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Abstract: In this work, molecular structures, combined with machine learning algorithms, were
applied to predict the critical temperatures (Tc) of a group of organic refrigerants. Aiming at solving
the problem that previous models cannot distinguish isomers, a topological index was introduced.
The results indicate that the novel molecular descriptor ‘molecular fingerprint + topological index’
can effectively differentiate isomers. The average absolute average deviation between the predicted
and experimental values is 3.99%, which proves a reasonable prediction ability of the present method.
In addition, the performance of the proposed model was compared with that of other previously
reported methods. The results show that the present model is superior to other approaches with
respect to accuracy.

Keywords: refrigerants; critical temperature; molecular structure; machine learning

1. Introduction

The proposal of carbon neutrality will accelerate the utilization of renewable energy,
such as solar energy and geothermal energy [1,2]. Additionally, thermodynamic cycles,
including novel power systems represented by the organic Rankine cycle (ORC), and re-
frigeration/heat pump cycles, represented by a vapor compression cycle, are the effective
approaches to use the medium and low energy. A working fluid is the energy carrier
of thermodynamic cycles, which plays a key role in designing and enhancing the ther-
modynamic cycles [3,4]. Organic refrigerants, as a kind of compounds with low boiling
point, apart from their application in the refrigeration industry, also have unique advantage
to be used as working fluids in ORC to recover low-grade energy and improve energy
utilization efficiency.

In recent years, with increasing attention paid to environmental problems, such as
ozone layer depletion and greenhouse effect, it is urgent to develop new environmentally
friendly and efficient working fluids with zero ozone depletion potential (ODP) and low
global warming potential (GWP) [5,6]. Critical parameters are basic thermophysical prop-
erties of a working fluid consisting of critical temperature (Tc), critical pressure (pc), and
critical volume (vc). Among them, critical temperature is not only the demarcation point
of a subcritical and supercritical cycle, but also the basis for estimating other physical
properties. Besides, the efficiency of a subcritical cycle is a function of Tc. For example,
when the evaporation and condensation temperatures are given, working fluids with high
Tc usually have better cycle efficiency [7]. Therefore, the accuracy of critical tempera-
ture largely determines the reliability of thermophysical property estimation and relevant
computational design.

Currently, there are two main approaches to obtain critical temperature: experimental
measurement and theoretical estimation. The measurement methods can be categorized
into direct and indirect way. For the direct observation method, the reappearance of the

Processes 2022, 10, 577. https://doi.org/10.3390/pr10030577 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10030577
https://doi.org/10.3390/pr10030577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10030577
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10030577?type=check_update&version=1


Processes 2022, 10, 577 2 of 12

phase interface and the critical opalescence phenomenon are usually used for judging the
emergence of critical points [8]. On the other hand, the indirect calculation method usually
takes the specific heat peak on the Cv-T diagram and the inflection point of the isotherm
to find critical points [9]. However, an experiment alone cannot meet the requirements of
industrial application for Tc. Until now, only hundreds of experimental values of critical
temperature are reported, which is far from the demands of industrial production and
design [10]. Hence, it is of necessity to predict Tc by using theoretical methods. There are
several routes to calculate the critical temperature of working fluids.

The empirical correlation method is mainly based on the physical properties that are
common and easy to measure, such as boiling point and density. Guldberg et al. [11]
proposed a formula correlating the critical temperature with the boiling point. Veja-
hati et al. [12] proposed a simple exponential model to estimate the critical temperature of
alkanes. Klincewicz et al. [13] correlated the molecular weight and boiling point with Tc.
The calculation of empirical correlation is simple and fast, but lacks theoretical foundation
and has poor universality.

A group contribution method (GCM) is a generally applied method to estimate phys-
ical properties. As regards Tc, Riedel et al. [14] proposed a model using the group con-
tribution concept to estimate the critical temperature of organic compounds. Based on
their work, Lydersen et al. [15] proposed the first group contribution method with a de-
tailed group division and better estimation results. Joback et al. [16] further improved this
method. Considering that the previous methods did not consider the interaction between
adjacent groups and distinguish isomers, several new models have been developed later,
such as the secondary group contribution method proposed by Constantinou et al. [17],
group-interaction contribution method by Marrero et al. [18], and position contribution
method by Wang et al. [19]. It is convenient to apply a group contribution method with
complete functional group parameters. However, the group division is complex, and the
calculation is complicated, which slows down the calculation process of physical property.

Besides, molecular simulation (MS) is a numerical prediction method based on atomic
interaction [20]. Raabe [21] investigated the vapor-liquid phase equilibria of several bi-
nary mixtures of R-1234yf and R-1234ze(E) via Gibbs ensemble Monte Carlo simulation.
Yang et al. [22] reported the vapor-liquid equilibrium properties of R152a and its mixture by
Gibbs ensemble Monte Carlo simulation and molecular dynamics simulation. Cai et al. [23]
studied the evaporation process of R32/R152a by molecular dynamics method. More
reports [24–26] have shown that MS is a powerful method for predicting the properties of
materials. However, the prediction accuracy of MS heavily relies on the atomic interaction
potential model.

Recently, machine learning (ML) has become a popular method for physical property
estimation due to high accuracy [27]. Theoretically, a three-layer neural network can
approximate any rational function with any precision [28]. It is easy to set and implement
an ML model in computer programs without a given expression. Compared with previous
models, when a machine learning method is applied to predict the physical properties
of a working fluid, such as melting point [29], boiling point [30], density [31], and heat
capacity [32], it usually has better prediction accuracy. The application of ML on the
estimation of critical temperature has also been explored. Gharagheizi et al. [33] attempted
to apply group contribution as the input of an artificial neural network to estimate the
critical temperature of pure compounds. However, most of the existing group contribution
methods cannot effectively distinguish isomers, which inevitably affects the prediction
results. Therefore, the appropriate expression of a molecular structure is a prerequisite for
the construction of a machine learning model.

The development of cheminformatics provides a new idea for the programming
language expression of a molecule structure. In the 1980s, molecular fingerprints (MF)
appeared along with the study of similarity searching in medicinal chemistry [34]. MF uses
the Boolean value ‘1’ or ‘0’ to describe whether there is a specific substructure in a molecule.
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When it comes to the prediction of toxicity [35] and viscosity [36], taking MF as the input
feature of a machine learning algorithm can achieve satisfactory results.

Consequently, in this paper, four kinds of molecular fingerprints were used to represent
the structures of working fluid molecules, acting as the input of four ML algorithms. A
total of 16 different prediction models of Tc (16 = 4 MFs multiplied by 4 ML algorithms)
were established. Then a topological index was introduced to further optimize and obtain
the optimal model to predict the critical temperature of working fluids. The performance
of the proposed model was then compared with those of other previous methods.

2. Methods
2.1. ML Algorithms

Four types of supervised ML algorithms were used in this research, including sup-
port vector regression (SVR), decision tree (DT), random forest (RF), and multilayer
perceptron (MLP).

2.1.1. Support Vector Regression

Support vector regression is an algorithm that uses an appropriate kernel function
to map nonlinear data to a high dimensional feature space and transform the nonlinear
relationship into a linear form [37]. The accuracy of SVR depends on the optimization
of the model parameters, including the choice of kernel function, kernel parameter, tube
radius, and regularization parameter, which balance the model complexity and training
error. In this work, 10-fold cross validation paralleled with grid research was applied to
find the optimal combination of these parameters.

2.1.2. Decision Tree

A decision tree is composed of nodes and directed edges. There are two types of
nodes, the internal node, which represents a feature or attribute, and the leaf node, which
represents a category or certain value [38]. When DT is used for a regression task, it tests
a certain feature of the sample from the root node and assigns the sample to the child
nodes according to the test results. At this time, each child node corresponds to one of the
characteristic values. The samples are tested and distributed recursively until they reach
the leaf node. The prepruning of DT in this study was realized by 10-fold cross validation
and grid research to get the optimal parameters.

2.1.3. Random Forest

Random forest is a bagging algorithm based on multiple decision trees, which are
grown from different bootstrap samples of the training data. Bootstrap samples are gener-
ated from a random selection with replacement of the training samples during tree growth.
The data that are not chosen in the construction of forests is called ‘out-of-bag’ samples.
Each tree predicts its out-of-bag sample as the tree is added to the forest, and the average
of these results gives an overall evaluation [39]. Random forest usually has a better per-
formance than an individual tree, which helps to decrease the variance of a model. The
number of trees is obtained from drawing the learning curve, and the process of prepruning
is similar to that of DT.

2.1.4. Multilayer Perceptron

An artificial neural network is designed to simulate the structure and function of
a neural system for data processing; it can constantly adjust the weight of the chain
between the simulated neurons so that the entire network can better fit the relationship of
the training data. Multilayer perceptron is a feedforward neural network that simulates
nonlinear relationships through interconnected artificial neurons and complex topological
structures [40]. Its basic structure includes input layer, hidden layer, and output layer. Each
input node is connected to the output node through a weighted chain, which is used to
simulate the connection strength between neurons. Here, a multilayer perceptron with two
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hidden layers was built based on Keras. The optimal parameters, including the activation
function, learning rate, and hidden layer sizes, were obtained by random search, and the
remaining parameters took defaults.

2.2. Datasets

The experimentally measured critical temperature data points of working fluids were
taken from an open database of the Design Institute for Physical Properties (DIPPR) and
relevant literature [41]. The data consist of the Tc of 155 pure substances of working fluids.
Based on this, the Tc databases of pure working fluids was built.

The pure chemicals basically cover the working fluids, which are commonly used in
engineering practice. In order to improve the performance of the prediction model for pure
substances, the chemicals in the database are divided into three categories: (halogenated)
alkanes, (halogenated) alkenes, and ethers. Seventy percent data of each category were
randomly selected to construct the training set, which was used to train the models,
establishing a relationship between the molecular structure and the critical temperature.
The remaining 30% data formed the testing set, which was used to evaluate the prediction
accuracy of the established model.

2.3. Feature Extraction and Data Preprocessing
2.3.1. Molecular Fingerprints

The working fluids were represented by fingerprints derived from their molecular
structures. Molecular fingerprints encode a structure into an array of bit strings, the 1 s
and 0 s describe the presence or absence of particular substructures in the molecule. A
schematic of molecular fingerprints is shown in Figure 1.
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Figure 1. Schematic diagram of fingerprint of a molecule.

In this work, four different lengths of fingerprints were chosen: MACCS (166 bits),
Pubchem (881 bits), Extended (1024 bits), Morgan (2048 bits). All the fingerprints were
calculated through an online transformer, ChemDes [42]. Since the structures of working
fluids are simple, fingerprint bits with zero variance were filtered. The MFs were then
applied to build regression models. Relevant information is listed in Table 1.

Table 1. Length of fingerprints after variance threshold.

Fingerprints MACCS Pubchem Extended Morgan

Length 166 881 1024 2048
After removal 42 80 191 376
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2.3.2. Topological Index

Compared with a group contribution method, molecular fingerprints can uniquely
express the structural characteristics of most working fluid molecules. However, there are
still a few isomers that cannot be effectively distinguished. Therefore, the topological index
MTI′ was introduced to tell the difference between structural isomers, and the geometric
correction number GM was added to MTI′ to further distinguish the cis-trans isomers [43].
A topological index is an approach to quantify a molecular structure, which is a constant
of a molecular graph. It is obtained by performing certain numerical operations on the
matrices that characterize the graph [44]. The topological index S is calculated as follows:

DvVw = DvDV Dw (1)

MTI′ =
N

∑
i=1

(vDvVw)i (2)

GM =
N

∑
i=1

[
MGF

(
DvVw + DT

vVw

)]
i

(3)

S = MTI′ + GM (4)

In Equations (1)–(4), Dv, DV, and Dw represent the valence matrix, vertex weight
matrix, and adjacency matrix of a working fluid molecule, respectively. N is the number of
atoms, v represents the valence vector, and MGF is a diagonal matrix that distinguishes cis
and trans isomers. The detailed process to obtain topological indices can be found in the
Supplementary Materials.

2.4. Model Validation

The performance of a model is evaluated by comparing the predicted and experimental
values using the following statistical parameters: correlation coefficient (R2), root mean
square error (RMSE), and average absolute deviation (AAD).

R2 = 1−


m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − yi)

2

 (5)

RMSE =

√√√√√ m
∑

i=1
(yi − ŷi)

2

m
(6)

AAD =
1
m

m

∑
i=1

(
100×

∣∣∣∣yi − ŷi
yi

∣∣∣∣) (7)

In Equations (5)–(7), m is the number of samples; yi and ŷi are the measured and
predicted value of chemical i, respectively; and y is the mean value of data points.

3. Results and Discussion
3.1. Preliminary Screening of Models

Sixteen prediction models were obtained by employing the molecular fingerprints
of pure working fluids as the input of machining learning algorithms. The prediction
performance of each regression model in the testing subset is shown in Figure 2 (taking the
coefficient of determination R2 as a statistical indicator).
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The MACCS fingerprint is the shortest among the four fingerprints; it cannot distin-
guish the four couples of cis and trans isomers in the dataset. When MACCS were input as
the feature of ML algorithms, the model established by SVR exhibited an unsatisfactory R2

value of 0.5956 in a testing set. It is because this kind of short-length fingerprint covers less
molecular structure information, which is insufficient to train the prediction models, thus
limiting the performance of models.

Extended is an extension of the Chemistry Development Kit fingerprint [45]. Taking
Extended fingerprints as input, the highest R2 value achieved by SVR is only 0.6807. The
reason accounting for it is that an Extended fingerprint works by counting all molecular
fragments along the path from a certain atom to a specified number of bonds and judging
whether these fragments are presented in a preassigned list of substructures. While in
ChemDes the maximum path length is set to 5 by default, this leads to those molecules
with chain length ≥5 maybe having the same fingerprints (14 couples of fluids have the
same Extended fingerprints in this work), therefore affecting the model performance.

As the longest fingerprints, Morgan can distinguish the molecular structures of all the
pure working fluids in the dataset. Nevertheless, an optimal R2 of 0.6661 obtained by an
SVR model is still unsatisfactory. Small datasets and excessive features may be the main
reason they cause overfitting and reduce the robustness of models. Therefore, a Morgan
fingerprint is not suitable to establish models for a dataset with limited samples.

Compared with other fingerprints, Pubchem achieved the best prediction performance
among all the four ML models. The optimal combination is MLP + Pubchem, which
attained an R2 of 0.8712. This proves that Pubchem can effectively characterize molecular
information and construct the relationship between the molecular structure and the critical
temperature with a limited training dataset. A comparison between the predicted and
experimental values and the deviation of each point are shown in Figure 3. It can be seen
that most of the data points have deviations less than 7.5%, only four samples’ deviations
are more than 10%, which proves a relatively good prediction ability of the model. More
details about Pubchem fingerprints are provided in the Supplementary Materials.

From the point of ML algorithms, as a strong learner, SVR has a stable and satisfactory
prediction performance, and the R2 of SVR + Pubchem model in the testing set reaches
0.8184. Apart from MLP + Pubchem, the feedforward neural network MLP has a general
effect when other fingerprints are used as input. The ensemble algorithm RF, which is based
on the weak learner DT, has higher prediction accuracy compared with DT. However, the
performance of RF varies with different fingerprints. Thus, the comprehensive prediction
efficiency of the four models can be sorted as follows: SVR > MLP > RF > DT.
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Figure 3. Predictive performance of MLP + Pubchem model.

3.2. Modification of Models

When checking the data of a Pubchem fingerprint, it is found that certain cis and trans
isomers of working fluids cannot be distinguished by Pubchem. Therefore, the prediction
model can be further optimized. Based on the analysis above, a topological index S was
considered to be added as a new feature of Pubchem. Then the modified fingerprint was
used as the input of the two ML algorithms with top performance: SVR and MLP. By
comparing statistical parameters, the optimal critical temperature prediction model of a
pure working fluid was finally selected.

The prediction results of SVR and MLP after modification are shown in Figures 4 and 5,
respectively. It is clear that the prediction accuracy of the models significantly improved
with the introduction of a topological index. The R2 of SVR + Pubchem in a testing set
increased from 0.8184 to 0.8426, while that of MLP + Pubchem reached 0.9143.
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Figure 4. Predictive performance of the SVR + modified Pubchem model.

Comparing Figure 3 with Figure 5, it is obvious that the data points of a modified
model are more concentrated around the line y = x, the working fluids with deviations of
more than 7.5% reduced from 7 to 4, proving its better prediction ability. This shows that
the selected topological index can well solve the problem that Pubchem cannot differentiate
cis and trans isomers, thereby improving the overall prediction performance of models.
Thus, the final critical temperature prediction model of pure working fluids was obtained.

3.3. Comparisons with Existing Methods

Three existing group contribution methods (GCMs) and an empirical correlation for
the estimation of critical temperature were used to compare with the proposed model. The
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GCMs include the Lydersen, Joback, and Constantinou-Gani methods, and the differences
between them are the division of groups and whether the boiling point (Tb) is needed in the
estimation. All the methods were applied to 120 pure working fluid samples with available
Tb collected in this article.
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Figure 5. Predictive performance of the MLP + modified Pubchem model.

The comparison results are shown in Figure 6. It is noticed that the Joback method,
based on the experimental boiling points (Tb

exp), exhibits relatively good performance in
the estimation of Tc. However, the experimentally determined values of Tb may not always
be available. When the estimated values (Tb

est) were considered in the Joback method, its
accuracy showed a marked decline.
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Figure 6. The comparisons between the proposed model and previous models.

The Constantinou-Gani (C-G) method does not need to use a normal boiling point; it
involves two orders of groups, and the second groups are used to overcome the limitation
that the first groups cannot distinguish isomers in molecular structures. The C-G method,
taking second groups into account, has higher accuracy than single first groups, and the
estimated value is more reliable. However, there are still some problems in the C-G method.
For example, the estimation performance of substances composed of very small molecules
is poor. Besides, many substances cannot be correctly separated because the division of
second groups is not comprehensive; thus only a small part of isomers can be discriminated
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by the C-G method. The Klincewicz-Reid method correlates critical temperature with
molecular weight (Mw) and boiling point and gives a simple linear regression function.
This function provides relatively reasonable estimations. However, as mentioned earlier,
correlating molecular weights with Tc still lacks theoretical basis.

By means of comparison, the MLP + Pubchem model proposed in this paper effectively
solves the problem of distinguishing isomers and obtains the best accuracy on the premise
of not relying on experimental values of boiling points.

3.4. Distinction of Isomers

The C-G method can partially discriminate isomers with the aid of a second group.
The MLP + Pubchem model also has this ability depending on the molecular fingerprints
and topological index. Table 2 shows the estimation results of our proposed model as
opposed to the C-G (second) method.

Table 2. Prediction samples of isomers in pure working fluids.

Compounds S Texp/K Tcal1/K Deviation/% Tcal2/K Deviation/%

(Z)-1,2-Dichloroethylene 3846 507.25 518.97 2.3105 558.45 10.094
(E)-1,2-Dichloroethylene 2838 535.8 533.2 0.4853 558.45 4.228

(Z)-1,2,3,3,3-Pentafluoropropene 7758 379.25 376.13 0.822 435.30 2.003
(E)-1,2,3,3,3-Pentafluoropropene 6636 386.75 376.21 2.727 435.30 13.789

(Z)-2-Butylene 180 435.5 437.40 0.436 430.03 1.257
(E)-2-Butylene 68 428.6 426.33 0.530 430.03 0.333

1,1,1,2,2,3-Hexafluoropropane 8276 403.35 411.48 2.017 404.06 0.175
1,1,1,2,3,3-Hexafluoropropane 8741 412.45 411.01 0.349 494.52 19.897
1,1,1,3,3,3-Hexafluoropropane 8984 398.1 410.77 3.183 386.51 2.912

2,2,3-Trimethylpentane 424 563.5 573.40 1.757 566.24 2.736
2,2,4-Trimethylpentane 460 543.8 545.11 0.241 545.16 0.250
2,3,3-Trimethylpentane 412 573.5 573.06 0.077 594.42 3.648
2,3,4-Trimethylpentane 426 566.4 567.14 0.130 588.60 3.920

Tcal
1 and Tcal

2 denote the estimated critical temperature values of the MLP + Pubchem
model and the C-G (second) method, respectively. Apparently, while the C-G (second)
method cannot distinguish cis and trans isomers and achieve worse estimation perfor-
mance in structural isomers, the proposed model can recognize isomers with decent
prediction accuracy. The detailed calculation process and results can be found in the
Supplementary Materials.

4. Conclusions

In this work, molecular fingerprints, which are derived from molecular structures,
were used as the input of machine learning algorithms to establish the critical temperature
prediction models of working fluids. By analyzing the prediction performances, it is found
that Pubchem fingerprints can effectively characterize the molecular structures of work-
ing fluids when acting as the input of MLP to establish the ‘molecular structure-critical
temperature’ relationship. In order to address the problem that Pubchem fingerprints
cannot distinguish small parts of cis and trans isomers, the topological index S was intro-
duced as a new feature of fingerprints. The modified fingerprints have a better structure
recognition ability, leading to a significant improvement in the prediction performance
of the Pubchem + MLP model. The R2 of the testing set reaches 0.9143, with an average
deviation of 3.99%. Finally, the performance of the proposed model was compared with
those of other previous methods, and the results indicate that the present model is superior
to other approaches with respect to accuracy. This research provides a new approach to
build the ‘molecular structure-critical temperature’ relationship for working fluids. By
this ‘molecular structure-property’ method, the proposed model can also be applied in the
physical property prediction of other common working fluid systems.
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Nomenclature

AAD absolute average deviation
DT decision tree
GCM group contribution method
GWP global warming potential
ML machine learning
MLP multilayer perceptron
MF molecular fingerprint
ODP ozone depletion potential
ORC organic Rankine cycle
QSPR quantitative structure property relationship
R2 coefficient of determination
RMSE root mean square error
RF random forest
SMILES simplified molecular input line entry specification
SVR support vector regression
TI topological index
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