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Abstract: Proper inventory management is vital to achieving sustainability within a supply chain and
is also related to a company’s cash flow through the funds represented by the inventory. Therefore, it
is necessary to balance excess inventory and insufficient inventory. However, this can be difficult
to achieve in the presence of stochastic demand because decisions must be made in an uncertain
environment and the inventory policy bears risks associated with each decision. This study reports
an extension of the single-period model for the inventory problem under uncertain demand. We
proposed incorporating a Gaussian stochastic process into the model using the associated posterior
distribution of the Gaussian process as a distribution for the demand. This enables the modeling of
data from historical inventory demand using the Gaussian process theory, which adapts well to small
datasets and provides measurements of the risks associated with the predictions made. Thus, unlike
other works that assume that demand follows an autoregressive or Brownian motion model, among
others, our approach enables adaptability to different complex forms of demand trends over time.
We offer several numerical examples that explore aspects of the proposed approach and compare our
results with those achieved using other state-of-the-art methods.

Keywords: single-period problem; probabilistic; Gaussian process

1. Introduction

The management of supply chain inventory is crucial to achieving sustainability and
is related to a company’s cash flow through the funds represented by the inventory. Excess
inventory is generally a symptom of bad managerial practices and can lead to several
problems, such as higher storage costs, inventory obsolescence, and the need for more floor
space. Conversely, insufficient inventory can increase the probability of unfulfilled demand,
costing a company its clients and business reputation. Therefore, when a company’s
inventory model prompts orders inaccurately, the company is left with more inventory
than needed to meet market demand. In addition, market demand might decrease after
the inventory has been supplied. This phenomenon affects companies with perishable
inventories of finished goods. Inventories of perishable goods are commonly managed
using single-period inventory control; thus, this is known as the single-period problem
(SPP) or the “news vendor” problem [1]. Here, we are interested in controlling the inventory
of a single item with a stochastic demand model over a single period.

A review of the state of the art regarding SPP shows that much of the research on
the topic is related to demand models that do not satisfy the assumptions of a specific
probability distribution with known parameters. Factors that make it difficult to accurately
characterize demand include limited and unreliable historical data and lack of such data.
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In this regard, Ref. [2] identified two research lines: the first relies on known demand
distribution with unknown parameters, and the second relates to scenarios in which partial
information regarding demand distribution, such as some parameters, is available, but the
form of the distribution is unknown. Here, we consider the latter research line. Along this
line, the work [3] considered a single-period and single-item problem when the demand
was assumed to be Markov-modulated. Under this circumstance, they proposed estimating
the demand parameters using the earlier result achieved by [4], assuming that for stationary
demand with sufficiently high intensity of the arrival process and an extensive duration
period, the demand could be considered a normal random variable. Therefore, they could
estimate the mean and variance of the number of arrivals during the period. One limiting
aspect of this approach is the necessity of having a large sample of historical data to
approximate the model parameters.

In another approach [5], the authors proposed a new distributionally robust fuzzy
optimization method for the SPP. They characterized the uncertain market demand using a
generalized parametric interval-valued possibility distribution. In [6], the authors investi-
gated the SPP using the uncertainty theory [7]. Under this scheme, demand was assumed
to be an uncertain variable, and two identification functions of demand were proposed to
determine the optimal order quantity that maximizes the expected profit. The uncertainty
in their model can be subjective, proposing the use of experts when there are few historical
records. In [8], the authors proposed and integrated a decision model that determines the
optimal quantities of a single-period product with fuzzy logic. To solve the model, they
used a genetic algorithm with a dynamically adaptive penalty. Concerning prediction of
demand, in [9], the authors proposed using past demand information and information
on characteristics that could be relevant. In this way, and using a linear programming
algorithm, the optimal order quantity was learned. This method was based on minimizing
the empirical risk. The authors demonstrated their algorithm in relation to nurse staffing in
a hospital emergency operating room using two features, the number and type of cases, to
predict the required operating room time. This machine-learning approach of incorporating
additional features of information has been employed by several other authors [10,11]. For
example, in [12], the authors used large data sets to investigate solution methods based
on machine learning and quantile regression models to make decisions under the news
vendor method.

In the present work, we are interested in the single-period inventory problem in which
the distribution of market demand is uncertain. From the literature review, historical
data were used to estimate demand behavior; therefore, in this work, we propose using
these historical data to characterize demand using the Gaussian process (GP) regression
model [13]. Next, we propose using the predictive GP probabilities as the data distribution
and incorporate said distribution into the SPP model, similar to [9]. The proposed model
can incorporate other attributes of the entire process rather than only information about
demand; however, that is not explored here. The main contributions of the paper can be
summarized as follows.

• We use the GP to model demand, enabling demand prediction, even if the data are
complex or there is not a large amount of historical data.

• We model the demand distribution as a posterior predictive function of the GP, en-
abling easy, clean integration with the SPP model.

• We report examples using the proposed model.

These aspects allow the proposed approach to adapt to different complex forms
of demand trends over time, unlike other works that assumed that demand follows an
autoregressive (AR) or Brownian motion model. A list of abbreviations used throughout
the article is listed in Table 1.
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Table 1. List of abbreviations.

Abbreviation Definition

AR Autoregressive process
ARMA Autoregressive moving-average
ARUS Autoregressive process based on Uncertainty Sates

GP Gaussian process
MA Moving-average

NSM Normal estimation method
SPP single-period problem

The remainder of the paper is organized as follows. Section 2 briefly introduces the
GP and provides a revision of the SPP. Section 3 explains the proposed model in detail.
Section 4 offers numerical examples, and Section 5 presents our conclusions.

2. Background
2.1. Gaussian Process

GPs are frequently employed as priors that help specify distributions over spaces of
functions and provide flexible non-parametric models whose structures can be specified by
choices regarding their main statistics. This enables the balancing of model complexity and
reconstruction errors [14]. Thus, GPs are specified by a mean function m(t) and a covariance
function k(t, t′). GPs can be denoted as GP(m(t), k(t, t′)) and provide a distribution on
functions f for which any finite samples have a joint Gaussian distribution [15], i.e., given
f ∼ GP(m(t), k(t, t′)) and a finite set of input points {tn}N

n=1 the vector ( f (t1), ..., f (tN))
has a multivariate normal distribution.

In most applications, the mean function is left constant, leaving a choice regarding
only the covariance function. This function determines several properties of functions
sampled from a GP, such as smoothness and periodicity. Generally, the covariance function
is also used to define nearness or similarity between samples, and in this way, it models
certain processes; thus, the covariance function defines the structure of the GP [13]. For
example, a commonly used covariance function is the squared exponential, defined as

k(t, t′) = exp
(
−d(t, t′)2

2l2

)
, (1)

where d denotes the Euclidean distance function, and l denotes the scale parameter. Another
example is the exponential sine-squared kernel or periodic kernel:

k(t, t′) = exp

−2 sin2
(

πd(t,t′)
p

)
l2

, (2)

where p corresponds to the periodicity of the kernel, l denotes the length scale and d is the
Euclidean distance.

From the covariance function k(t, t′), we can compute the covariance matrix K whose
entries are Ki,j = k(ti, tj); covariance matrices must be symmetric and positive semidefinite.

2.2. Single-Period Model

The single-period model’s objective function with order quantity y for a one period
random demand D can be expressed as the expected cost [16]:

E{C(y)} = Ch

∫ y

0
(y− x) fD(x)dx + Cs

∫ ∞

y
(x− y) fD(x)dx, (3)

where C(y) is the cost, Ch is the holding cost per held unit during the period, Cs is the
penalty cost per shortage unit in the period, fD(·) is the pdf of the demand, and E{·} is
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the expectation value. Please note that there exist other equivalent forms and extensions
for (3) [17,18]. Here, we assumed that the demand occurs instantaneously when the period
starts and that there is not setup cost.

3. Research Methodology

In this section, we develop the mathematical model of our proposal. We start by
modeling demand as a GP. Then, we obtain an expression for its distribution, which we
use to evaluate the solution of the SPP. Finally, we design three experiments to test and
compare the proposed model with other models.

3.1. Demand as a Gaussian Process

In this section, demand is modeled as a GP, from which we can obtain an expression for
the demand distribution. In Equation (3), the desired stochastic behavior is determined by
the pdf represented by fD(·). Then y is selected according to a probable value of demand,
which is used to estimate the expected value of the chosen distribution. We propose to
model the distribution of demand D as a GP posterior:

z = D(t) + η, η ∼ N (0, σn) (4)

where D(t) denotes a GP [13], and the noise η is assumed to be independent and identically
distributed

D(t) ∼ GP
(
m(t), k(t, t′)

)
, (5)

where m(t) and k(t, t′) are the mean and covariance function of the process, respectively.
As covariance function, any positive function k : X × X → R can be used [19]. Given a
dataset D = {(ti, zi) : ti ∈ X ⊂ R, zi ∈ R, i = 1, ..., n} of n previous observations, the
distribution function of z at tn+1 given D is called the GP posterior and is expressed as

fpost(z) = P(z|D, z, tn+1) = N (z; µpost, σpost), (6)

where z = (z1, z2, ..., zm)T and

µpost = kT(KD + œnI)−1z, (7)

σpost = k(tn+1, tn+1) + kT(KD + œnI)−1k, (8)

are the posterior mean and variance, respectively, with

k = (k(t1, tn+1), k(t2, tn+1), ..., k(tn, tn+1))
T

and
KD = (ki,j), ki,j = k(ti, tj), i, j = 1, . . . n

is an n× n covariance matrix on the dataset D.

3.2. Extension to the SPP Model

According to the development in Section 3.1, a robust forecasting method was obtained
to model the trend in demand using GPs. This forecast is summarized in the posterior
distribution of the demand process under a GP prior. By incorporating this distribution into
the SPP model, we can obtain a closed expression of the model’s solution. The proposed
model is given as follows:

E{C(y)} = Ch

∫ y

0
(y− x)N (x; µpost, σpost)dx + Cs

∫ ∞

y
(x− y)N (x; µpost, σpost)dx (9)
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where the density N (x; µpost, σpost) in (9) is the GP posterior (6), and µpost, σpost are given
by Equations (7) and (8), respectively. The optimal y∗ value that maximizes the expected
profit is now the critical fractile on Fpost, given by

y∗ = F−1
post

(
Cs

Cs + Ch

)
, (10)

with F−1
post denoting the inverse of the cumulative distribution function of the posterior den-

sity fpost(x) = N (x; µpost, σpost). The Equation (10) has the same form as other works [20,21],
but the difference is that the distribution Fpost is estimated as the posterior distribution
of a GP that can be adapted to different forms of complex demand. Unlike [20], which
assumes an AR demand process, or in [21] with fuzzy demand, in the proposed model, it is
not necessary to assume a specific distribution because using the GP formulation allows
the combination of a prior distribution over function spaces and demand data models.
This adaptability is accomplished by fitting hyperparameters that control the shape of the
GP. This is an important advantage since it is one of the main problems identified in the
literature [2,3,5].

In addition, with the incorporation of the GP prior, the resulting model is not limited to
one-dimensional time series; other series can be incorporated to estimate demand, i.e., other
behaviors related to a specific product demand can be included. Furthermore, additional
time series that have a causal relationship can be considered supplemental information, as
well as other different trends that momentarily affect the main product demand.

3.3. Numerical Examples

This section presents the design of the numerical examples to evaluate the proposed
method. We assumed different representations of the demand to observe the adaptability
of the proposed method to these settings.

3.3.1. Demand as an ARMA Process

In this experiment, the demand was modeled as an autoregressive moving-average
(ARMA) process. The results of the proposed method in this setting were compared with
the method of assuming a uniform distribution, estimating its mean and variance from
historical data. We call this the normal estimation method (NSM).

We chose an ARMA process to model the daily demand of some products [22,23]; the
AR parameters were given by (0.75, −0.25), and the moving-average (MA) parameters
were (0.65, 0.035).

The kernel of the GP used in the proposed model is a combination of the constant
kernel and the Matern kernel; their respective hyperparameters were adjusted automati-
cally using the scikit-learn software library [24]. Choosing the correct kernel for a given
application is one of the main challenges in using GP-based models. We observed the
following heuristics for our selection. The constant kernel modifies the mean of the GP so
it can adjust the process with means different from zero. The Matern kernel is a stationary
kernel and is parameterized by a length scale parameter of l. This permits adjusting the GP
to the scale of the process at hand. The Matern kernel also has an additional parameter, v,
which controls the smoothness of the resulting function to adjust to the noise level of the
process to model. The Matern kernel is given by [13]

kMatern(x, y) =
21−v

Γ(v)

(√
2vd(x, y)

l

)v

Bv

(√
2vd(x, y)

l

)
, (11)

where Γ(·) is the Gamma function, Bv is a modified Bessel function [25], and d is the Eu-
clidean distance between x and y.
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Thus, the kernel used for experiments is given by the combination of the constant and
Matern kernel:

kexp(x, y) = c +
21−v

Γ(v)

(√
2vd(x, y)

l

)v

Bv

(√
2vd(x, y)

l

)
, (12)

where c is a constant, as previously stated, and the kernel hyperparameters (constant and
Matern) were adjusted automatically by learning from data.

For the NSM, we employed uniform distribution as the pdf of the demand, which
is updated day by day based on historical data (10 days) and using a range given by
(dmin, dmax) where dmin, dmax are the minimum and maximum quantity requested in the
historical data. In the experiments we run 20 realizations of the demand model (ARMA)
consisting of 60 days.

3.3.2. Demand as an AR Process

As a second example, we considered a problem with demand modeled as an AR
process: the unit purchase price was $40, the unit sale cost was $60, holding cost per held
unit was $1.5, and a penalty cost per shortage unit was $20. We simulated 150 periods of
an AR process of order 1, with a parameter of 0.5, a constant of 300, and white noise as the
error term, with a variance of 0.1. In each period, the quantity to be ordered was estimated;
for this, the ARUS method and the proposed method were used. For both methods, it was
assumed that there was a demand history of 100 periods, so only the last 50 periods of
the simulated total were evaluated. In the estimation with the ARUS method, the exact
formula for estimation was used because it is an AR (1) process; for the proposed method,
the same kernel of the previous experiment was used.

3.3.3. Demand as Brownian Motion

As a third experiment, the adaptability of the proposed model is illustrated, and the
previous setting was again considered, but with demand modeled as a Brownian motion
as in [26]. The volatility was set to 0.25 and the drift parameter to 0.03. For the proposed
method, the same kernel was used.

4. Results

In this section, we present the experimental results, their interpretations, and the
experimental conclusions that can be drawn.

4.1. Example with ARMA

Here, we present the results of a particular realization of demand as an ARMA process.
For this realization, we evaluated the models each day; the results can be found in Figure 1a,
from which it is observed that the quantity of inventory considering the proposed model
had similar behavior to the NSM; both were close to the real demand and did not exceed it.

The estimate of surplus units is shown in Figure 1b. As can be seen in the graph, it is
clear that in using the NSM method, there was an excess of inventory with respect to the
proposed method, with a peak of almost 100 units more on day 23.

Figure 1c shows the number of shortage units during the period simulated. Please
note that the NSM model reached several peaks, e.g., on days 11 and 57, where it exceeded
the proposed method by more than 80 shortage units. This is a significant difference if
associated costs are considered.

Figure 1d shows box plots to indicate the concentration levels of the inventory in both
models and perform the analysis to conclude on the matter. It can be observed that for the
proposed model, the inventory quantities had less dispersion than the NSM model, and the
levels were on average lower than 100 units, approximately. This means that according to
the behavior over time, the estimate of the inventory quantity in 50% of the considered time
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was close to the value of 100, while in the NSM model, this was exceeded and presented
greater dispersion.

(a) (b)

(c) (d)

Figure 1. (a) Optimal value of the order quantity over time, as determined by the models, (b) held
units on inventory, as determined by the models, (c) shortage units as determined by the models, and
(d) summary of the simulation; position of the arithmetic means are highlighted by a triangle.

4.2. Example with AR

Figure 2a shows the behavior of the demand under the AR assumption for periods
1–50. Figure 2b is a bar graph showing the behavior of the inventory using the ARUS
method, while Figure 2d shows the bar graph of the inventory using the proposed method.
From the figures, it can be seen that in general the proposed method had better performance
with a lower excess of inventory per period; however, in the lack of inventory, it reached the
maximum peak between the two methods, but in general, the performance was comparable
with that of the ARUS method. Figure 2b, shows a summary of the profit with both methods,
the profit with the proposed method had less variance and its median only slightly exceeded
that of the ARUS method; however, it should be noted that the ARUS method assumed an
AR demand while the proposed method was adaptable without assuming an AR trend.
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(a) (b)

(c) (d)

Figure 2. (a) AR process as demand, (b) profit boxplot of ARUS and proposed method, (c) ARUS
inventory, and (d) proposed method inventory.

4.3. Example with Brownian Motion

For the case where demand with Brownian movement was assumed, 150 periods were
simulated. In Figure 3a, the behavior of the demand for periods 1–50 can be observed.
Figures 3c,d show the behavior, with inventory estimates of ARUS and the proposed
method. It should be noted that the ARUS process is not optimized for this type of process
and only serves to illustrate the flexibility of the algorithm proposed for different types of
demand. For this example, the proposed method outperformed the ARUS method by a
wide margin.

(a) (b)

(c) (d)

Figure 3. (a) Brownian motion as demand, (b) profit box plot of ARUS and proposed method,
(c) ARUS inventory, and (d) proposed method inventory.
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5. Conclusions

In this work, we proposed a modification of the single-period inventory problem by
introducing the GP to model the distribution of market demand. Historical demand data
were adjusted by the GP, and the model was used to estimate the behavior of the demand.

In numerical examples used to evaluate the proposed method, we obtained fewer
excess inventory units and shortage units with respect to the classic approach of modeling
the distribution of demand as uniform. In a comparison between the ARUS and proposed
model, when assuming demand as an AR process, it was observed that although the
results in profit presented a difference of fewer than USD 300 between the two models,
with a higher profit in the proposed one, the excess inventory was much greater in the
ARUS method. This quantity is important since, depending on the demand behavior,
with the ARUS model, there would be higher levels of inventory, which represents a
significant amount of costs associated with its management. However, with the proposed
model, low inventory levels were observed, and they were observed to oscillate between
maximum quantities of 50 pieces. Therefore, it is concluded that the proposed model
is better for establishing an inventory policy in the SPP, which means better prediction
of the behavior of demand and therefore facilitating a better decision when buying the
quantities of materials required to meet said demand. Its importance lies in the fact that this
proposed method could be applied to a great diversity of products that depend on complex
demand trends, e.g., the automotive sector, where car sales increase at the end of the year,
affecting inventory needs of all materials required to assemble one. The companies could
anticipate, with their suppliers, their purchase decisions based on the behavior of demand
and save money from low levels of inventory. When demand is modeled as a Brownian
motion process, it was once again observed that the results obtained in terms of profit
saving with the proposed model were higher than with the ARUS method. Although these
results pertain to a difference of fewer than USD 250, the inventory levels were also higher
than in the proposed model. Finally, in the case in which the demand was modeled as an
ARMA process, in the same way, lower levels of inventories were obtained, from which we
concluded that by indistinctly modeling SPP demand with our model, we obtained better
demand adjustment and low inventory quantities.

The benefits and industrial implications of the proposed method of establishing inven-
tory levels include flexibility when monitoring the inventory control system due to better
prediction, improvements in short- or medium-term projections, and consequently, reduc-
tions in inventories and costs associated with their storage. Because modeling demand
accurately is a complicated task, in the industry, a common way to predict demand is to
approximate order amount estimates using past demand. In this sense, having modeling
alternatives that can estimate material requirements associated with inventory quantities
would facilitate long-term decision-making in any company, particularly because it would
anticipate changing events, therefore enabling rapid corrective action. Finally, we propose
that better demand estimates could potentially be obtained if future work were to incorpo-
rate attributes of the complete supply- chain process other than demand information.
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