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Abstract: The primary goal of business organization is optimally maximizing their productivity
and profit whilst reducing the cost resulting from lost sales and services given to their customers,
which can be achieved by exceeding the balance between the demand and supply. Analyzing
real-world situations, including integrated queuing-inventory systems, such as M/M/1-systems
and M/M/1/∞-systems, can help business organizations reach this goal. This research analyzes
integrated queuing-inventory systems with lost sales validated under a deterministic and uniformly
distributed order size scheme under continuous review. The limited integrated inventory-queuing
M/M/1/N-1-system was chosen as subject of our interest due to its closeness to reality. Thus,
this system with exponentially distributed deteriorating products and random planning time with
lost sales was simulated. This research aimed to analyze customers’ sanctification by studying the
addition of the deterioration parameter γ to the model under consideration. The proposed model’s
demand was based on Poisson, wherein service times and lead times are exponentially distributed.
We also examined M/M/1/∞ and M/M/1/N-1-systems investigated by Shwarz et al. using the
proposed method to solve the linear system of equations obtained from the steady-state system
balance equations results obtained are compared to those obtained from simulating the Schwarz
approach. The analyzed model was tested for different values of Q, demand rate λ, and γ. The
obtained results showed a strong dependency between γ, Q, and λ, providing the needed information
for decision-makers to reach their goals depending on the performance measure of interest.

Keywords: stochastic systems; non-linear review; random preparation time; queuing models; steady-
state distribution

1. Introduction

Understanding and evaluating the dynamic relationships between demand and supply
in a supply chain are the most critical aspects of optimizing a company’s efficiency and
profitability [1]. The main goal of every business organization is to balance the demand
and supply to reduce the organizational costs produced from lost sales or services given to
their customers. It was proven that the inventory control is cost-effective when identifying
the trade-off between demand and supply. Inventory control has received much attention
in the previous literature as its importance arises from maintaining an accurate inventory
level that decreases the cost for every organization [2]. Devising frameworks to reduce the
inventory cost and satisfy the customers’ needs is a problem often faced by organizations.
Efficient and reliable mathematical models are significant in guaranteeing the success of
any inventory management.

Most material resources management systems (MRM) simultaneously possess proper-
ties of waiting for line systems and inventory management systems. Their service channel
is linked to a system stock, and a level of resources in stock decreases just as the customer
service is being completed, which is why these factors should be considered for studying
such systems.
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Dealing with inventory management systems can be difficult because they involve
many interconnected components that are all different in structure [3]. These interacting
components are represented as a supply chain network through upstream and downstream
linkages, in which suppliers and the mechanisms for maintaining relationships with them
are included in the upstream part of the supply chain. The organizations and processes
responsible for selling and supplying goods to final customers are found in the downstream
section, which can be described as a network of organizations involved in various processes
and activities that generate value as products and services to the end customer [4].

In general, good inventory policy positively or negatively impacts supply chain
performance. If inventory policies are not well chosen, companies will be charged high
costs. Therefore, many companies want to determine the most appropriate inventory
policy. In inventory models, the majority of the literature includes different assumptions
such as stochastic demand, reduced lead time, product quality, and deterioration rate [5].
Product predictability is a critical aspect of the inventory policy, with many aspects affecting
inventory systems. Moreover, during storage, the quality of the majority of the stored
goods will worsen, and their value will decrease or be lost. Therefore, in inventory practice,
deterioration should be considered.

The manufacturing terms that are used in this article are based on the [6] definition, in
which he distinguished between make-to-order (MTO) and make-to-stock (MTS) strategies
for the distribution environment. As an example, the strategies were split into assemble-
to-order (ATO) [7], where (MTO) refers to the process of generating orders based on real
market demand and then fulfilling those orders for the specific customer who placed
the order. (MTS) is the process of designing or manufacturing products in response to
expected market demand. The ATO approach combines the MTS and MTO strategies. The
ATO approach aims to incorporate both make-to-order and make-to-stock manufacturing,
enabling goods to be efficiently delivered to consumers while still allowing them to be
customized or altered in specific ways based on customer requests.

This research proposes a new integrated queuing-inventory model with the appropri-
ate mathematical distribution applicable in real-life situations by studying and adding the
deterioration parameter on many performance measures. This obtains the solution to the
replenishment problem with optimal cost. More specifically, the study investigates queuing-
inventory systems with deteriorating items that are more popular and realistic [8–10].

The main focus of this research is customer satisfaction to operate the inventory system.
Most models deal with the cost to determine the optimal policy. This research informs
supply chain managers how much to order based on increasing customer satisfaction
with the service, including by reducing the waiting time for the actual possession of their
demand under deterioration. The random time deterioration aspect in the model makes it
difficult for supply chain managers to determine the replenishment policy to ensure a high
level of customer satisfaction. Thus, the supply chain manager starts by setting the minor
level of customer satisfaction that the company can tolerate; then, the model provides the
performance measure that takes this effect into account and the supply chain manager can
then alter the value of the reorder quantity until they reach the desired level. Furthermore,
supply chain managers may use the performance measures presented in the proposed
model to obtain the best order quantity that makes the average waiting time less than a
preset value. From a different angle, we may use the performance measures presented in
the model to obtain the best order quantity—the number of customers waiting for their
orders in less than a preset value for the average number of customers waiting for their
orders to be fulfilled.

Furthermore, a pilot study of an integrated limited queuing-inventory system was
investigated and studied after adding an exponentially distributed deterioration parameter.
The simulated model is used to study the model’s behavior as a birth-and-death process.
Developing a new stochastic model for this integrated model with deteriorating items
enables studying the probabilistic behavior of the model by analyzing system performance
measures. The obtained results are used to investigate the properties of queuing-inventory



Processes 2022, 10, 781 3 of 22

models in the real world with deteriorating items using stochastic parameters. Evaluating
the resulting queuing-inventory model with deteriorating items using simulation after
validation could be used to make a reliable vision of related real-world problems.

The distributions used in modeling and simulating the performance analysis are used
to calculate and analyze the performance measurements of relevant systems. Our research
in the previous literature revealed that classical performance measures such as queue
length and waiting for time influence inventory management and vice versa [11,12]. This
answers questions such as how the stock management reacts to the queuing of requests
and customers due to integrated services. Appropriate performance descriptions for the
proposed mathematical model are used to integrate the interaction of queuing for service
and stock control. Furthermore, we introduce new explicit performance measures for
service systems with continuously reviewed lost sales, deteriorating items, availability, and
inventory service grades to directly optimize costs in an integrated model.

The structure of this article is organized as Section 1 contains an overview of general
inventory issues and the research subject of inventory and objectives. Section 2 covered
the emergence of inventory-queuing model principles and a brief history of replenishment
policies found in the literature. In Section 3, we present the standard assumptions for inte-
grated queuing-inventory systems. In contrast, Section 4 discusses a proposed integrated
inventory-queuing system with deterioration parameters and the impact of introducing the
new parameter to a restricted queuing-inventory model. Conclusions and future studies
are presented in Section 5.

2. Related Work

Recently, as business activities grow, there has been a need to organize these activities
to reduce corporate costs; thus, operational research methods have been developed and
contributed with new modern information technology. One important branch of operations
research is inventory management theory. Inventory management is a significant way of
optimizing logistic activities.

2.1. Inventory Models with Deterioration

The theory of inventory management was first introduced in the 1960s. Early examples
include [13–16], in addition to [17] who published the abstracts of papers related to the
subject from 1953 to 1965. On the other hand, many papers have been published, indicating
that deterioration is the action or process of becoming impaired or inferior in quality,
functioning, or condition, as a new parameter under study [18]. As an example, in [19], a
production lot size model was developed for an inventory system with deteriorating items.
The lot size refers to an item ordered for delivery on a specific date or manufactured in a
single production run. This study took into account both the varying and constant rates of
deterioration. Since it seems difficult to obtain a simple expression for the output lot size in
the case of a varying rate, a numerical approach has been proposed. An approximate term
for the production lot size was extracted for the constant rate of the deterioration situation.
A numerical illustration was solved to demonstrate the effect of deterioration.

A competitive environment arises from frequent economic changes and the intensive
networking of supply chain relationships [20]. The concept of supply chain management
first appeared in the mid-1990s [21]. Entering these supply chains by companies has been a
routine resulting from the market and conditions of such companies. The latest technologies
for quick information and data interchange between customers and suppliers have been
considered for developing a new model to reduce organizational costs. According to the
literature, aspects of supply management, such as exchanging knowledge, are the driving
factors ensuring higher competition in the market and a wider variety of activities in the
market for both firms and whole chains, according to researchers such as [22].

Later, two mathematical models were developed for an inventory system by Hol-
lier [23], in which the units are deteriorating at a constant rate, and the demand rate
negatively and exponentially decreases. Hollier believed that replenishment orders are
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placed at similar intervals in the first model, whereas in the second model, replenishment
periods are variable, so there is no need to regularly issue replenishment orders. In both
cases, optimal replenishment policies are calculated. Hollier demonstrated the theory
with a numerical example. According to the presented computational results, the constant
replenishment duration strategy contributes to a higher total cost.

Manda [24] also developed an order-level inventory model for declining goods with
the standardized rate of production and stock-dependent demand. He found shortages
reasonable in his article, and excess demand is backlogged. For further illustration, the
results are accompanied by numerical examples. Raafat [18] provided a complete and up-
to-date survey of published inventory literature for the deteriorating (decaying) inventory
models according to the literature. More precisely, some of his articles that recognize the
impact of degradation as a function of inventory level on-hand are discussed. Various
models’ essential features, extensions, and generalizations as well as a classification scheme
and research ideas for the future are discussed.

In addition, a deterministic inventory model was created in [25] wherein the demand
is determined by price and the cost of holding inventories is determined on time. The
analysis of the deterioration rate and holding costs, as time depends on time and the
demand rate depends on the selling price, is a generic policy for deteriorated products.
Methods of maximizing profit functions have been used. There may be scarcity, which
refers to the idea that we have finite resources and cannot satisfy infinite demand with a
backlog that, for example, refers to a stack of financial documents such as loan applications,
that need to be handled by a company’s sales department. It is well known that, according
to the profit maximization rule, if a company wants to maximize income, it should select a
production level where the marginal cost (MC) equals the marginal revenue (MR) and the
marginal cost curve is increasing.

The authors in [26] published a regular review of deterministic inventory models for
items that are deteriorating. The exponential demand rate is taken into account. The model
they present was developed based on the constant rate of item deterioration due to scarcity
and demand being partially retroactive. The objective of their research was to determine the
optimum order time by reducing inventory costs. Their model was numerically illustrated
and the percentage changes also led to the sensitivity analysis.

2.2. Replenishment Policies

It was noticed in the literature that there are three continuous review replenishment
policies considered in many studies, explained as follows: (0, Q)-policy, the optimal replen-
ishment policy, in which a fixed order size Q < ∞ raw items are ordered and replenished
whenever the inventory is empty, and order size is restricted only to the inventory capac-
ity; (r, Q)-policy, in which whenever the on-hand inventory falls to r ≥ 0 recorder point,
fixed-size Q < ∞ raw items are ordered and replenished. It is assumed that r < Q and
the maximum inventory capacity in this policy is considered to be Q + r items, and there
is at most one outstanding order. Note that this policy ensures that there is no perpetual
shortage when a material is no longer in use, as the resource will become perpetual if it
was not already perpetual, and when the material is almost entirely out of use, the resource
can become a paleo resource (e.g., resources of arrowhead-grade flint). In the (r, S)-policy,
whenever the on-hand inventory falls to the r ≥ 0 recorder point, the size of the raw
items ordered and replenished is considered to be S < ∞ with at most one outstanding
(r < S) order. Many studies discussed further advantages, drawbacks, and examples of
these policies. The paper entitled flexible service policies for Markov’s two-class inventory
system was published in [27]. Their study looks at flexible service policies for a Markov
inventory system (r, Q) with two customer classes, ordinary and priority customers. When
the inventory falls to a predetermined safety level r, ordinary customers arrive with a prob-
ability of receiving p service. First, they set up the state transition equation of the inventory
level and derive the distribution of steady-state probability and the system performance
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measures used for inventory control. Once it is established, a long-term average cost of
inventories and a mixed-integer optimization model are established.

Furthermore, for optimum control policies, they presented an improved genetic al-
gorithm. Finally, they studied optimal stock control policies and sensitivities through
numerical experiments. In another paper, ref. [28] derived stationary distributions in
explicit product form for various M/M/1 systems with continuous review inventory and
various inventory management policies and with the loss of sales. They thought that
demand was Poisson, and service times and lead times were exponentially distributed.
The distributions presented by the respective systems are used to calculate performance
measures. The critical outcome is that the limits in the queue-length processes are the same
as those for the classic M/M/1/∞-system in the infinite waiting room.

2.3. Integrated Queuing-Inventory Models

In the last decade, considerable attention has been paid to research into integrated
distribution inventory systems or service inventory systems. Models of integrated queuing
inventory and detailed analysis have only recently started. The standard approach is to
define a Markovian system process and then use standard methods for optimizing stock
control strategies, which are nearly optimal. Many studies over the previous decade have
shown the development of integrated queuing inventory models such as the survey, [10,29].
Ref. [30] was the first study carried out in the queuing inventory. Their research attempted
to find a description with a limited inventory of approximate performance for the M/G/1
queue.

The authors in [31] examined the queuing inventory systems with arrivals from
Poisson, exponentially distributed service times, and a zero lead time in backorders, which
is an order for a product or service that cannot be immediately fulfilled due to a supply
shortage. According to their research, the optimal regeneration strategy does not position
an order when the level is positive; it only places an order when the inventory level drops
to zero and the queue duration reaches a threshold value. The first example is when the
customer thought they was lost when they reached the full final queue of waiting. In [32],
the authors found a monotonic threshold structure in the optimal ordering policy. Their
study found queue leveraged and average costs were reduced by an optimal policy in which
the order-size Q is known. Their foundation was extended to include an endless waiting
room with their previous study and permitted an exponential or Erlang lead time for a
recharge. Moreover, in a new extensive article [33], a new model was presented with an
optimal refill policy to maximize the system profit assuming that the income was generated
through the service. Some of the contributions in this regard are as follows: ref. [30], which
has been heuristic in finding model performance measures that integrate the queuing
interaction for services and inventory control in a sequence of articles. Berman defined
the description of the Markov process for different systems, and his co-authors [31–34]
used the classical optimization methods to find optimal inventory control strategies. The
built-in literature models combine single-server queuing and an affiliated inventory. These
models assume that the demand, which arrives when the inventory is depleted, is back-
ordered. In [31–35], the models presented vary in terms of delivery time, time distribution,
size of the waiting space, order size, and reorder policy. The authors in [28] investigated
the M/M/1/∞ servers with attached inventory in lost sales. When the customers come
into a situation where the inventory is depleted, the lost sales regime loses them. It was
shown that stationary distribution is a product form in the case of exponentially distributed
replenishment lead time for various inventory management policies.

Moreover, it is shown in [28] that a server with an attached inventory can be integrated
into standard separable networks if no customers are allowed to join this server’s queue
while the inventory is empty. The equilibrium probabilities for these systems were analyti-
cally calculated, with explicit formulas for the equilibrium and asymptotic average costs
and revenues given. The authors in [31] assumed exponentially distributed interarrival
and service times and zero replenishment lead time. The optimal policy for a given order
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size Q is to position an order when the inventory is empty, and the queue length reaches
a particular threshold value. One can expect that an order should already be placed in
the case of random lead times if some items are still in stock. This is made precise in [32]
for exponential replenishment lead times. The optimal policy for prescribed order size
Q is to place an order when the queue length exceeds some threshold value given the
inventory level.

Recently, [36] presented a paper about the integration of the corporate inventory under
continuous demand. His study depends on queuing theory and inventory theory to analyze
enterprise goods’ production rate, the production cycle and shipping rates. Moreover, he
constructed an integration model on the corporate inventory under continuous demand;
on this basis, he considered and used the AnyLogic simulation platform to analyze the
integration model. The simulation results showed that AnyLogic is essential for integrating
enterprise inventory resources.

3. Material and Methods
3.1. Queuing Inventory Models

Inventory theory’s lost sales and the queuing theory’s lost customers are technical
words for related if not identical incidents in natural systems. The investigators’ fine
model selection determines the difference: whether stressing inventory management or
emphasizing the service structure, all cases largely ignore the alternative aspect. As
previously mentioned, models that integrate both aspects, namely customer queuing
and inventory management, are available.

Closed-form solutions are uncommon in the literature. Furthermore, the field of
continuous review inventory structures with lost sales are mainly unexplored; Mohebbi
and Posner reviewed the literature on lost sales models in their article [37].

In this section, the problem under investigation is an M/M/1 queuing system with a
service system, attached inventory under constant scrutiny, and missed sales. Detailed per-
formance metrics for service systems with an attached inventory under constant evaluation
and missed revenue were also included. In addition, availability metrics, service grades,
and inventory performance measures were provided to explicitly allow cost optimization
in an integrated model. In this issue of interest, the queuing system has a single service
queue with a single server, and single queue customers arrive in a random process at a
fixed time. With an attached inventory, single server queuing systems of the M/M/1 form
are examined.

Each served customer requires precisely one item from the inventory and a random
time to complete their service. As a result, if there are no customers in line, the inventory
demand rate is equal to the arrival rate of customers; otherwise, the demand rate is equal
to the service rate. The vector replenishment lead time—or the time between ordering
materials and receiving items—is randomly distributed.

An ongoing inventory review system is characterized as one in which the inventory
status is inspected following every application event and orders are placed when the
inventory is available. Stock which is physically on the shelf is known as on-hand stock.
The systems under examination vary in the scale of refill orders and the reorganization
procedure. Clients are not permitted to enter the queue as long as the stock is empty in any
scheme. This is similar to the lost income scenario of inventory management. However,
when the inventory is available, clients are still allowed to enter a waiting room even if the
inventory in the system exceeds the number of customers available.

3.1.1. Problem Assumptions

It was assumed that customers are of stochastically identical behavior. There is a
Poisson-λ-arrival stream to the server, λ > 0. Customers request an amount of service time
that is exponentially distributed with a rate of service µ > 0. Service times and interarrival
times constitute an independent family of random variables.
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A replenishment order is instantaneously triggered if the inventory is depleted after
a customer’s service is completed. The decision of the order size may be randomized
according to a discrete probability density function p on integers 1, 2, . . . , M, where M is
the maximal capacity of the inventory. Thus, the size of a replenishment order is k with
probability pk where ∑M

k=1 pk = 1. The corresponding discrete distribution function and its
tail distribution function will be denoted by Fp and Fp := 1− Fp, respectively. We abbreviate
the probability that the size of a replenishment order is at least k units by qk, i.e., qk = Fp =

∑M
h=k ph. The mean order size is p = ∑M

k=1 kpk. Fixed (deterministic) order quantities are
described using one-point distributions for the order size distribution. The replenishment
lead time is exponentially distributed with parameter ν > 0. Order size decisions and lead
times are independent of the arrival and service times. The manufacturing of products from
the distribution system is performed according to customer demand on a make-to-stock
(MTS) basis, in which customers can purchase and receive items at the same time, allowing
for a short response time.

The service to the customer only begins when the inventory is not depleted, and that
service is given to the customer at the head of the line by giving them exactly one item.
There are two measures to evaluate the system depending on the reaction of customers
when the inventory is depleted. The first measure is Customer satisfaction (Cs), which is
the customers who are already waiting in the queue when the inventory is empty. Note
that when the inventory is empty, customers will not be satisfied. The second measure
is lost sales, which happens when the inventory is empty, or if the number of customers
who are waiting in the queue is greater than the number of items already in the inventory.
Furthermore, new customers who reach the system will not enter the system. In general,
both measures give us an indication of Cs.

The customer satisfaction measures are based on the fact that the customer’s demand
is not fulfilled. We suggested indicators for the level of customer satisfaction by computing
two rates:

• The first-rate concerns customers who have already entered the system while the
inventory is not empty upon their arrival, but the quantity in hand deteriorated during
the waiting time and became less than what they requested, making the customer wait
longer.

• The second rate concerns the arrival of customers when the inventory is empty. In this
case, they will be blocked.

These two quantities combined measure customer satisfaction as a percentage of total
arrivals.

This study is based on Berman and Kim [31] who showed that an excellent policy
does not place an order in an exponential system of zero lead times unless the inventory is
empty and a certain amount of customers are waiting. The set of feasible policies is defined
by fixing the reorder point 0 and having random general order sizes only restricted by
inventory ability. In this category of practicable policies, using the deterministic order size
and explicit definitions of stable status behavior for the (demand/inventory) process, the
vectors process for (queue length/inventory sized) is minimized in a strongly stochastic
order. That is, the optimal (r = 0, Q) policy structure in this category is Q ∈ N+. This
observation is the reason behind the M/M/1 inventory queue investigation, wherein the
feasible policy set is prescribed by the r ≥ 0 reorder and Q deterministic order.

3.1.2. Mathematical Formulation

We consider the birth–death process, a particular case of continuous-time Markov
process where the state transitions are of only two types: “births”, which increase the state
variable by one; and “deaths”, which decrease the state one.

The integrated queuing-inventory model with lost sales considered herein is shown in
Figure 1. Furthermore, the constructed balance equations depend on the birth-and-death
process, wherein rate in = rate out. The steady-state distribution is considered, in which the
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long-run behavior of Markov chains is considered; as time approaches infinity, a Markov
chain may settle down and exhibit steady-state behavior.

Figure 1. Integrated queuing-inventory model with lost sales.

From the aforementioned assumptions made regarding the system’s stochastic nature,
the attached inventory has M item capacity. The reorder policy is used to evaluate the
randomized order policy. Let X(t) denote the number of customers present at the server
at time t ≥ 0, either waiting or in-service (queue length), and let Y(t) denote the on-
hand inventory at time t ≥ 0. Then, Z = ((X(t), Y(t)), t ≥ 0) is a continuous-time
Markov process for the M/M/1/N − 1- the system with inventory management, reorder
point 0, and the random size of replenishment orders. The state-space of Z is EZN =
(n, k) : n ∈ {0, 1, . . . , N}, 1 ≤ k ≤ M∪ (n, 0) : n ∈ {0, 1, . . . , N − 1}, since the inventory can
only be depleted after a customer has been served who took the last item from the inventory
and no customers join the queue during the replenishment lead time.

The list of variables introduced to build the balance equations and the investigated
performance metrics was given in Table 1.
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Table 1. The list of variables introduced during the building of the balance equations and the
investigated performance metrics.

Term Definition

Q The ordered quantity by the management

µ The number of customers served per unit time (the service rate)

λup The number demand arrived per unit of time (customers arrival rate)

pk The probability of the replenishment order with size k

FP The discrete distribution

Fp The tail distribution corresponding to probability p

qk The probability of the replenishment order is at least k units

υ The average lead intensities/rates

γ The average deterioration intensities/rates per unit

I The average inventory level

p The mean order size of new delivery

EZ
State space of stochastic process representing the current state of the inventory

system = {(n,k):n ∈N, k∈{0, . . . . . . ,M}}

M The maximal size of the storage space measured in units of inventory

N The maximal capacity of the number of customers in the system at any given time

n The current number of customers in the system

k The current number unites available in the system

λR The mean number of replenishments per time unit

λA The mean number of customers arriving per unit time

LS The average number of lost sales incurred per unit of time

LSc The expected number of lost sales per cycle

L0 The mean number of customers in the system

The global balance equations are given as:

π(n, M)(λ + µ(1− δ0n)) = π(n− 1, M)λ(1− δ0n) + π(n, 0)νpM,

π(n, k)(λ + µ(1− δ0n)) = π(n− 1, k)λ(1− δ0n) + π(n + 1, k + 1)µ

+ π(n, 0)νpk, M > k ≥ 1,

π(n, 0)ν = π(n + 1, 1)µ.

Let δij be an indicator variable that takes the value 1 when (i = j) and takes the value 0
otherwise. Thus, for the queueing systems, the departure rate is µ if there are customers in
the system, which are represented by the indicator (1 −δ0n) for all n.

δij =


1 i f (i = j)

0 i f otherwise
(1)

Schwarz et al. in [28] were able to prove the steady-state solution for the global balance
equations in Theorem A1, given in Appendix A.

3.1.3. M/M/1/N-System with Inventory and Lost Sales

The critical issue was that a long queue does not mean that new arrivals would be
turned away because some goods are still available in the inventory. Customers who arrive
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when all waiting places are filled are automatically refused, even though there are still
items in the inventory, which is a benefit of our previous models to some degree.

Under the FCFS regime, we have a single server with a small number of N− 1 waiting
places. If the number of customers in the system at the time of a customer’s arrival is
less than N and the on-hand inventory is positive, the customer is admitted to the system;
otherwise, the customer is not admitted. They vanish and are never seen again.

The global balance equations for the M/M/1/N-system with inventory and lost sales
are given as:

π(n, k)(λ(1− δNn) + µ(1− δ0n)) = π(n− 1, k)λ(1− δ0n) + π(n + 1, k + 1)µ(1− δNn)

× (1− δkM)

+ π(n, 0)νpk(1− δNn), 0 ≤ n ≤ N, 1 ≤ k ≤ M,

π(n, 0)ν = π(n + 1, 1)µ, 0 ≤ n ≤ N − 1

In terms of steady-state solution for the global balance equations, the δij indicator
variable is assumed as defined in Equation (1)

In [28], Schwarz et al. were able to prove the steady-state solution for the global
balance equations in Theorem A2, given in Appendix A.

3.1.4. Performance Measures

The measures of system performance of the M/M/1/N − 1-system with inven-
tory are:

I =
µN+1 − λN+1

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )

M

∑
k=1

kqk, =
µN+1 − λN+1

KYµ(µN − λN)

M

∑
k=1

kqk, (2)

λR =
(µN − λN)λµ

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )
, =

λ

KY
, (3)

λA =
(µN − λN)λµp

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )
, =

λp
KY

, (4)

LS = λ
λ

ν
K−1

Y + λ(
λ

µ
)N pK−1, (5)

LSc =
λ

ν
+ (

λ

µ
)N pK−1

X , (6)

β =
(µN − λN)µp

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )
,=

p
KY

, (7)

W0 =
1

µ− λ
(1 +

λ

νp
)− NλN

µ(µN − λN)
(1 +

µ

νp
), (8)

W =
λ(µN−1 − λN−1)

(µ− λ)(µN − λN)
(1 +

λ

νp
)− (N − 1)

λN

µ(µN − λN)
(1 +

µ

νp
) (9)

In Appendix B, some of the mentioned measures are proven.
The mean number of waiting customers L is

L = L0 − p(X > 0)

= L0 − (1− K−1(p +
λ

ν
))

=
λ2(µN−1 − λN−1)

µN−1(µ− λ)2K
(p +

λ

ν
)− (N − 1)λN+1

µN(µ− λ)K
(p +

µ

ν
)
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The customer mean sojourn time W0 is

W0 =
L0

λA
=

1
µ− λ

(1 +
λ

νp
)− NλN

µ(µN − λN)
(1 +

µ

νp
)

The customer mean waiting time W is

W =
L

λA
=

λ(µN−1 − λN−1)

(µ− λ)(µN − λN)
(1 +

λ

νp
)− (N − 1)λN

µ(µN − λN)
(1 +

µ

νp
)

3.1.5. The Cost Function

We demonstrated the usual cost and reward functions for the required performance
measures. The total cost could be found by adding up all the cost functions. The first cost
function, λR × K, is the ordering cost associated with replenishment orders that occur with
the reorder rate λR; the second cost function, I × h, represents the holding costs for an
inventory of mean size I; the third cost function, LS× l, represents the shortage costs for
the mean number of lost sales LS; the fourth cost function, L×ω, is the waiting costs for
the mean number L of waiting for customers; and the last cost function, V × σ, is the costs
for the mean number V of customers in service. Thus, the total cost can be given as:

F = λR × K + I × h + LS× l + L×ω + V × σ.

We presented a numerical example illustrating the calculations of performance mea-
sures and the total cost in two different order schemes, namely deterministic and uniformly
distributed order size.

In a sales company based on the sale of one type of game for children, if the arrival
rate of customers to fund officers is 30 customers per hour, the service rate is 35 customers
per hour and the lead time rate is 0.1 unit per day. The optimal policy for ordering the type
of game is to be determined based on the following data: order size (Q) = 500 units per
day; ordering cost (K) = USD 50 per order; holding cost (h) = USD 0.02 per unit per day;
shortest cost (l) = USD 2 per day; waiting cost in queue USD 5 per day; P (probability that
lost sales case of shortage) = 0.4; waiting cost in system ω = USD 8 per day; and revenue to
the system (R) = USD 2000 per day. Based on the given data, we can obtain the total cost
for our distributions that we studied as follows.

For deterministic order size,
ρ = 0.85714286, Lo = 6, λR = 0.048, I = 200.4, β = 0.8, Wo = 0.25, W = 0.21428571,

LS = 6, LSc = 125, P(Y = 0) = 0.2, F = 50.98
For uniform order size,
ρ = 0.85714286, Lo = 6, λR = 0.079, I = 111.63, β = 0.67, Wo = 0.2998, W =

0.26, LS = 9.9, LSc = 125, P(Y = 0) = 0.333, F = 58.77

3.2. Classical Inventory Queuing System with Deterioration

In this work, it was assumed that products from the distribution system are manufac-
tured according to customer demand on a make-to-stock (MTS) basis, whereby customers
can simultaneously purchase and receive items, allowing for a short response time. MTS
is an example of a “push supply chain” technique. Decisions regarding when and how
much to create in a push supply chain strategy are based on expected consumer demand.
In MTS, production is planned well in advance based on expected demand. Therefore, the
use of resources is also planned accordingly to facilitate efficiency. Moreover, the timing
and amount of products are planned ahead of time. As a result, work may be scheduled,
and the amount of work that remains may be determined at any moment in time, and the
finished goods are in the store and ready to be purchased immediately. The customer can
purchase a product and have it delivered simultaneously.

The service system with an attached inventory was investigated in this study, wherein
indistinguishable consumers arrived one by one and required service. Under the first-
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come–first-served (FCFS) system, there is a single server with an endless waiting room and
an inventory with a maximum capacity of M (identical) items. For service, each customer
requires precisely one item from the inventory, and the on-hand inventory drops by one
when each time service is completed. If the server is ready to serve a customer at the front of
the line and there is no inventory item, service will only begin when the next replenishment
arrives at the inventory (and then immediately). Customers who arrive while the server is
waiting for a replenishment order are refused and are lost to the system (“lost sales”). A
served consumer exits the system immediately, and the relevant item is withdrawn from
the inventory at the same moment. If there is another customer in line and at least one
more item in stock, the next service will begin right away. There is a policy in place that
decides whether a replenishment order is placed at each decision point and the number
of items requested. Arrival and departure epochs are the only decision epochs that are
permitted. It was expected that, at most, one order was constantly outstanding. Customers
queuing and inventory storage are both costs associated with system operation.

We have a fixed inventory holding cost h per item and time unit; a fixed replenishment
ordering cost K; a shortage cost l per unit of missed sales; a cost per customer and time unit
in the waiting room; and a cost per customer and time unit in service. When a customer’s
service is complete, the system receives the revenue of R. The number of customers present
at the server at time t ≥ 0 (either waiting or in-service) was marked by X(t), while the
on-hand inventory was designated by Y(t). Z = ((X(t), Y(t)), t ≥ 0) was used to represent
the combined queue length and inventory process.

Z’s state space is EZ = (n, k) : n ∈ N0, k = 0 . . . , M, where M is the inventory’s
maximum size, which is determined by the order policy, stating that if the inventory is
exhausted after a customer’s service is completed, a replenishment order is immediately
triggered. The order size choice can be randomized using a discrete probability density
function p on the integers 1, 2, . . . , M, where M is the inventory’s maximum capacity. As a
result, the size of a replenishment order is k, with a probability of pk, where ∑M

k=1 pk = 1.
The main parameter that is added to our limited M/M/1/N − 1 system is that the

deterioration parameter γ is exponentially distributed and has a value of less than Q. This
parameter can be seen in Figure 2 and it is represented by the red arrow that returns from
the state under consideration from the previous state. The parameter follows an exponential
distribution with kγ rate, where k is the number of items in the system at state (I, j), equal
to j, so k ∈ [1, M].

Mathematical Formulation

The average time during which a unit remains available before deterioration is 1
γ . In

our study, if one unit deteriorates, it is represented by 1γ; if two units deteriorate, they are
represented by 2γ. Furthermore, it follows that if M units deteriorate, they are represented
by Mγ.

The new balance equations that describe the system studies are derived as follows, for
i = 0,

νπ(0, 0) = µπ(1, 1) + γπ(0, 1)

λπ(0, 1) + γπ(0, 1) = νP1π(0, 0) + µπ(1, 2) + 2γπ(0, 2)

λπ(0, 2) + 2γπ(0, 2) = νP2π(0, 0) + µπ(1, 3) + 3γπ(0, 3)

In numerical calculations, first, the maximum system size for the customer (N) is
chosen. Different order quantity values are chosen every time a new order is placed (Q).
Different values of the average arrival rate of customers (λ) are chosen. The average lead
time (time needed to deliver the new order quantity) (ν) is chosen. The average service rate
(number of customers served per unit of time) (µ) is chosen. The distribution of the quantity
delivered (P) is chosen. The deterioration parameter γ is less than the order quantity Q.
Then, the coefficient matrix (A) with dimensions (N + 1×Q + 1) is then generated using
MATLAB with the aforementioned parameters. After that, the probability matrix (π(n, k))
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is calculated by multiplying the inverse of the coefficient matrix (A) by a vector with a
length (N + 1).

The expected time until deuteriation for any unit in stock is assumed to be exponen-
tially distributed with a mean of 1

γ . This is true for any unit in the inventory independent
of each other. Therefore, each unit in the inventory is subject to deteriorate independently
from the other units. The physical meaning is that the deterioration rate should not exceed
the order quantity to exclude the possibility that the new order deteriorated completely
before it arrived at the market to make the assumptions more realistic.

The probability matrix (π(n, k)) is used to generate the marginal probabilities (X) and
(Y). Moreover, it is used to calculate performance measures.

Figure 2. M/M/1/N − 1-systems with inventory, lost sales and deterioration.

4. Results and Discussion
4.1. Numerical Analysis

A numerical analysis was performed to illustrate the results of simulating the system
of a limited number of N − 1 waiting places such that only N customers are admitted to
the system simultaneously with fixed-order quantity Q.
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We compare the proposed framework on the performance measures at specific values
of fixed-order quantity Q, the average rate of arrival customers λ, the service rate µ, and
the time required to deliver the new order quantity ν, where it is assumed to be a case
wherein the order quantity is fixed and the delivery is fixed.

4.1.1. The Effect of λ on Performance Measures for Different Q Values

In the following Tables 2–5, Q = 15, 25, 33 and 50. λ = 11, 15, 25 and 40. The fixation
of µ = 45, ν = 3, and the size of the system to accommodate the customers N = 40. It was
noticed that the average stock level I decreases as it increases λ for each Q. For λR, it was
noticed that it increases as λ increases because it measures the rate of reordering per unit of
time and for λA, which is the rate of arrival of customers for each time unit that increases
with an increase λ. The average number of lost sales and the average number of lost sales
in each order cycle (LS, LSc) increase with the increase in the flow rate. The service level
β also decreases by increasing λ. The average number of customers in the whole system
and the average number of customers in a queue increase (L, L0) with increasing λ. The
average customer waiting time and average stay increase (W, W0) with the increase in the
arrival rate and the cost F increases.

Table 2. The effect of λ on performance measures at Q = 15.

Q λ I λR λA LS LSc β Lo L Wo W F

15 11 3.6886 0.943 7.543 3.457 3.667 0.686 0.324 0.079 0.043 0.010 8.532

15 15 3.487 1.154 9.231 5.769 5.000 0.615 0.500 0.167 0.054 0.018 10.782

15 25 2.776 1.531 12.245 12.755 8.333 0.490 1.250 0.694 0.102 0.057 18.028

15 40 2.126 1.874 14.994 25.006 13.341 0.375 7.649 6.761 0.510 0.451 36.101

Table 3. The effect of λ on performance measures at Q = 25.

Q λ I λR λA LS LSc β Lo L Wo W F

25 11 7.020 0.660 8.850 2.420 3.667 0.780 0.324 0.079 0.038 0.009 10.370

25 15 6.500 0.833 10.833 4.167 5.000 0.722 0.500 0.167 0.046 0.015 11.907

25 25 5.484 1.172 15.234 9.776 8.333 0.609 1.250 0.694 0.082 0.046 17.455

25 40 4.445 1.518 19.737 20.263 13.346 0.493 7.653 6.765 0.388 0.343 33.430

Table 4. The effect of λ on performance measures at Q = 33.

Q λ I λR λA LS LSc β Lo L Wo W F

33 11 9.597 0.532 9.048 1.952 3.667 0.823 0.324 0.079 0.036 0.009 12.361

33 15 9.015 0.682 11.951 3.409 5.000 0.773 0.500 0.167 0.043 0.014 13.530

33 25 7.829 0.987 16.776 8.224 8.333 0.609 1.250 0.694 0.075 0.041 18.107

33 40 6.541 1.318 22.405 17.595 13.350 0.560 7.655 6.767 0.342 0.302 32.720

Table 5. The effect of λ on performance measures at Q = 50.

Q λ I λR λA LS LSc β Lo L Wo W F

50 11 15.154 0.377 9.617 1.383 3.667 0.874 0.324 0.079 0.034 0.008 17.207

50 15 14.492 0.492 12.541 2.459 5.000 0.836 0.500 0.167 0.040 0.013 17.888

50 25 13.064 0.739 18.842 6.158 8.333 0.754 1.250 0.694 0.066 0.037 21.074

50 40 11.386 1.029 26.249 13.751 13.359 0.656 7.658 6.770 0.292 0.258 33.520
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4.1.2. The Effect of µ on Performance Measures for Different Q Values

In the following Tables 6–9, it was assumed in this case that Q = 15, 25, 33 and 50.
µ = 10, 16, 20 and 35. The fixation of λ = 9, ν = 3 and the size of the system to accommodate
the customers N = 40. It was noticed that the average stock level I decreases as it increases
µ for each Q. For λR, it was noticed that it increases as µ increases because it measures
the rate of reordering per unit of time and for λA, which is the rate of arrival of customers
for each time unit that increases with an increase µ. The average number of lost sales and
the average number of lost sales in each order cycle (LS, LSc) increase with the increase in
the flow rate. The service level β also decreases by increasing µ. The average number of
customers in the whole system and the average number of customers in a queue increase
(L, L0) with increasing µ. The average customer waiting time and average customer length
of stay increase (W, W0) with the increase in the service rate. Moreover, the cost F decreases.
It can be observed that after µ = 16, I, λR, λA, LS, LSc and β seem to be constant.

Table 6. The effect of µ on performance measures at Q = 15.

Q λ I λR λA LS LSc β Lo L Wo W F

15 10 4.126 0.816 6.524 2.476 3.035 0.728 6.444 5.548 0.988 0.850 13.617

15 16 4.121 0.818 6.545 2.455 3.000 0.727 4.745 4.182 0.725 0.639 11.985

15 20 4.121 0.818 6.545 2.455 3.000 0.727 4.617 4.167 0.705 0.637 11.888

15 35 4.121 0.818 6.545 2.455 3.000 0.727 4.488 4.231 0.686 0.646 11.812

Table 7. The effect of µ on performance measures at Q = 25.

Q λ I λR λA LS LSc β Lo L Wo W F

25 10 7.319 0.560 7.286 1.714 3.058 0.813 8.911 8.015 1.223 1.100 18.337

25 16 7.313 0.562 7.312 1.688 3.000 0.813 7.741 7.179 1.059 0.982 17.198

25 20 7.313 0.562 7.312 1.688 3.000 0.813 7.653 7.203 1.047 0.985 17.132

25 35 7.313 0.563 7.313 1.688 3.000 0.813 7.565 7.308 1.035 0.999 17.079

Table 8. The effect of µ on performance measures at Q = 33.

Q λ I λR λA LS LSc β Lo L Wo W F

33 10 9.923 0.448 7.621 1.379 3.075 0.851 11.197 10.301 1.496 1.352 22.813

33 16 9.917 0.450 7.650 1.350 3.000 0.850 10.260 9.697 1.341 1.268 21.892

33 20 9.917 0.450 7.650 1.350 3.000 0.850 10.189 9.739 1.332 1.273 21.839

33 35 9.917 0.450 7.650 1.350 3.000 0.850 10.119 9.861 1.323 1.289 21.797

Table 9. The effect of µ on performance measures at Q = 50.

Q λ I λR λA LS LSc β Lo L Wo W F

50 10 15.516 0.315 8.021 0.979 3.311 0.895 16.410 15.514 2.046 1.934 33.125

50 16 15.509 0.316 8.053 0.979 3.000 0.895 15.749 15.187 1.956 1.886 32.462

50 20 15.509 0.316 8.053 0.979 3.000 0.895 15.700 15.250 1.950 1.894 32.425

50 35 15.509 0.316 8.053 0.979 3.000 0.895 15.650 15.393 1.944 1.912 32.395

In order to check the effect of ν on performance measures for different Q values, it
was assumed that Q = 15, 25, 33 and 50. ν = 3, 10, 25 and 40. Fixation of λ = 14, µ = 15,
and the size of the system to accommodate the customers N = 40. It was noticed that the
average stock level I decreases as it increases ν for each Q. For λR, it was noticed that it
increases as ν increases because it measures the rate of reordering per unit of time and
for λA, which is the rate of arrival of customers for each time unit that increases with an
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increase ν. Moreover, the average number of lost sales and the average number of lost sales
in each order cycle (LS, LSc) increase with the increase in flow rate. The service level β also
decreases by increasing ν. The average number of customers in the whole system and the
average number of customers in a queue increase (L, L0) with increasing ν. The average
customer waiting time and the average stay of the customer increase (W, W0) with the
increase in the lead time and the cost F decreases. In general, there are some measures that
change their behavior depending on Q values, such as (L, L0, and F); for example, when
Q = 15 and Q = 25, these measures decrease, while for Q = 33 and Q = 50, they increase.

4.2. M/M/1/N-System with Deterioration under Deterministic and Uniformly Distributed
Order Size

In this section, the results were obtained from simulating a MATLAB program de-
signed to model a limited inventory system with lost sales and a deterioration parameter
under deterministic order size probabilities. The maximum system size for the customer
(N) is chosen to be equal to 10. Every time a new order is placed (Q), the order quantity
is chosen to have different values from the range of 5–35 with step 5. The average arrival
rate of customers (λ) was chosen to have different values from the range 5–35 with step 5.
The average lead time (time needed to deliver the new order quantity) (ν) was chosen to
be equal to 1. The average service rate (number of customers served per unit of time) (µ)
was chosen to be equal to 55. The deterioration parameter γ was chosen to have different
values from the range 0.5–4.5 with step 2. The distribution of the delivered quantity (P)
was chosen to be deterministic fixed-order size.

For all values of Q and γ, it was noticed that the probability that the inventory is
empty, P(X(t) = 0), which increases as the demand (λ) increases. The probability that
we do not have customers in our system, P(Y(t) = 0), decreases as the demand (λ)
increases. The probability that the inventory level is less than the customers in our system,
P(I < N), increases as the demand (λ) increases. The probability that our system is full of
customers, P(Y(t) = Y(t)), increases as the demand (λ) increases. The expectation of the
inventory position, X(t), is decreased as the demand (λ) increases. The mean number of
replenishments per unit of time or reorder rate, λR, increases as the demand (λ) increases.
The mean number of customers arriving per unit of time, λA, increases as the demand (λ)
increases. The average number of lost sales incurred per unit of time, LS, increases as the
demand (λ) increases. The expected number of lost sales per cycle, LSc, increases as the
demand (λ) increases. The service level, β, decreases as the demand (λ) increases. The
average number of customers in the whole system and the average number of customers in
a queue increase (L, L0) with increased λ. The customer mean sojourn time, W0, increases
as the demand (λ) increases. The customer mean sojourn time (waiting), W, increases as
the demand (λ) increases.

In terms of deterministic order size, the effect of adding the deterioration parameter γ
on P(X(t) = 0), referred to in Figure 3a,b, shows that for a constant Q value, the probability
that the inventory being empty takes less value when the deterioration happens and vice
versa makes sense as deterioration affects the availability of the items or the services for
the customers. Furthermore, as can be seen, this measure increases as the customers arrive
at the system and request a service or an item, as the number of items will decrease as it
is given to the customer who requested the item or service. It was also noted that when
the Q value increases, this measure decreases, which also makes sense as when the order
quantity increases, the probability of the empty inventory decreases.

It was noticed that the dependency of P(X(t) < Y(t)), LS and LSc on the deterioration
parameter γ is increased as the value of Q increased. The relation between the parameters
γ, Q, λ and the mentioned measures have the same behavior as in the deterministic order
size, as the only change was in the probability of delivering the items and services to the
customers.

The visual representation of the effect of γ on different measures with different λ
values under uniform order size is given in Figure 4a,b.
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(a) P(I = 0) and Q = 5 (b) P(I = 0) and Q = 10
Figure 3. The effect of increasing demand (λ) for different γ values under deterministic order size.

(a) For different γ values and Q = 5 (b) For different γ values and Q = 10
Figure 4. The effect of increasing demand (λ) for different γ values under uniform order size.

In this research, a limited number of Y(t)− 1 waiting places of the integrated inventory-
queuing model with deterioration was studied under uniformly distributed and determin-
istic order fixed quantity Q. In the proposed model, deterioration means falling from a
higher to a lower level in quantity.

In the first instance, the Schwarz model was studied, modeled and analyzed under
deterministic and uniformly distributed order quantity, depending on their mathematical
approach in their article. The resulting performance measures found with the cost function
have been presented. The same model that has been represented by the proposed method
depends on finding a solution for the linear system found from generating the balance
equations obtained from the drawn states of the desired system. After that, the generated
model was analyzed and compared to the results obtained from examining the Schwarz
model to ensure system validity. By analyzing the results, it was noticed that when the
value of λ increased, and for different values of Q, the performance measures such as
P(X(t) = 0), P(X(t) < Y(t)), P(Y(t) = Y(t)), λR, λA, LS, LSc, L0, L, Wo, W and F will
be increased. There is no observed change in the values of the following measures, such
as P(Y(t) = 0), LSc, L0 and L. There is a critical value of λ at which the cost function
F changes its behavior, and it is approximately 23 in deterministic and 17 in uniformly
distributed order size. At that point, the cost function values reversed from maximum to
minimum and vice versa depending on the Q value.

A novel approach was used to analyze the performance measures of a limited inte-
grated queuing-inventory model with deterioration parameter γ, which is exponentially
distributed and has a value greater than Q under deterministic and uniform distributed
order quantity. It was observed that the value of γ increased, and for different values of λ,
the performance measures such as P(X(t) = 0), λR, Wo, and W expanded. Furthermore, it
was noticed that the value of γ increased, and for different values of λ, the performance
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measures such as P(Y(t) = Y(t)), X(t), λA and β diminished. There was no observed
change in P(Y(t) = 0), P(X(t) < Y(t)), LS, LSc, L0 and L.

5. Conclusions

This research analyzes customers’ purification by examining the addition of deteri-
oration parameter γ. The proposed model’s demand is based on Poisson, where service
times and lead times are exponentially distributed. Schwarz M/M/1/∞ and M/M/1/N-
1-systems are further examined by employing the proposed method to solve the linear
system of equations obtained from analyzing the steady-state system balance equations.
The results obtained are compared with the empirical results by simulating the Schwarz
approach. The analyzed model is tested for different values of Q, demand rate λ and γ.
The obtained results showed a substantial dependence between γ, Q and λ, delivering the
required knowledge for decision-makers to achieve their objectives which depend on the
performance measure of interest. In terms of uniform order size, the effect of increasing
the deterioration parameter γ on the performance measures under concentration, it was
noticed that when the value of γ increased, and for different values of λ, the performance
measures such as P(X(t) = 0), λR, Wo and W tended to grow. Moreover, we also observed
that the value of γ increased, and for different values of λ, the performance measures such
as P(Y(t) = Y(t)), X(t), λA and β tended to drop. Furthermore, there is no observed
change in P(Y(t) = 0), P(X(t) < Y(t)), LS, LSc, L0 and L.

In future work, the system under consideration can be studied when changing µ or ν
under different distributions. Furthermore, the effect of adding the deterioration parameter
on the cost function can be further analyzed.
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Appendix A

Theorem A1. For the M/M/1/∞ system with an inventory according to the stochastic queuing-
inventory process Z from a homogeneous Markov process, Z is ergodic if and only if λ < µ. If Z is
ergodic, then it has a unique limiting and stationary distribution of product form:

π(n, k) = K−1(
λ

µ
)nqk with n ∈ N0, 1 ≤ k ≤ M, (A1)

π(n, 0) = K−1(
λ

µ
)n λ

ν
with n ∈ N0, (A2)

where K is the normalization constant and it is given by the following:

K = KX ∗ KY

Furthermore,
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KX =
µ

µ− λ

KY = p̄ +
λ

ν

Theorem A2. The continuous-time Markov process Z from is ergodic and has a unique limiting
and stationary distribution of product form given by the following:

π(n, k) = K−1(
λ

µ
)nqk, with 0 ≤ n ≤ N, M ≥ k ≥ 1 (A3)

π(n, 0) = K−1(
λ

µ
)n λ

ν
, with 0 ≤ n ≤ N − 1 (A4)

Furthermore, with normalization constant,

K =
µN+1( p̄ + λ

ν )− λN+1( p̄ + µ
ν )

µN(µ− λ)

which can be defined as:

KX =
µN − λN

µN−1(µ− λ)

KY =
µN+1( p̄ + λ

ν )− λN+1( p̄ + µ
ν )

µ(µN − λN)

Appendix B

The average inventory position I is

I =
M

∑
k=1

k
N

∑
n=0

π(n, k) =
M

∑
k=1

k
N

∑
n=0

K−1(
λ

µ
)nqk (A5)

=

(
µN+1( p̄ + λ

µ )− λN+1( p̄ + µ
ν )

µN(µ− λ)

)−1
M

∑
k=1

kqk

N

∑
n=0

(
λ

µ
)n (A6)

=

(
µN+1( p̄ + λ

ν )− λN+1( p̄ + µ
ν )

µN(µ− λ)

)−1 M

∑
k=1

kqk(
1− ( λ

µ )
n+1

1− λ
µ

) (A7)

Now,

I =
µN+1 − λN+1

µN+1

(
µ− λ

µ

)−1
(

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )

µN(µ− λ)

)−1 M

∑
k=1

kqk (A8)

=
µN+1 − λN+1

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )

M

∑
k=1

kqk (A9)

Note that the mean number of replenishments per time unit or reorder rate λR is

λR =
λ

p̄
P(X < N − 1) (A10)

=
λ

p̄

N−1

∑
n=0

M

∑
k=1

π(n, k) =
λ

p̄

N−1

∑
n=0

M

∑
k=1

K−1(
λ

µ
)nqk (A11)

= λK−1
N−1

∑
n=0

(
λ

µ
)n = λK−1(KX) =

λ

KY
(A12)
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Thus,

λR =
λ

KY
=

(µN − λN)λµ

µN+1( p̄ + λ
ν )− λN+1( p̄ + µ

ν )
(A13)

The mean number of customers arriving per unit time λA is:

λA = λP(X ≤ N − 1, Y > 0) = λ
N−1

∑
n=0

M

∑
k=1

π(n, k) (A14)

= λ
N−1

∑
n=0

M

∑
k=1

K−1(
λ

µ
)nqk = λK−1 p̄

N−1

∑
n=0

(
λ

µ
)n = K−1λ p̄(Kx) = λ p̄K−1

Y (A15)

The average number of lost sales incurred per unit of time LS is:

LS = λ(
N−1

∑
n=0

π(n, 0) +
M

∑
k=1

π(N, k)) (A16)

= λ
λ

ν
K−1

Y + λ(
λ

µ
)N pK−1 (A17)

Measure of performance is the expected number of lost sales per cycle LSc:

LSc =
LS
λR

=
λ

ν
+ (

λ

µ
)N pK−1

X (A18)

The service level β is:

β =
λ− LS

λ
=

λA
λ

(A19)

=
pλR

λ
=

p λ
KY

λ
=

p
KY

(A20)

The mean number of customers in the system L0 is:

L0 =
N

∑
n=1

M

∑
k=1

nπ(n, k) +
N−1

∑
n=1

nπ(n, 0) (A21)

=
N

∑
n=1

M

∑
k=1

K−1n(
λ

µ
)nqk +

N−1

∑
n=1

K−1n(
λ

µ
)n λ

ν
(A22)

= K−1(
N

∑
n=1

M

∑
k=1

n(
λ

µ
)nqk +

N−1

∑
n=1

n(
λ

µ
)n λ

ν
) (A23)

= K−1(
N

∑
n=1

n(
λ

µ
)n p +

λ

ν

N−1

∑
n=1

n(
λ

µ
)n) (A24)

= K−1(p
N−1

∑
n=1

n(
λ

µ
)n + pN(

λ

µ
)N +

λ

ν

N−1

∑
n=1

n(
λ

µ
)n) (A25)

= K−1(pN(
λ

µ
)N + (p +

λ

ν
)

λ

µ

N−1

∑
n=1

n(
λ

µ
)n−1) (A26)

= K−1(pN(
λ

µ
)N + (p +

λ

ν
)

λ

µ
(

1− ((N − 1) + 1)( λ
µ )

N−1 + (N − 1) λ
µ

(N−1)+1

(1− λ
µ )

2
)) (A27)

= K−1(pN(
λ

µ
)N + (p +

λ

ν
)

λ

µ
(

1− N( λ
µ )

N−1 + (N − 1) λ
µ

N

(1− λ
µ )

2
)) (A28)
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= K−1(pN(
λ

µ
)N + (p +

λ

ν
)

λ

µ
(

1− N( λ
µ )

N−1 + N λ
µ

N − λ
µ

N

(1− λ
µ )

2
)) (A29)

= K−1(pN(
λ

µ
)N + (

(p + λ
ν )

λ
µ − N(p + λ

ν )
λ
µ (

λ
µ )

N−1 + N(p + λ
ν )

λ
µ

λ
µ

N − (p + λ
ν )

λ
µ

λ
µ

N

(1− λ
µ )

2
)) (A30)

= K−1(pN(
λ

µ
)N + (

(p + λ
ν )

λ
µ − N(p + λ

ν )(
λ
µ )

N + N(p + λ
ν )

λ
µ

N+1 − (p + λ
ν )

λ
µ

N+1

(1− λ
µ )

2
)) (A31)

=
pN( λ

µ )
N

K
+ (

(p + λ
ν )

λ
µ − N(p + λ

ν )(
λ
µ )

N + N(p + λ
ν )

λ
µ

N+1 − (p + λ
ν )

λ
µ

N+1

K(1− λ
µ )

2
) (A32)

With some mathematical calculations,

L0 =
λ(µN − λN)

µN−1(µ− λ)2K
( p̄ +

λ

ν
)− NλN+1

µN(µ− λ)K
( p̄ +

µ

ν
)
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