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Abstract: Proceeding our prior studies of SARS-CoV-2, the inhibitory potential against SARS-CoV-2
RNA-dependent RNA polymerase (RdRp) has been investigated for a collection of 3009 clinical and
FDA-approved drugs. A multi-phase in silico approach has been employed in this study. Initially, a
molecular fingerprint experiment of Remdesivir (RTP), the co-crystallized ligand of the examined
protein, revealed the most similar 150 compounds. Among them, 30 compounds were selected
after a structure similarity experiment. Subsequently, the most similar 30 compounds were docked
against SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2). Aloin 359, Baicalin 456,
Cefadroxil 1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286 exhibited the most precise
binding modes, as well as the best binding energies. To confirm the obtained results, MD simulations
experiments have been conducted for Hyperoside 2109, the natural flavonoid glycoside that exhibited
the best docking scores, against RdRp (PDB ID: 7BV2) for 100 ns. The achieved results authenticated
the correct binding of 2109, showing low energy and optimum dynamics. Our team presents these
outcomes for scientists all over the world to advance in vitro and in vivo examinations against
COVID-19 for the promising compounds.

Keywords: SARS-CoV-2 RNA-dependent RNA polymerase; FDA-approved drugs; molecular finger-
prints; structural similarity; molecular docking; MD simulations

1. Introduction

The WHO reported on 4 February 2022 that the confirmed global infected cases of
SARS-CoV-2 were 386,548,962. Unfortunately, 5,705,754 of that total passed away [1]. To
respond to these alarming numbers, extensive work is required from scientists globally to
discover a cure.
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The FDA approval of any drug means that the drug’s effect and side effects have
been judged by the Center for Drug Evaluation and Research (CDER) in the FDA [2].
Accordingly, FDA approval indicates the efficacy and the general safety of that drug [3].
Hence, FDA-approved drugs could be an invaluable source in drug discovery, as they
can be repurposed to be utilized for alternate functions [4]. Whereas the traditional drug
discovery process costs an average of 2.6 billion USD over twelve years [5], computational
or in silico screening can be utilized efficiently and effectively to discover new drugs [6,7].

Ligand-based virtual screening is an in silico approach in which the software uti-
lizes the chemical structure of an active molecule as a reference. This reference is utilized
and based on the principles of the Structure–Activity Relationship (SAR), which antic-
ipates the activity of other molecules with unidentified or different known activity [8].
Ligand-based in silico methods have been employed across different fields of drug design
and discovery, such as in molecular design [9,10], rational drug design [11–16], compu-
tational chemistry [17,18], docking [19,20], DFT [21–23] evaluation, toxicity [24–26], and
ADME-Tox [27–29]. In addition, molecular dynamic simulation is considered one of the
most efficient computational techniques that confirms the affinity of a compound to a
particular receptor [30,31].

Our team utilized ligand-based in silico methods to discover potential inhibitors for
COVID-19 essential enzymes. We described the potential inhibitions of a big group of
isoflavonoids [32] in addition to the natural metabolites that were isolated from Monan-
chora sp. [33] and Artemisia sublessingiana [34]. Likewise, we reported a multi-stage in silico
method (ligand- and structure-based) to identify the best potential SARS-CoV-2 nsp10
inhibitor of 310 antiviral natural compounds [35]. The same method decided the most
potential semisynthetic compound of 69 ligands against SARS-CoV-2 PLpro [36].

In this manuscript, 3009 clinical and FDA-approved drugs have been utilized as an
exam group to explore the most potent SARS-CoV-2 RdRp inhibitors, depending on a multi-
stage in silico method (ligand- and structure-based). All the tested drugs were obtained
from approved institutions such as the FDA (U.S. Food and Drug Administration, Sliver
Spring, MD, USA), EMA (European Medicines Agency, Amsterdam, The Netherlands,
European), HMA (Heads of Medicines Agency, Amsterdam, The Netherlands, European),
CFDA (China Food and Drug Administration, Beijing, China), PMDA (Pharmaceuticals
and Medical Devices Agency, Tokyo, Japan), pharmacopeias such as USP, BP, EP, JP, and
Ph, or from Selleckchem.com (https://www.selleckchem.com/screening/fda-approved-
drug-library.html, accessed on 1 October 2021) The employed method started with the
similarity detection of the test group with the co-crystallized ligand (RTP) of SARS-CoV-2
RdRp, utilizing molecular fingerprint and structure similarity studies. Then, the binding
modes of the selected compounds were examined by molecular docking and confirmed by
molecular dynamic (MD) simulation experiments.

2. Results and Discussion
2.1. Molecular Fingerprint Study

Molecular fingerprinting is a type of ligand-based in silico study that links the biolog-
ical activities of the tested molecules to their chemical structures [37]. It is based on the
scientific basics of the Structure–Activity Relationship (SAR). Agreeing with the principle
of SAR, the likeness in the chemical structure of two molecules is predicted to be linked
to a likeness in bioactivity [38]. We herein considered the co-crystallized ligand, RTP, as a
reference due to its high binding affinity with SARS-CoV-2 RdRp (PDB ID: 7BV2). Conse-
quently, molecules that have similar chemical structures to RTP are predicted to exhibit a
high binding affinity that inhibits the target protein.

In the fingerprint study, the software extracts chemical and physical descriptors of
the examined and reference molecules, and the presence and/or the absence of these de-
scriptors is calculated for all atoms. The calculation of the tested descriptors is performed
by converting it to bit strings (mathematical symbols). The obtained strings are used to
compare and expect the likeness [39,40]. Discovery Studio software has been employed to

https://www.selleckchem.com/screening/fda-approved-drug-library.html
https://www.selleckchem.com/screening/fda-approved-drug-library.html
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reveal the similarity of the fingerprints of RTP with 3009 FDA-approved drugs. The experi-
ment was adapted to select the highest 5% (150) of compounds in similarity (Table 1). The
following descriptors were investigated in the atoms as well as fragments of the examined
molecules and RTP: H-bond acceptors [41], H-bond donors [42], charges [43], hybridiza-
tion [44], positive ionizable atoms [45], negative ionizable atoms [46], halogens [47], and
aromatic groups [48] aligned with the ALogP [49].

Table 1. Fingerprint similarity between the FDA-approved compounds and RTP.

Comp. Similarity SA SB SC Comp. Similarity SA SB SC

RTP 1 206 0 0 2140 0.513672 263 306 −57

4 0.532394 189 149 17 1880 0.493976 205 209 1

42 0.522523 116 16 90 736 0.492163 157 113 49

50 0.589 136 25 70 2232 0.508159 218 223 −12

56 0.682 161 30 45 1345 0.51358 208 199 −2

152 0.55 121 14 85 2483 0.498371 153 101 53

159 0.516129 160 104 46 2474 0.4875 117 34 89

186 0.571 128 18 78 1268 0.503937 192 175 14

199 0.515306 202 186 4

241 0.586 130 16 76 537 0.507692 198 184 8

310 0.586 130 16 76 549 0.507519 135 60 71

365 0.606 154 48 52 51 0.513274 116 20 90

374 0.529617 152 81 54 2399 0.49359 154 106 52

410 0.601 155 52 51 2186 0.513253 213 209 −7

435 0.52 143 69 63 2496 0.489971 171 143 35

446 0.585 162 71 44 1075 0.50646 196 181 10

447 0.54013 249 255 −43 380 0.496575 145 86 61

450 0.577 138 33 68 1802 0.504785 211 212 −5

458 0.557252 146 56 60 1807 0.5 196 186 10

461 0.541096 158 86 48 807 0.496711 151 98 55

502 0.606 154 48 52 1747 0.513274 174 133 32

539 0.559809 117 3 89 1411 0.501458 172 137 34

573 0.520661 189 157 17 1332 0.490476 206 214 0

621 0.518182 114 14 92 2573 0.488189 186 175 20

659 0.562963 152 64 54 470 0.501458 172 137 34

711 0.568 126 16 80 2286 0.5025 201 194 5

723 0.59 135 23 71 2009 0.508197 124 38 82

777 0.519313 121 27 85 1405 0.488889 132 64 74

788 0.521531 218 212 −12 937 0.490617 183 167 23

856 0.52231 199 175 7 951 0.491525 145 89 61

874 0.535377 227 218 −21 2111 0.495516 221 240 −15

928 0.6 204 134 2 359 0.511002 209 203 −3

1017 0.543554 156 81 50 1789 0.497696 216 228 −10

1163 0.523546 189 155 17 2988 0.492447 163 125 43

1232 0.533762 166 105 40 625 0.494949 196 190 10



Processes 2022, 10, 530 4 of 23

Table 1. Cont.

Comp. Similarity SA SB SC Comp. Similarity SA SB SC

1273 0.541139 171 110 35 1226 0.497238 180 156 26

1369 0.603 149 41 57 919 0.513274 116 20 90

1391 0.566 214 172 −8 1911 0.501672 150 93 56

1445 0.542169 135 43 71 734 0.497653 212 220 −6

1458 0.526144 161 100 45 1702 0.493548 153 104 53

1459 0.516291 206 193 0 2999 0.487524 254 315 −48

1478 0.535503 181 132 25 2751 0.495751 175 147 31

1496 0.53211 116 12 90 371 0.493639 194 187 12

1569 0.519722 224 225 −18 2023 0.488971 133 66 73

1595 0.577 120 2 86 2921 0.504043 187 165 19

1631 0.568 147 53 59 2886 0.502825 178 148 28

1651 0.566 291 308 −85 618 0.501832 137 67 69

1728 0.516605 140 65 66 456 0.487864 201 206 5

1732 0.554264 143 52 63 1068 0.498812 210 215 −4

1778 0.555556 180 118 26 1723 0.498812 210 215 −4

1812 0.518395 155 93 51 189 0.488889 110 19 96

1858 0.5179 217 213 −11 1490 0.488189 186 175 20

1917 0.598 171 80 35 1839 0.509537 187 161 19

1918 0.577 138 33 68 1662 0.504098 123 38 83

2017 0.678 183 64 23 997 0.51358 208 199 −2

2031 0.545455 132 36 74 638 0.498084 130 55 76

2042 0.6 150 44 56 1669 0.51046 122 33 84

2056 0.553191 130 29 76 786 0.498623 181 157 25

2176 0.601 176 87 30 2024 0.512121 169 124 37

2233 0.675 185 68 21 1610 0.513441 191 166 15

2268 0.55157 123 17 83 1584 0.498567 174 143 32

2376 0.575 138 34 68 1642 0.503979 190 171 16

2463 0.520776 188 155 18 2109 0.490476 206 214 0

2488 0.55625 178 114 28 2764 0.499006 251 297 −45

2501 0.519713 145 73 61 2850 0.488889 264 334 −58

2523 0.524476 150 80 56 883 0.492823 206 212 0

2585 0.548673 124 20 82 2420 0.498099 131 57 75

2612 0.566 159 75 47 781 0.501475 170 133 36

2618 0.525773 153 85 53 679 0.492908 139 76 67

2732 0.532468 123 25 83 404 0.494186 170 138 36

2786 0.556522 128 24 78 1873 0.5 157 108 49

2831 0.588 141 34 65 1185 0.508143 312 408 −106

2844 0.542986 120 15 86 2980 0.497674 107 9 99

2876 0.631 210 127 −4 2104 0.513308 135 57 71

2879 0.577 138 33 68 663 0.505291 191 172 15

2991 0.581 312 331 −106 498 0.506143 206 201 0
SA: The number of shared bits in both RTP and the examined molecule. SB: The number of present bits in the
examined molecule but not RTP. SC: The number of present bits in RTP but not the examined molecule.
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2.2. Molecular Similarity

Molecular similarity is also another kind of ligand-based in silico study. The molecular
similarity study examines the whole chemical structure of both the reference molecule and
the experiment set. The study computes different descriptors, which may be topological,
electronic, steric, and/or physical [50]. In contrast, the fingerprint study computes the
descriptors in atoms or substructures [51]. The selected 150 FDA-approved drugs, after
the molecular fingerprint experiment, were subjected to the molecular similarity study of
RTP, using Discovery studio software. The tested descriptors (Figure 1 and Table 2) were
partition coefficient (ALog p) [52], molecular weight (M. W) [53], H-bond donors (HBA) [54],
H-bond acceptors (HBD) [55], rotatable bonds number (RB) [56], number of rings (R) and
aromatic rings (AR) [57], minimum distance (MD) [58], and the molecular fractional polar
surface area (MFPSA) [59]. The study revealed the most similar 1% compounds (30)
(Figure 2).

Figure 1. Structural similarity of the FDA-approved compounds and RTP.

Table 2. Similarity descriptors of the FDA-approved compounds and RTP.

Comp. ALog p M. W HBA HBD RB R AR MFPSA M D

RTP −1.5 371.24 11 5 4 3 2 0.612 0

50 −1.38 297.27 9 4 3 3 2 0.508 0.516

56 −1.38 365.21 11 5 4 3 2 0.602 0.04

152 −0.77 287.21 8 3 5 2 2 0.502 0.769

186 −1.31 285.23 8 4 2 3 2 0.52 0.638

241 −1.88 267.24 8 4 2 3 2 0.539 0.656

310 −1.88 267.24 8 4 2 3 2 0.539 0.656

359 −0.4 418.39 9 7 3 4 2 0.438 0.775

446 −0.51 340.28 9 5 3 3 1 0.476 0.702

456 0.61 446.36 11 6 4 4 2 0.463 0.695

458 −0.85 328.27 9 5 2 3 1 0.489 0.719

461 −0.34 354.31 9 6 5 2 1 0.487 0.775



Processes 2022, 10, 530 6 of 23

Table 2. Cont.

Comp. ALog p M. W HBA HBD RB R AR MFPSA M D

498 0.21 432.38 10 6 4 4 2 0.424 0.724

659 −1.61 295.29 8 5 2 3 1 0.521 0.765

723 −2.38 283.24 8 5 2 3 1 0.587 0.76

997 0.45 416.38 9 5 4 4 2 0.384 0.811

1017 −0.43 442.22 11 6 5 3 2 0.459 0.565

1273 −2.7 381.4 8 5 4 3 1 0.501 0.718

1332 −0.3 464.38 12 8 4 4 2 0.499 0.83

1459 0.21 432.38 10 6 4 4 2 0.424 0.724

1917 −3.25 398.44 10 4 7 3 2 0.481 0.657

2017 −2.16 365.24 12 6 4 3 2 0.655 0.284

2042 −2.09 285.26 9 5 2 3 2 0.589 0.491

2109 −0.3 464.38 12 8 4 4 2 0.499 0.83

2176 −1.93 390.35 10 5 4 4 3 0.491 0.675

2233 −2.24 427.2 14 6 6 3 2 0.678 0.582

2286 0.02 432.38 10 7 3 4 2 0.455 0.75

2376 −1.32 269.26 8 4 2 3 2 0.54 0.649

2612 −1.98 460.77 10 4 8 2 2 0.572 0.735

2732 −0.82 299.22 8 3 5 3 2 0.504 0.69

2831 −0.98 305.23 9 4 5 2 2 0.55 0.545

2.3. Docking Studies

The thirty most similar FDA-approved drugs to Remdesivir, the co-crystallized ligand
of SARS-CoV-2 RdRp, were docked against the target protein. The carried-out study aims
to examine the ability of the selected compounds to bind to and inhibit SARS-CoV-2 RdRp
(PDB ID: 7BV2). The study also investigated the binding free energies as well as the
binding modes of the examined FDA-approved drugs. Table 3 illustrates the calculated
∆G (binding free energies) of the tested compounds and the reference drug (Remdesivir)
against SARS-CoV-2 RdRp.

Table 3. ∆G values of the FDA-approved drugs and RTP.

Comp. ∆G (kcal/mol) Comp. ∆G (kcal/mol)

Remdesivir −18.65 Brimonidine Tartrate (1017) −15.95

Nelarabine (50) −18.36 Cefadroxil (1273) −21.24

Fludarabine Phosphate (56) −17.73 Isoquercitrin (1332) −23.40

Ramelteon (152) −17.74 Sophoricoside (1459) −21.43

Fludarabine (186) −15.99 Ademetionine (1917) −22.70

Adenosine (241) −16.36 Adenosine 5′-monophosphate
monohydrate (2017) −17.73

vidarabine (310) −16.63 Vidarabine monohydrate (2042) −16.63

Aloin (359) −23.11 Hyperoside (2109) −24.46

Esculin (446) −19.26 Regadenoson (2176) −22.85

Baicalin (456) −20.62 ADP (2233) −17.42

Bergenin (458) −19.18 Vitexin (2286) −25.00

Chlorogenic Acid (461) −19.38 2′-Deoxyadenosine monohydrate
(2376) −16.33

Puerarin (498) −22.35 Thiamine-pyrophosphate-
hydrochloride (2612) −17.78
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Table 3. Cont.

Comp. ∆G (kcal/mol) Comp. ∆G (kcal/mol)

Entecavir hydrate (659) −18.30 Besifovir (2732) −17.50

Guanosine (723) −16.14 Tenofovir hydrate (2831) −17.26

Daidzin (997) −21.34

Figure 2. The most similar thirty compounds to RTP.
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The docking approach was validated by re-docking Remdesivir against the RdRp-
active site. The validation step established the protocol’s applicability, as demonstrated by
the small RMSD (1.29 Å) between the re-docked pose and the co-crystallized one (Figure 3).

Figure 3. Superimposition of the co-crystallized pose (orange) and the re-docking pose (turquoise) of
RTP in the active site of the RdRp.

At first, to understand the docking modes, we have to understand the structure of the
SARS-CoV-2 RdRp enzyme. RdRp consists of three main parts. Firstly, an ATP-binding
site that is represented by a network of different amino acids, including the key amino
acid residue (Arg555). Secondly, an RNA primer that is represented by many nucleotides
including uridine 20 (U20), uridine 10 (U10), and adenine 11 (A11). Finally, a pyrophosphate
group (POP1003).

The mode of binding of RTP inside the SARS-CoV-2 RdRp is illustrated in Figure 4.
It was noticed that RTP interacted with the active site via the formation of four hydrogen
bonds (H-bonds), four hydrophobic interactions, and five electrostatic interactions. In
detail, the pyrrolo[2,1-f ][1,2,4]triazin-4-amine moiety interacted with RNA primer, forming
four hydrophobic interactions with A11 and U20 and one H-bond with U10. Moreover, the
5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methyl moiety formed one H- bond with U20.
Finally, the dihydrogen phosphate moiety occupied the ATP-binding site, forming one
H-bond and one electrostatic interaction with Arg555. Additionally, it formed one H-bond
with U20 and two electrostatic interactions with the pyrophosphate group.

The proposed binding mode of 359 revealed an affinity value of −23.11 kcal/mol.
The 3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran moiety was buried in the
ATP binding site to form one H-bonds with the key amino acid Arg555. It also interacted
with the RNA primer via the formation of two H-bonds with U10. On the other hand,
1,8-dihydroxyanthracen-9(10H)-one interacted with the pyrophosphate group via a couple
of H-bonds. Moreover, it formed one electrostatic interaction with Arg555 and one pi–pi
interaction with U20 (Figure 5).
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Figure 4. (A) 3D binding mode of Remdesivir in the active site of RNA-dependent RNA polymerase.
(B) 2D binding mode of Remdesivir in the active site of RNA-dependent RNA polymerase.
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Figure 5. (A) 3D binding mode of compound 359 into 7BV2 active site. (B) 2D binding mode of
compound 359 in the 7BV2 active site.

Compound 456 exerted a binding affinity of −20.52 kcal/mol. It was noticed that
3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid moiety formed two H-bonds with
the key amino acid residues in the ATP binding site (Arg555 and Asp760). Additionally, it
formed one H-bond with U20 in the RNA primer and another H-bond with pyrophosphate
group. Moreover, the 5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen moiety was incorporated
in the RNA primer, forming two H-bonds and two hydrophobic interactions with U10 and
A11, respectively. Additionally, it formed two electrostatic interactions with Arg555 in the
ATP-binding site (Figure 6).
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Figure 6. (A) 3D binding mode of compound 456 into 7BV2 active site. (B) 2D binding mode of
compound 456 in the 7BV2 active site.

The docking simulation of compound 2109 revealed that it fit well into the enzyme
active site, with a docking score of −24.46 kcal/mol. The ATP-binding site was occupied by
the 3-(3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy) moiety through
the formation of four H-bonds with Arg555, Asp760, Asp691, and Ser759. Moreover, the
RNA primer was occupied with 2-(3,4-dihydroxyphenyl)4H-chromen-4-one moiety via
formation of one H-bond, one electrostatic, and one hydrophobic interaction with U10 and
U20, respectively. Likewise, the later moiety formed one H-bond with the pyrophosphate
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group via its 7-hydroxy group. Such a binding pattern encourages us to study the MD
simulation of this member over the rest of the candidates (Figure 7).

Figure 7. (A) 3D binding mode of compound 2109 into 7BV2 active site. (B) 2D binding mode of
compound 2109 in the 7BV2 active site.

Compound 2286 displayed the highest binding energy score among the series with
∆G =−25.00 kcal/mol. This high binding affinity is presumably attributed to the formation
of many hydrophobic, electrostatic, and H-bonding interactions. The chromen-4-one
moiety interacted with the RNA primer via the formation of four pi–pi interactions with
the key nucleotide U20 and A11. Moreover, it reacted with Arg555 and Ser682, forming
two electrostatic interactions and one H-bond, respectively. The sugar moiety (2H-pyran)
formed two extra H-bonds with Asn691 and the pyrophosphate group (Figure 8).
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Figure 8. (A) 3D binding mode of compound 2286 into 7BV2 active site. (B) 2D binding mode of
compound 2286 in the 7BV2 active site.

The docking poses accomplished by compound 1273 (∆G = −21.24 kcal/mol) pro-
duced key interactions in the RdRp active sites via the formation of seven H-bonds with
U20, U10, Arg555, Asn691, and the Pyrophosphate group. Additionally, it formed one
electrostatic with Arg555 and one pi–pi interaction with U20 (Figure 9).
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Figure 9. (A) 3D binding mode of compound 1273 into 7BV2 active site. (B) 2D binding mode of
compound 1273 in the 7BV2 active site.

As illustrated in Figure 10, compound 1459 (∆G = −21.43 kcal/mol) possessed a
significant potential binding affinity to the RdRp. It was buried in the ATP-binding site to
form three H-bonds with Arg555, Thr680, and Cys622 and one pi–pi interaction with Cys622.
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Moreover, compound 1459 interacted with the RNA primer to form three H-bonds with
U10 and U20. Finally, it formed one electrostatic interaction with the pyrophosphate group.

Figure 10. (A) 3D binding mode of compound 1459 into 7BV2 active site. (B) 2D binding mode of
compound 1459 in the 7BV2 active site.

2.4. Molecular Dynamic Simulations

Compound 2109, Hyperoside, is a natural flavonoid of galactoside (Quercetin 3-
galactoside) (Figure 11). Interestingly, the inhibitory effect of hyperoside against COVID-19
has recently been reported as a key molecule in the Chinese Qing-Fei-Pai-Du herbal
formula [60]. Additionally, hyperoside inhibited HBV in vivo and in vitro through the
inhibition of inhibitors of HBsAg and HBeAg, and decreased DHBV-DNA levels [61]. Ad-
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ditionally, hyperoside showed anti-inflammatory activities via the inhibition of the NF-κB
signaling pathway [62].

Figure 11. Chemical structure of hyperoside.

The trajectory obtained from the 100 ns MD simulation was analyzed using GROMACS
and VMD to check the integrity of the system and examine the stability and strength of
hyperoside-SARS-CoV-2 RdRp binding throughout the simulation. Firstly, the radius of
gyration of SARS-CoV-2 RdRp was estimated to range from 2.85 to 2.92 nm (Figure 12).
The obtained values indicate that SARS-CoV-2 RdRp remained compact and stably folded
throughout the simulation.

Figure 12. Radius of gyration of SARS-CoV-2 RdRp when complexed with hyperoside, calculated
over the course of a 100 ns MD simulation.

The RMSD profile of SARS-CoV-2 RdRp was found to be nearly invariable (Figure 13),
implying that its structure is relatively stable during the simulation. The RMSD profile
of hyperoside (Figure 14) implies only minor conformational and positional changes rela-
tive to the protein backbone. These results were confirmed by visualizing the trajectory
using VMD.
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Figure 13. The RMSD of SARS-CoV-2 RdRp with reference to its backbone, calculated over the course
of the 100 ns simulation.

Figure 14. The RMSD of hyperoside with reference to SARS-CoV-2 RdRp backbone, calculated over
the course of the 100 ns simulation.

Additionally, the SARS-CoV-2 RdRp-hyperoside interaction was analyzed to measure
its strength as an indication of the ligand’s affinity towards the protein.

The Coulomb interaction (Coulomb force or electrostatic force) is a physical parameter
that describes the magnitude of the electrostatic interaction force between two charged
points. The Coulomb interaction is directly proportional to the electrical charge mag-
nitudes and inversely proportional to the distance between them [63]. The energetics
analysis showed that the average Coulombic interaction energy between hyperoside and
SARS-CoV-2 RdRp was −131.994 kJ/mol (Figure 15).
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Figure 15. Coulombic electrostatic interaction energy between hyperoside and SARS-CoV-2 RdRp
during MD simulation, showing an average value of −131.994 kJ/mol.

Furthermore, Lennard-Jones energy was proposed by Sir John Edward Lennard-
Jones and describes the potential interaction energy between two non-bonding molecules.
Lennard-Jones energy computes the difference between several attractive forces, such
as dipole–dipole and London interactions, as well as repulsive forces [64]. The average
Lennard-Jones energy between hyperoside and SARS-CoV-2 RdRp was computed to be
−67.0503 kJ/mol (Figure 16), indicating that hyperoside has a high affinity towards the
RNA-dependent RNA polymerase.

Figure 16. Lennard-Jones interaction energy between hyperoside and SARS-CoV-2 RdRp during the
MD simulation, showing an average value of −67.0503 kJ/mol.
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For a closer look at the electrostatic interactions between hyperoside and SARS-CoV-2
RNA-dependent RNA polymerase, the VMD program was used to calculate the number
of H-bonds formed over the course of the simulation. The analysis showed that during
most of the simulation time, the number of stable H-bonds varies between 2 and 3, and
reaches 4 during the last 35 ns of the simulation (Figure 17), indicating the strength of the
SARS-CoV-2 RdRp-ligand binding.

Figure 17. Changes in the number of H-bonds formed between hyperoside and SARS-CoV-2 RdRp.

3. Methods
3.1. Molecular Similarity Detection

Discovery studio 4.0 software was used (see method part in Supplementary data).

3.2. Fingerprint Studies

Discovery studio 4.0 software [65–67] was used (see method part in Supplementary data).

3.3. Docking Studies

Docking studies were performed with target enzymes using Discovery studio soft-
ware [68,69] (see method part in Supplementary data).

3.4. Molecular Dynamics Simulation

The system was prepared using the web-based CHARMM-GUI [70–73] interface
utilizing CHARMM36 force field and NAMD 2.13 packages [74]. The TIP3P explicit
solvation model was used (See Supplementary data).

4. Conclusions

Among 3009 clinical and FDA-approved drugs, 5 (Aloin 359, Baicalin 456, Cefadroxil
1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286) were determined as the
most potent inhibitors of SARS-CoV-2 RdRp(PDB ID: 7BV2). The study depended on a
multi-phase in silico approach that included molecular fingerprint studies of RTP (the
co-crystallized ligand of the examined protein), structure similarity experiments of RTP,
molecular docking experiments of SARS-CoV-2 RdRp, and MD-simulation experiments for
Hyperoside 2109 against SARS-CoV-2 RdRp for 100 ns. These results open a window of
hope to find treatment through further in vitro and in vivo examinations for the determined
compounds against COVID-19.
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