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Abstract: Infectious diseases are one of the core biological complications for public health. It is
important to recognize the pathogen-specific mechanisms to improve our understanding of infectious
diseases. Differentiations between bacterial- and viral-targeted human proteins are important for
improving both prognosis and treatment for the patient. Here, we introduce machine learning-based
classifiers to discriminate between the two groups of human proteins. We used the sequence, network,
and gene ontology features of human proteins. Among different classifiers and features, the deep
neural network (DNN) classifier with amino acid composition (AAC), dipeptide composition (DC),
and pseudo-amino acid composition (PAAC) (445 features) achieved the best area under the curve
(AUC) value (0.939), F1-score (94.9%), and Matthews correlation coefficient (MCC) value (0.81). We
found that each of the selected top 100 of the bacteria- and virus-targeted human proteins from
a candidate pool of 1618 and 3916 proteins, respectively, were part of distinct enriched biological
processes and pathways. Our proposed method will help to differentiate between the bacterial and
viral infections based on the targeted human proteins on a global scale. Furthermore, identification
of the crucial pathogen targets in the human proteome would help us to better understand the
pathogen-specific infection strategies and develop novel therapeutics.

Keywords: infectious diseases; pathogen-specific infection; machine learning; host-pathogen interactions;
classification; deep learning; DNN

1. Introduction

Despite the current improvements in antimicrobial therapy and vaccination, infectious
diseases remain a major threat to public health worldwide. They cause significant morbidity
across the nations, posing a major burden on the economy, and causing a substantial number
of deaths in the less developed countries [1]. The majority of infectious diseases are caused
by pathogenic bacteria and viruses. Pathogens interact with the host system right from
the point of its entry into the host, primarily to evade the host immune response and
create their own niche for survival and growth [2]. The identification of host proteins
targeted by pathogens and pathogen–host protein–protein interactions (PPIs) is crucial to
understand the mechanisms underlying the infectious diseases [3]. To differentiate between
the bacterial- and viral-targeted host proteins is critical to delineate the specific infection
strategies for these two groups of pathogens. While this may help in the diagnosis of the
etiology, it is particularly important from the treatment perspective, which is distinct for
bacterial and viral infections. Antibiotics kill bacterial pathogens but are ineffective against
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viruses. Finally, identification of the specific biological processes for the bacterial- and
viral-targeted human proteins could improve disease prognosis and treatment.

Several studies attempted to explore the mechanisms underlying infectious diseases
from the study of pathogen–host PPIs [4–13]. The availability of experimentally verified
pathogen–host PPIs in the public domain significantly helped these efforts [14–20]. How-
ever, only one study compared pathogen–host PPIs for bacterial and viral infections [21].
This study addressed common as well as distinct infection strategies for bacterial and viral
infections. To distinguish between bacterial- and viral-targeted human proteins, they only
used the degree centrality, betweenness centrality, and gene ontology (GO) features of
different proteins. They drew a general conclusion that viruses tend to interact with human
proteins having much higher connectivity and centrality values than those for bacteria.
They proposed that viral-targeted human proteins function in the cellular process to ma-
nipulate it, while bacteria-targeted human proteins interact with the immune system. Here,
we used more rigorous techniques, such as machine learning algorithms, to differentiate
the bacteria-targeted human proteins from the virus-targeted proteins. To this end, we
used the sequence, network, and gene ontology features of human proteins extensively.
We identified the best features set for the purpose of discriminating between bacterial-
and viral-targeted proteins and listed the top predicted targets. Finally, the differences be-
tween the bacterial- and viral-targeted human proteins were validated by GO and pathway
enrichment analysis.

2. Material and Methods
2.1. Data Collection

All the experimentally validated bacteria–human and virus–human protein–protein
interaction (PPI) datasets were collected from PHISTO: a pathogen–host interaction search
tool [22]. We found 8993 and 35,120 bacteria–human and virus–human PPIs, respectively,
and detected 3673 bacterial- and 5887 viral-targeted human proteins. Out of these, 1780 pro-
teins were common targets of both bacteria and viruses (shown in Figure 1) and were
excluded from our analysis. We searched the remaining 1893 and 4107 respective bacterial-
and viral-targeted human proteins, in UniProt, a worldwide hub of protein knowledge
database [23]. We found 1618 and 3916 bacterial- and viral-targeted and reviewed human
proteins, respectively, in UniProt (Supplementary Tables S1 and S2), which were considered
for further analysis.
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2.2. Sequence Features

All the above human protein sequences were downloaded from the UniProt database.
For the prediction of proteins and PPIs, the sequence features, such as the amino acid
composition (AAC), dipeptide composition (DC), pseudo-amino acid composition (PAAC),
and composition-transition-distribution (CTD) were reported as important features [24–26].
We computed AAC, DC, PAAC, and CTD using PyDPI, a freely available python package
for chemoinformatics, bioinformatics, and chemogenomics studies [27]. We used these se-
quence features to discriminate between the bacterial- from the viral-targeted human proteins.
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2.3. Network Features

To compute network features for human proteins, we retrieved expert-curated human
PPIs from the Human Protein Reference Database (HPRD) (Release 9) [28] and constructed
a network using these PPIs. Network analyzer (cytoscape plugin) was used to compute
the network properties, such as degree, closeness centrality, neighborhood connectivity,
average shortest path length, betweenness centrality, clustering coefficient, topological
coefficient, eccentricity, and radiality [29].

2.4. Gene Ontology (GO) Features

All the GO identifiers (IDs) for the respective 1618 and 3916 bacterial- and viral-
targeted human proteins were downloaded from UniProt. We found a total of 23,737 GO
IDs for 1618 bacteria-targeted human proteins, while the number of GO IDs for the viral-
targeted human proteins was 67,035. The occurrence of each GO ID was counted sepa-
rately for the above two groups, followed by sorting based on the occurrence value. The
top 100 and 280 GO IDs for the bacterial- and viral-targeted human proteins were ex-
tracted for GO features. However, only 282 were unique among the top 380 GO IDs
(Supplementary Table S3). Therefore, we considered the unique IDs for GO features
(Supplementary Figure S1). For each human protein, the presence or absence of the top
GO ID was considered as 1 or 0, respectively.

2.5. Classification

The distinction between the bacterial- and viral-targeted human proteins may be
viewed as a binary (two-class) classification problem. To differentiate between the proteins,
we used well-known classifiers, such as SVM, RF, and DNN.

2.5.1. Support Vector Machines (SVM)

The SVM classifier explicitly maps the data over a vector space to find a decision
surface that maximizes the margin between data points of two classes. For the SVM
classifier, we used the scikit-learn python package [30]. To find the best performance of the
SVM classifier, we tested different combinations of cost and gamma parameters of radial
basis function (RBF).

2.5.2. Random Forest (RF)

Several decision trees (DTs) grow simultaneously using a random subset of features
in RF. In the RF classifier, each tree is a new object and “votes” for that class. Based on
a majority vote, the forest elects the classification. We also used the scikit-learn python
package for the RF classifier. Optimal parameters were utilized to find the best performance.

2.5.3. Deep Neural Networks (DNN)

The DNN method was shown to perform well with diverse problems. DNN is more
robust and useful than other methods for complex classification problems and is becoming
a popular algorithm in the field of modern computational biology. We used TensorFlow
DNN, which is a widely-used deep learning package for classification, to discriminate
between the bacterial- and viral-targeted human proteins [31].

2.6. 10-Fold Cross-Validation

To avoid the performance bias of the prediction methods, we used the 10-fold cross-
validation technique. In 10-fold cross-validation, the whole dataset is divided into 10 sets
(folds) of equal or nearly equal sizes. Training and testing are repeated 10 times so that
each time, a different set (fold) goes out for testing, while the remaining 9 sets (folds) are
used for training. The average performance measures over the 10 folds are considered for
the overall performance of the model.
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2.7. Feature Selection

We used several feature selection methods, such as univariate feature selection (UFS),
recursive feature elimination (RFE), feature selection using SelectFromModel (SFM), and
tree-based feature selection (TBFS). In UFS, the K best features were selected based on
the univariate statistical tests. We used all the univariate statistical test methods available
in scikit-learn for the purpose of classification. In RFE, the least important features are
excluded in each recursive step, until the desired number of features is reached. The
important features are selected from the model in SFM. In TBFS, a tree-based estimator
computes the importance of the features and irrelevant features are discarded.

2.8. Performance Measures

The performance measures of the classification problem, such as sensitivity, specificity,
accuracy, positive predictive value (PPV or precision), Mathews correlation coefficient
(MCC), and F1-score were calculated using the following equations:

Sensitivity =
TP

TP + FN
× 100% (1)

Speci f icity =
TN

TN + FP
× 100% (2)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (3)

PPV =
TP

TP + FP
× 100% (4)

MCC =
TP× TN − FP× FN

√
( (TP + FP)× (TP + FN)× (TN + FP)× (TN + FN))

(5)

F1 = 2× Sensitivity× PPV
Sensitivity + PPV

× 100% (6)

where
True Positive (TP): Bacterial-targeted human proteins are correctly identified as bacterial-

targeted human proteins.
False Positive (FP): Viral-targeted human proteins are incorrectly identified as bacterial-

targeted human proteins.
True Negative (TN): Viral-targeted human proteins are correctly identified as viral-

targeted human proteins.
False Negative (FN): Bacterial-targeted human proteins are incorrectly identified as

viral-targeted human proteins.
The area under the receiver operating characteristic curve (AUC), for all the cases, was

also computed.

2.9. GO Enrichment Analysis

The top 100 bacterial-targeted and the same number of viral-targeted human proteins
predicted by our method were considered for GO enrichment analysis. To this end, we
used Enrichr, a comprehensive gene set enrichment analysis web server, 2016 update [32].
We considered only the biological process terms with p-values < 0.05 for the GO enrich-
ment analysis.

2.10. Pathway Enrichment Analysis

The above mentioned 200 human proteins (100 each of the bacterial- and viral-targeted
proteins) were also considered for pathway enrichment analysis. We used the Reactome
Pathway Knowledgebase for this purpose [33]. Pathways with p-value < 0.05 were treated
as enriched pathways.
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3. Results
3.1. Selection of Features

Important features of human proteins, such as the sequence, GO, and networks were
considered to discriminate between the bacteria- and virus-targeted human proteins. For
individual sequence features, dipeptide composition (DC) achieved the highest AUC
of 0.931, with an F1-score of 90.3%, and MCC of 0.67 (Table 1 and Supplementary Table S4).
However, the sequence features AAC, PAAC, and CTD showed poor performances with
CTD being the poorest. We tested different combinations of the above features to achieve a
high performance. We observed that a combination of AAC, DC, and PAAC achieved the
best AUC of 0.939, F1-score of 94.9% and MCC of 0.81.

Of the other features, the GO feature attained the maximum AUC of 0.886, F1-score of
86.4% and MCC of 0.51. On the other hand, the network feature was unable to distinguish
between the bacteria- and virus-targeted human proteins. We also tested mixed features set
to measure the performance. We found that the combination of AAC, DC, PAAC, and GO
features achieved the highest AUC of 0.914, F1-score of 88.3% and MCC of 0.60. Together,
the above results suggested that the combination of the AAC, DC, and PAAC features
attained the highest level of performance.

Table 1. Features-wise performance measures on bacterial- and viral-targeted human proteins.

Sequence Features

Features Set Vector Length Method Accuracy (%) MCC F1-Score (%) AUC

Amino acid composition (AAC) 20 SVM 69.20 0.10 80.60 0.580

Amino acid composition (AAC) 20 RF 70.20 0.05 82.30 0.629

Amino acid composition (AAC) 20 DNN 71.90 0.21 82.30 0.699

Dipeptide composition (DC) 400 SVM 70.10 0.09 81.90 0.598

Dipeptide composition (DC) 400 RF 70.70 0.06 82.50 0.614

Dipeptide composition (DC) 400 DNN 86.40 0.67 90.30 0.931

Pseudo-amino acid composition (PAAC) 25 SVM 65.40 0.09 76.80 0.582

Pseudo-amino acid composition (PAAC) 25 RF 70.70 0.09 82.30 0.628

Pseudo-amino acid composition (PAAC) 25 DNN 71.00 0.19 81.30 0.708

Composition, Transition, and Distribution (CTD) 147 SVM 71.00 0.01 83.00 0.525

Composition, Transition, and Distribution (CTD) 147 RF 70.90 0.09 82.50 0.622

Composition, Transition, and Distribution (CTD) 147 DNN 70.70 0.02 82.80 0.603

AAC_DC 420 SVM 70.60 0.05 82.80 0.602

AAC_DC 420 RF 70.50 0.06 82.50 0.620

AAC_DC 420 DNN 86.00 0.66 90.00 0.924

AAC_DC_PAAC 445 SVM 70.70 0.04 82.90 0.594

AAC_DC_PAAC 445 RF 70.70 0.06 82.50 0.621

AAC_DC_PAAC 445 DNN 92.40 0.81 94.90 0.939

AAC_DC_PAAC_CTD 592 SVM 71.00 0.07 83.00 0.566

AAC_DC_PAAC_CTD 592 RF 70.40 0.04 823.00 0.627

AAC_DC_PAAC_CTD 592 DNN 70.10 0.03 83.00 0.588

Gene Ontology Features

Gene Ontology (GO) 282 SVM 52.60 0.03 61.40 0.283

Gene Ontology (GO) 282 RF 66.70 0.13 77.90 0.613

Gene Ontology (GO) 282 DNN 80.20 0.51 86.40 0.886
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Table 1. Cont.

Sequence Features

Features Set Vector Length Method Accuracy (%) MCC F1-Score (%) AUC

Network Features

Network 9 SVM 54.20 0.06 62.70 0.538

Network 9 RF 53.90 0.06 62.60 0.527

Network 9 DNN 53.30 0.05 61.90 0.512

Mixed features

AAC_DC_PAAC_GO 727 SVM 70.90 0.02 83.00 0.609

AAC_DC_PAAC_GO 727 RF 70.50 0.05 82.30 0.635

AAC_DC_PAAC_GO 727 DNN 83.40 0.60 88.30 0.914

AAC_DC_PAAC_CTD_GO 874 SVM 71.00 0.06 83.00 0.567

AAC_DC_PAAC_CTD_GO 874 RF 70.40 0.06 82.30 0.635

AAC_DC_PAAC_CTD_GO 874 DNN 70.12 0.04 83.00 0.563

AAC_DC_PAAC_CTD_GO_Network 883 SVM 70.30 0.06 81.50 0.595

AAC_DC_PAAC_CTD_GO_Network 883 RF 70.50 0.07 82.60 0.642

AAC_DC_PAAC_CTD_GO_Network 883 DNN 72.10 0.18 83.10 0.725

We applied multiple feature selection methods, such as UFS, RFE, SFM, and TBFS
for the combination of AAC, DC, and PAAC features. We observed that TBFS achieved
the highest AUC of 0.805, F1-score of 84% and MCC of 0.44 (Table 2 and Supplementary
Table S5). However, features selected by these methods were unable to attain a similar
performance as the original features set. This result suggested that several features selection
methods were unable to perform better than the primary features. As a result, we selected
a combination of AAC, DC, and PAAC (445 features) as the best features set.

Table 2. Selected feature-wise performance measures of bacterial- and viral-targeted human proteins.

Features with Feature Selection Methods Vector Length Method Accuracy (%) MCC F1-Score (%) AUC

AAC_DC_PAAC_UFS_chi2 44 SVM 65.70 0.09 77.60 0.568

AAC_DC_PAAC_UFS_chi2 44 RF 70.40 0.08 82.30 0.634

AAC_DC_PAAC_UFS_chi2 44 DNN 71.90 0.21 82.10 0.704

AAC_DC_PAAC_UFS_f_classif 44 SVM 64.80 0.08 76.40 0.550

AAC_DC_PAAC_UFS_f_classif 44 RF 70.30 0.07 82.20 0.631

AAC_DC_PAAC_UFS_f_classif 44 DNN 72.60 0.22 82.60 0.705

AAC_DC_PAAC_UFS_mutual_info_classif 44 SVM 62.20 0.14 71.90 0.604

AAC_DC_PAAC_UFS_mutual_info_classif 44 RF 70.30 0.06 82.40 0.622

AAC_DC_PAAC_UFS_mutual_info_classif 44 DNN 72.10 0.23 82.00 0.714

AAC_DC_PAAC_RFE 44 SVM 69.90 0.08 81.50 0.584

AAC_DC_PAAC_RFE 44 RF 70.20 0.06 82.30 0.633

AAC_DC_PAAC_RFE 44 DNN 73.10 0.25 83.00 0.716

AAC_DC_PAAC_SFM 376 SVM 70.60 0.04 82.80 0.595

AAC_DC_PAAC_SFM 376 RF 70.60 0.06 82.40 0.627

AAC_DC_PAAC_SFM 376 DNN 75.10 0.39 82.60 0.796

AAC_DC_PAAC_TBFS 227 SVM 70.30 0.07 82.30 0.604

AAC_DC_PAAC_TBFS 227 RF 70.60 0.06 82.40 0.628

AAC_DC_PAAC_TBFS 227 DNN 77.00 0.44 84.00 0.805

Univariate Feature Selection (UFS), Recursive Feature Elimination (RFE), Feature Selection Using SelectFromModel
(SFM), Tree-Based Feature Selection (TBFS); For Univariate Feature Selection (UFS) the Methods Are chi2, f_classif,
Mutual_info_classif.
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3.2. Performance Comparison of Different Classifiers

To find the best classifier for our dataset, we compared the performance of SVM, RF,
and DNN classifiers. Different parameter-based performances were calculated for these
classifiers and only the best result was reported here. In the majority of cases, we observed
that the DNN classifier achieved the best performance (Tables 1 and 2). As shown in
Figures 2 and 3, the performance of the DNN classifier is far superior to SVM and RF.
Together, the results suggested that DNN performed better than other conventional MLT.
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3.3. Gene Ontology Enrichment Analysis

Prediction probability scores of all the bacteria- and virus-targeted human proteins
were sorted (Supplementary Tables S6 and S7). Prediction scores for the top 100 bacteria-
targeted and the same number of virus-targeted human proteins were investigated further
to understand the specific infection strategies. GO enrichment analysis of the predicted
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bacteria-targeted proteins displayed negative regulation for catalytic activity, cellular re-
sponse to hypoxia, cellular catabolic process, nitric oxide biosynthetic process, nitric oxide
metabolic process, calcium ion import, RIG-I signaling pathway, cell adhesion mediated by
integrin, and heart rate, etc. (Table 3). In contrast, virus-targeted human proteins showed
biological processes, such as the peptide biosynthetic process, translation, mitochondrial
ATP synthesis-coupled electron transport, mitochondrial translation elongation, cellular
macromolecule biosynthetic process, mitochondrial translational termination, respiratory
electron transport chain, and translational termination upon GO enrichment analysis
(Table 4). Overall, the top bacteria- and virus-targeted human proteins were related to 48
and 96 enriched biological processes, respectively. We found that most of the enriched bio-
logical processes were distinct for bacteria- and virus-targeted human proteins (Figure 4).

Table 3. Top 20 GO biological processes for bacterial-targeted human proteins.

Term p-Value

regulation of nucleic acid-templated transcription (GO:1903506) 0.003414

regulation of cellular macromolecule biosynthetic process (GO:2000112) 0.004395

negative regulation of catalytic activity (GO:0043086) 0.008008

glomerulus vasculature development (GO:0072012) 0.029631

regulation of relaxation of cardiac muscle (GO:1901897) 0.029631

dosage compensation by inactivation of X chromosome (GO:0009048) 0.029631

negative regulation of cellular response to hypoxia (GO:1900038) 0.029631

pronephros development (GO:0048793) 0.029631

negative regulation of cellular catabolic process (GO:0031330) 0.033057

negative regulation of nitric oxide biosynthetic process (GO:0045019) 0.034484

negative regulation of nitric oxide metabolic process (GO:1904406) 0.034484

negative regulation of calcium ion import (GO:0090281) 0.034484

negative regulation of RIG-I signaling pathway (GO:0039536) 0.034484

glycosphingolipid catabolic process (GO:0046479) 0.034484

thiamine-containing compound metabolic process (GO:0042723) 0.034484

regulation of cardiac muscle cell membrane potential (GO:0086036) 0.034484

negative regulation of cell adhesion mediated by integrin (GO:0033629) 0.034484

positive regulation of histone H4 acetylation (GO:0090240) 0.034484

negative regulation of heart rate (GO:0010459) 0.034484

regulation of relaxation of muscle (GO:1901077) 0.034484

Table 4. Top 20 GO biological processes for viral-targeted human proteins.

Term p-Value

peptide biosynthetic process (GO:0043043) 8.36 × 10−11

translation (GO:0006412) 2.25 × 10−9

mitochondrial ATP synthesis-coupled electron transport (GO:0042775) 2.63 × 10−7

mitochondrial translational elongation (GO:0070125) 3.08 × 10−7

cellular macromolecule biosynthetic process (GO:0034645) 3.45 × 10−7

mitochondrial translational termination (GO:0070126) 3.60 × 10−7

respiratory electron transport chain (GO:0022904) 5.21 × 10−7

translational termination (GO:0006415) 6.01 × 10−7
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Table 4. Cont.

Term p-Value

translational elongation (GO:0006414) 1.10 × 10−6

gene expression (GO:0010467) 1.14 × 10−6

mitochondrial translation (GO:0032543) 1.25 × 10−6

mitochondrial electron transport, cytochrome c to oxygen (GO:0006123) 3.43 × 10−6

epidermis development (GO:0008544) 3.67 × 10−6

cellular protein metabolic process (GO:0044267) 6.09 × 10−6

protein targeting to ER (GO:0045047) 1.03 × 10−5

intermediate filament organization (GO:0045109) 4.37 × 10−5

SRP-dependent cotranslational protein targeting to membrane (GO:0006614) 9.30 × 10−5

peptide cross-linking (GO:0018149) 1.01 × 10−4

cotranslational protein targeting to membrane (GO:0006613) 1.14 × 10−4

skin development (GO:0043588) 1.20 × 10−4
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Pathway enrichment analysis showed the uptake and function of anthrax toxins, de-
fective NEU1 causing sialidosis, and Vitamin B1 (thiamin) metabolism pathways for the top
100 bacteria-targeted human proteins (Table 5). Likewise, the top predicted virus-targeted
human proteins showed the enrichment of pathways, including the formation of the corni-
fied envelope, keratinization, translation, and mitochondrial translation termination, etc.
(Table 6). We found that the enriched pathways for bacteria- and virus-targeted human
proteins were different (Figure 5). The above results suggested that bacterial-targeted
human proteins enriched gene ontology (GO) and pathways distinct from viral-targeted
human protein.

Table 5. Top 5 pathways for bacterial-targeted human proteins.

Pathway Name Entities p Value

Uptake and function of anthrax toxins 0.009407594

ARL13B-mediated ciliary trafficking of INPP5E 0.02672975

Defective NEU1 causes sialidosis 0.02672975

Vitamin B1 (thiamin) metabolism 0.044155321

RUNX1 interacts with cofactors whose precise effect on RUNX1
targets is not known 0.044545497
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Table 6. Top 5 pathways for viral-targeted human proteins.

Pathway Name Entities p Value

Formation of the cornified envelope 1.78 × 10−10

Keratinization 9.88 × 10−9

Translation 3.97 × 10−7

Respiratory electron transport, ATP synthesis by chemiosmotic
coupling, and heat production by uncoupling proteins. 1.94 × 10−6

Mitochondrial translation termination 1.58 × 10−5

Processes 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

Pathway enrichment analysis showed the uptake and function of anthrax toxins, de-
fective NEU1 causing sialidosis, and Vitamin B1 (thiamin) metabolism pathways for the 
top 100 bacteria-targeted human proteins (Table 5). Likewise, the top predicted virus-tar-
geted human proteins showed the enrichment of pathways, including the formation of 
the cornified envelope, keratinization, translation, and mitochondrial translation termina-
tion, etc. (Table 6). We found that the enriched pathways for bacteria- and virus-targeted 
human proteins were different (Figure 5). The above results suggested that bacterial-tar-
geted human proteins enriched gene ontology (GO) and pathways distinct from viral-
targeted human protein. 

Table 5. Top 5 pathways for bacterial-targeted human proteins. 

Pathway Name Entities p Value 
Uptake and function of anthrax toxins 0.009407594 

ARL13B-mediated ciliary trafficking of INPP5E 0.02672975 
Defective NEU1 causes sialidosis 0.02672975 
Vitamin B1 (thiamin) metabolism 0.044155321 

RUNX1 interacts with cofactors whose precise effect on 
RUNX1 targets is not known 0.044545497 

Table 6. Top 5 pathways for viral-targeted human proteins. 

Pathway Name Entities p Value 
Formation of the cornified envelope 1.78 × 10−10 

Keratinization 9.88 × 10−9 
Translation 3.97 × 10−7 

Respiratory electron transport, ATP synthesis by chemiosmotic 
coupling, and heat production by uncoupling proteins. 1.94 × 10−6 

Mitochondrial translation termination 1.58 × 10−5 

 
Figure 5. Venn diagram of enriched pathways for bacterial- and viral-targeted human proteins. 

4. Discussion 
Rapid, safe, cost-effective, and accurate tools for etiological diagnosis of suspected 

infections are of paramount importance for individual and public health. Particularly im-
portant is to discriminate between the bacterial and viral causes of infectious diseases 
given the alarming rise of antibiotic resistance, due to their indiscriminate and unneces-
sary use. An estimated 30–50% of antibiotics are prescribed in hospitalized patients of the 
United States for wrong indications, most commonly viral infections 
(https://www.cdc.gov/antibiotic-use/stewardship-report/outpatient.html, accessed on 21 
October 2021) [34]. Traditional culture methods for bacterial infections are low 

Figure 5. Venn diagram of enriched pathways for bacterial- and viral-targeted human proteins.

4. Discussion

Rapid, safe, cost-effective, and accurate tools for etiological diagnosis of suspected
infections are of paramount importance for individual and public health. Particularly
important is to discriminate between the bacterial and viral causes of infectious dis-
eases given the alarming rise of antibiotic resistance, due to their indiscriminate and
unnecessary use. An estimated 30–50% of antibiotics are prescribed in hospitalized
patients of the United States for wrong indications, most commonly viral infections
(https://www.cdc.gov/antibiotic-use/stewardship-report/outpatient.html, accessed on
21 October 2021) [34]. Traditional culture methods for bacterial infections are low through-
put, time consuming, and labor intensive, in addition to the challenges of sample collection
from some of the infected tissues, and the lack of wide availability of culture techniques for
many pathogen species. On the other hand, the diagnosis of viral infections by serology
may lack specificity, while nucleic acid detection methods require sophisticated equipment
and technical expertise. However, no reliable methods or markers are currently available
for the rapid diagnosis of bacterial and viral etiologies of infectious diseases.

Attempts have been made to develop complementary diagnostics for infectious dis-
eases by focusing on specific host responses. In addition to being capable of discriminating
between colonization and infection, this approach is not limited by the availability of in-
fected tissue samples. Moreover, host response-based categorization of infections provides
additional insights into the disease pathogenesis and immune response and may help to
identify new targets for therapeutic intervention.

Multiple attempts have been made to diagnose infectious diseases based on host-
specific biomarkers. Widely used parameters such as WBC counts and C-reactive protein
(CRP), may aid to differentiate between bacterial and viral infections, but lack sensitivity
and specificity, leading to frequent misdiagnosis. Newer bacterial infection markers, such as
presepsin, procalcitonin, and CD64, are used for severe sepsis, while proADM may predict
prognosis of the disease [35,36]. In contrast, cytokines, such as IL-2, IL-8, and IL-10 were
suggested as early biomarkers for viral infection [37]. Several research groups reported that
the antiviral host protein MxA is a clinically useful marker for acute viral infection and,

https://www.cdc.gov/antibiotic-use/stewardship-report/outpatient.html
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combined with CRP and/or procalcitonin, may distinguish between bacterial and viral
infections [38]. A double-blind, multicenter study found that a strategy to integrate CRP,
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon γ-induced
protein-10 (IP-10) performed significantly better than the individual markers to identify
acute viral infection in pediatric patients [39]. However, they did not validate their tools
against reference diagnostic methods, limiting its utility. Other studies also suggested
that a combination of markers may perform better than a single biomarker [40]. However,
combining CRP with other markers did not improve the former’s ability to differentiate
between bacterial and viral lower respiratory tract infections in a different study [41].

High throughput genomic and proteomic studies have been employed to identify
infection-specific host gene sets. Although they were useful for novel biomarker discovery,
the gene sets often contained a large number of candidates, making them difficult to apply
clinically [42–44]. Through multi-cohort analysis of these large datasets, smaller gene sets
optimized for the diagnosis of bacterial and viral infections were identified later on [45].

Machine learning techniques have been extensively used for disease biomarker discov-
ery, including infectious diseases. However, they were mostly used for individual microbial
species or groups of pathogens. The increasing availability of bacteria–human and virus–
human PPIs now permits researchers to compare bacterial- and viral-specific infection
strategies and identify host proteins that are differentially targeted by these two classes
of pathogens. We employed well-known machine learning methods, such as SVM, RF,
and DNN to the available PPI datasets to distinguish between bacteria- and virus-targeted
human proteins.

We considered all the updated and comprehensive sets of experimentally validated
bacteria–human and virus–human PPIs from PHISTO. We found 1780 human proteins
that are common targets for bacteria and viruses. During the bacterial and viral infection,
these common proteins might help to execute several commonalities, such as immune
response patterns, acute onset, and response to antimicrobial agents in humans. The
primary goal of the current study was to differentiate between bacterial- and viral-targeted
human proteins. Therefore, we excluded these 1780 human proteins from our analysis. The
proposed method used 1618 and 3917 bacterial- and viral-targeted human proteins. To
ensure utilization of a larger dataset of two classes, we considered the complete dataset
for building the model. For imbalance datasets, we found that performance measures,
such as the AUC, MCC, and F1-score, were more important as opposed to sensitivity,
specificity, and accuracy. Therefore, we compared the AUC, MCC, and F1-score for all
the cases. We found that sequence and gene ontology features performed far better than
network features. We witnessed that the network properties of human proteins was unable
to distinguish between bacterial- and viral-targeted human proteins (Table 1), suggesting
indistinguishable network feature patterns for bacterial and viral targeted human proteins.
The majority of frequent GO IDs for bacterial- and viral-targeted human proteins are
common (Supplementary Figure S1). Therefore, gene ontology features were unable to
perform better than the sequence features. Among the sequence features, we found that
DC achieved better performance than the others. A combination of AAC, DC, and PAAC
features (445 features) achieved the best performance (Table 1). In addition to these,
the feature set selected by different feature selection techniques also showed a poorer
performance than the above features set. Therefore, we reported that the combination
of AAC, DC, and PAAC (445 features) is the best feature set for discriminating between
bacterial- and viral-targeted human proteins. If the two classes are distinct due to true
biological reasons, then we can also get good performance results for conventional MLTs
like SVM and RF (shown in Table 1, and Figures 2 and 3). The DNN performed well due
to a large number of data and features. Furthermore, we identified the top 100 human
proteins targeted by bacteria and the top 100 human proteins targeted by viruses. The gene
ontology enrichment analysis of these 200 proteins showed a greater number of enriched
biological processes for viral-targeted human proteins rather than bacterial-targeted human
proteins (Figure 4). Similarly, we observed a greater number of enriched pathways for viral-
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targeted human proteins than bacterial targeted human proteins. These results imply that
viruses are influencing more biological processes and pathways than bacteria. As is known,
viruses are totally dependent on the host. Therefore, they exploit more host machinery
than bacteria. The above results indicate the same. In addition to this, we observed that the
majority of the enriched biological processes and pathways were different for bacterial- and
viral-targeted human proteins. These functional annotations also validated our method for
discriminating between bacterial- and viral-targeted human proteins.

5. Conclusions

We proposed a computational method to distinguish between the bacteria- and virus-
targeted human proteins. We employed widely used and state-of-the-art machine learning
techniques, such as SVM, RF, and DNN and integrated important biological information
on human proteins, including the sequences, networks, and GO to achieve this goal.
We found the best performance was with the sequence features and the DNN classifier.
We developed a prediction model to maximize the performance measures and identify
the best features to do the same. Therefore, we did not use the prediction for future
data. However, the proposed model may be utilized for predicting and discriminating
between the possible interactions of human proteins with bacterial and viral proteins.
We identified distinct targets for bacterial and viral infections upon GO and pathway
enrichment analysis of highly predicted human proteins. Bacterial targets predominantly
included immune response-related genes and transcriptional machinery, while viruses
targeted protein translation and mitochondrial energy metabolism. The distinction between
bacteria- and virus-targeted human proteins might help to improve infection-specific
diagnosis and treatment. In the future, we will look for the difference between RNA and
DNA viruses, and Gram-positive and Gram-negative bacteria to understand the specific
infection strategy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10020291/s1, Figure S1: Venn diagram of Gene Ontology (GO)
IDs of bacteria- and virus-targeted human proteins., Table S1: Bacterial targeted reviewed human
proteins, Table S2: Viral targeted reviewed human proteins, Table S3: Top GO IDs for bacterial and
viral targeted human proteins, Table S4: Full table of features wise performance measures on bacterial
and viral targeted human proteins, Table S5: Full table of selected feature-wise performance measures
of bacterial and viral targeted human proteins, Table S6: Probability score of top 100 bacteria targeted
human proteins, Table S7: Probability score of top 100 virus targeted human proteins.
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