

Condense Microphone 0–20 kHz Spindle
Thermocouple 1 Hz Worktable
Spindle load 24 Hz -
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Figure 2. Milling Path Illustration.

In the full groove milling workpiece, the tool just entering the workpiece generated
unstable signal; in the feed rate and path calculation, milling A is the near tool contact
point and D is the exit point; a 10 s signal window is set to capture the stable signal
during milling, as shown in Figure 3. The total sensor and the effective feature index of
each direction are obtained using wavelet conversion, RMS, SE, Kurtosis, Skewness, and
inverse spectrum.
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3. Sensors and Features Selection System

In this section, we introduce the selection techniques used in the past and the selection
techniques proposed in this study by implementing the SHAP algorithm.

3.1. Methodology

In this study, two traditional correlation coefficient methods, namely the Pearson
(linear) correlation and the Spearman (nonlinear) correlation, along with a method to
explain the individual predictions of models, namely Shapley Additive ExPlanations
(SHAP) method, were applied to calculate the contribution of the features of each sensor.

We acquired a total of 162 data points using the five sensors in the milling machine, as
shown in Table 1, and transformed them into a frequency domain using the Fourier fast
transform (FFT). Thereafter, the algorithms provided the respective contributions of the
signals in the system from the frequency domain.

3.1.1. Correlation Coefficient

Pearson’s correlation coefficient r is a statistical variable used to evaluate the linear
correlation between two datasets, whereas Spearman’s rank correlation coefficient ρ is a
similar statistical variable for evaluating the nonlinear correlation between two datasets.

To rephrase, Pearson’s correlation r is the covariance of the two variables divided by
the product of their standard deviations, and it is expressed as

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

, (1)
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where n is the sample size; xi and yi are the individual sample points; x = 1
n ∑n

i=1 xi; and y
is analogous to x.

Spearman’s correlation ρ is defined as the Pearson correlation coefficient between the
rank variables and can be expressed as

ρxy =
∑i(xi − x)(yi − y)√

∑i(xi − x)2
√

∑i(yi − y)2
, (2)

where xi and yi are the individual ranks data; and x and y are the means of x and
y, respectively.

Depending on whether the correlation r or ρ is greater than 0.7, between 0.7 and 0.4, or
less than 0.4, it is considered as highly correlated, moderately correlated, or modestly corre-
lated, respectively. In general, highly or moderately correlated features are significantly
more favorable than modestly correlated features.

3.1.2. Shapley Additive ExPlanations (SHAP)

SHAP, which was proposed by Lundberg and Lee [14], is a method used to explain
the individual predictions of AI models. SHAP is based on the theoretically optimal game
Shapley values. Therefore, it is assumed that n is the sample size, m is the feature size, xi
is the individual sample points indexed with i, and xi,j is the individual feature indexed
with j. Therefore, when the prediction value and the base line of this model are yi and ybase,
respectively, the SHAP value f (x) will be in accordance with the formula below:

yi = ybase + f (xi,1) + f (xi,2) + . . . + f (xi,k) , (3)

As a result, if the SHAP value f
(

xi,j
)
> 0, the feature has a positive impact on the

prediction value of the system. In contrast, if the SHAP value f
(
xi,j
)
< 0, the feature would

have a negative impact on the system, thus decreasing the performance and robustness of
the system. Therefore, the SHAP method can determine the efficient and invalid features
as well as obtain information regarding the harmful features.

3.2. Results

To evaluate the contribution of the correlation coefficient methods, the FFT data were
divided into bandwidths of 0.1 Hz. As such, the number of features can be improved to
improve the system robustness. Table 3 presents the analysis results of the Pearson and
Spearman correlation coefficients, denoted by r and ρ, respectively. As per the table, the
accelerometer on the spindle offers the highest contribution (much larger than others) in
this tool condition monitoring system, followed by the accelerometer on the worktable
and the microphone, whereas the thermocouple and spindle load signals have a negligible
impact on the system.

Table 3. Feature number of analysis results of Pearson and Spearman correlation coefficient.

Sensor Highly Correlated
r > 0.7

Moderately Correlated
0.7 > r > 0.4

Highly Correlated
ρ > 0.7

Accelerometer on
worktable 1651 1703 0

Accelerometer on
spindle 12,544 32,549 1002

Condense
microphone 1380 1075 0

Thermocouple 1 0 0
Spindle load 1 0 0
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Owing to the high calculation time cost of the SHAP algorithm, the FFT data were di-
vided based on a bandwidth of 100 Hz in the vibration and sound signals and a bandwidth
of 4 Hz in the thermocouple and spindle load signals. Figure 4 illustrates the SHAP sum
values of each feature for each signal. The vibration signal on the worktable had the largest
number of peaks approaching the 0.1 SHAP value; therefore, it was the most sensitive
to this system. In addition, the vibration signal and sound also comprised a few peaks;
therefore, these two signals had some impact in the system, even though they did not have
a discernible vibration signal on the worktable. Moreover, the thermocouple and spindle
load signals had an analysis result of zero SHAP value, signifying no impact in this system.

Processes 2022, 10, x FOR PEER REVIEW 7 of 14 
 

 

largest number of peaks approaching the 0.1 SHAP value; therefore, it was the most sen-
sitive to this system. In addition, the vibration signal and sound also comprised a few 
peaks; therefore, these two signals had some impact in the system, even though they did 
not have a discernible vibration signal on the worktable. Moreover, the thermocouple and 
spindle load signals had an analysis result of zero SHAP value, signifying no impact in 
this system. 

 
Figure 4. SHAP sum values of signal of each feature. 

After calculating the SHAP value of each signal, the feature importance scatter and 
bar plots were constructed. These figures help us understand the details of the intuitive 
relationship between the features and SHAP values. Based on the results illustrated in 
Figures 5 and 6, the features of the worktable vibration signals below 1000 Hz had the 
highest impact on this system. In addition, the spindle vibration signal at 2850 Hz and 
sound at 1050 Hz had a significant impact. However, if there is a rich variance in these 
high-impact features, they may not have a positive influence on the system. 

Figure 4. SHAP sum values of signal of each feature.

After calculating the SHAP value of each signal, the feature importance scatter and
bar plots were constructed. These figures help us understand the details of the intuitive
relationship between the features and SHAP values. Based on the results illustrated in
Figures 5 and 6, the features of the worktable vibration signals below 1000 Hz had the
highest impact on this system. In addition, the spindle vibration signal at 2850 Hz and
sound at 1050 Hz had a significant impact. However, if there is a rich variance in these
high-impact features, they may not have a positive influence on the system.

As demonstrated in Table 4, we determined the largest and smallest items of the SHAP
sum value. As per the table, the worktable vibration signals below 1000 Hz were found
to have the smallest negative SHAP value, which could lower the performance of this
system. Based on the largest SHAP values and their indices, the spindle vibration signals
at 2850 Hz and sound at 1050 Hz attained the third and tenth place, respectively, in terms
of impact on the system.
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Table 4. Table of SHAP sum value with largest and smallest 15 items.

Features Largest
SHAP Value Features Smallest

SHAP Value

table 3250 Hz 0.1 table 150 Hz −0.56
table 1450 Hz 0.09 table 250 Hz −0.46

spindle 2850 Hz 0.09 table 350 Hz −0.26
table 4150 Hz 0.07 table 50 Hz −0.24
table 5750 Hz 0.07 table 750 Hz −0.08
table 450 Hz 0.06 table 850 Hz −0.06
table 650 Hz 0.05 table 1050 Hz −0.05
table 2050 Hz 0.05 table 1250 Hz −0.05
table 3650 Hz 0.05 table 1550 Hz −0.05
mic 1050 Hz 0.05 table 3750 Hz −0.05

table 3150 Hz 0.04 mic 250 Hz −0.05
table 6350 Hz 0.04 mic 4950 Hz −0.05
table 550 Hz 0.03 table 2450 Hz −0.04
table 1650 Hz 0.03 table 6050 Hz −0.04

4. Hyperparameters Optimization with Tree-Structured Parzen Estimator (TPE)

In this chapter, we will introduce our proposed online cloud service system of auto-
mated HPO that integrates the NNI module of Microsoft and the TPE resources.

4.1. Methodology

Methodology includes TPE and interactive cloud service integration. In Bayesian
optimization (BO), we can obtain a posteriori probabilistic description of the objective
function and, thus, obtain the expected mean and variance of each hyperparameter at each
point using the Gaussian process regression. The mean value represents the final desired
effect at this point (exploiting); moreover, the larger the mean value, the-larger the indicated
final desired value of the model. The variance indicates the uncertainty of the effect at this
point (exploration), and the larger the variance, the higher the indicated exploration value
at this point.

Based on the BO theorem mentioned above, the Gaussian mixing model and the
concept of Parzen tree structure, the Hyperopt, are introduced to form the TPE algorithm,
which increases its performance in high-dimensional space compared to the BO algorithm.

4.2. Cloud Service of Automated HPO

Due to the convenience of grid search and random search algorithms, these are
currently the most widely used hyperparametric optimization strategies that can be used
in different domains: the number of hidden layers, number of neurons, type of activation
function, different learning rates, and batch size. In this study, we first use the milling
data of Condition 2, with the sensor signal as input and the CCD image to calculate the
wear as the curve output. At first, the LSTM model is trained for hyperparameter tuning
and the model architecture is uploaded to the cloud. During the tuning process, Neural
Network Intelligence (NNI) [8] provides a friendly visual web interface to monitor the
tuning process, and the hyperparameter ranking can be done according to the performance
metrics of the model of interest to the user or the algorithm developed by the user. The
optimized model can be downloaded, and the interface is shown in Figure 7.

The Light Gradient Boosting Machine (LightGBM) algorithm [27–29] performs auto-
matic feature filtering. Based on the histogram algorithm, the training data is traversed,
the number of discrete values of each feature is counted, and the corresponding regression
curves of the features in the data are ranked according to their mean values.

A Tree-structured Parzen Estimator (TPE) [30] is a sequential model-based optimiza-
tion method, which is based on the previous model, setting the target hyperparameters to
be optimized, establishing a hyperparameter exploration space grid, and then using loss
minimization as a criterion for optimization. The hyperparameters are the key factors that
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affect iterative learning in machine learning, and their settings have a great impact on the
training of the model, which is the most pestilent challenge. The purpose of adjusting the
hyperparameter exploration is to maintain the model performance and accelerate the speed
of model training. Table 5 shows the optimization of the three hyperparameters, such as
optimizer, learning rate, and batchsize. According to the default range of values of keras
hyperparameters, and the different combinations are determined by the TPE optimization
search strategy.
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Table 5. Search space settings.

No. Batch Size Optimizer Learning Rate

1 16 Adam 0.001
2 32 SGD 0.0001
3 128 RMSprop 0.00001
4 256 Adagrad 0.000001
5 512 Adamax

The hyperparameters are the key factors affecting the iterative learning of machine
learning, and their setting is the most troubling problem because of the great influence
on the model training. First, a set of pre-trained hyperparameters is given, and p(y|x)
is modeled directly based on the Gaussian process method to speed up the training of
the model.

4.3. Results

In Figure 8, after the 100 different combinations of hyperparameters were optimized
by TPE, the three regression model indicators of MSE, MAPE, and MAE were ranked. The
MSEs of the top three hyper parameter combinations were observed to be in the range of
1.9 × 10−3 to 2.5 × 10−3, which were not significantly different from each other; however,
they were found to be better than the results of the manually adjusted model by about 17%.
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The first three combinations of hyperparameters with the lowest loss were selected,
where MSE was in the range of 1.9 × 10−3 to 2.5 × 10−3, MAPE was in the range of 19 to
22, and MAE was in the range of 3 × 10−3 to 4.5 × 10−3. The difference between the error
indices of the first three combinations of hyperparameters is not significant, but all of them
are about 17% better than the results of manual model adjustment.

In order to verify whether the model is suitable for practical application, the model
was built and optimized using the first set of tool data as shown in Table 6 * Symbols,
and then inferred using three other sets of data with different working conditions, and
the prediction was carried out using the hyperparameter-optimized model, and good
performance was obtained.

Table 6. Results of inferencing with the Best Model (Use the Tool number 1 data as a training model).

Tool Number MSE MAPE MAE

1 * 0.000193 19.919 0.00369
2 0.000306 24.348 0.00477
3 0.000363 26.017 0.00493
4 0.000460 26.767 0.00503

Figure 9 shows the prediction results obtained with HPO progress. Although the true
values do not overlap with the predicted values, highly similar trends are observed. This
shows that the prediction results are a valuable reference and can be provided to the actual
operators of the equipment.
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5. Discussion and Conclusions

In the sensors and features selection system, the results obtained from the Pearson and
Spearman correlation coefficients indicate that the accelerometer on the spindle provided a
higher level of contribution to the system compared to other signals, whereas the contribu-
tion of oil temperature and spindle load was negligible. In addition, according to the SHAP
value and a chain of analysis, the table accelerometer was more significant than the spindle
accelerometer and microphone. However, the results from the SHAP value revealed that the
FFT signals in some bandwidth from the table accelerometer had a considerably negative
impact on the system. Although it is not possible to intuitively compare the traditional
approach with SHAP in this case, SHAP solves the issue of long-standing black box and
uses the non-linear solution using the AI model by deriving a different explanation than
the linear one.

Moreover, in the HPO part, to build a cloud-based tool condition monitoring system,
we used cloud-based techniques as well as automated hyperparameter optimization meth-
ods and investigated the performance of hyperparameter optimization on LSTM models
to predict the tool life. In this study, data from different full groove milling conditions are
subjected to the same data pre-processing. We trained the model with the second set of
conditions and the hyperparameter optimization reduced the MSE error value by 17%. In
order to verify the real performance of the model after hyperparameter optimization, infer-
ence validation was performed with other working conditions and good performance was
obtained. All the details regarding this development are on the cloud, and will be applied
to the production line in the future to reduce the time spent on hyper parameter tuning.

In summary, the proposed sensors and features selection system could solve the issue
of black box of AI and select the sensors and features by AI models, and the proposed cloud
service with HPO could extend the HPO concept to the intelligent manufacturing area and
establish a cloud service system. In addition, the usability of these methodologies in the
research field of tool wear were also verified.

The two newly proposed solutions in this study are the first to be implemented in
the field of intelligent manufacturing. The sensors and features selection system applying
SHAP could display the contribution of each sensor or each feature with machine learning
models and help engineers to install the sensors in their suitable position avoiding the
redundant sensors. On the other hand, the newly proposed cloud-based HPO service
provides an interactive and visualized interface for automatic hyperparameter tuning and
was validated by a newly proposed cloud-based TCM system.
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