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Abstract: We consider one-step and two-step simple models of anaerobic digestion that are able
to adequately capture the main dynamical behaviour of the full anaerobic digestion model ADM1.
We do not consider specific growth functions. We only require them to satisfy certain qualitative
assumptions. These assumptions are satisfied for concave growth functions, but they are also satisfied
for a large class of growth functions found in many applications. We consider the maximisation of
the biogas production with respect to the operating parameters of the model, which are the dilution
rate and the substrate input concentration. We give the best operating conditions and we describe
them as a subset of the set of operating parameters. Our models incorporate biomass decay terms,
corresponding to maintenance. Numerical plots with specified growth functions and biological
parameters illustrate the obtained results.

Keywords: anaerobic digestion; biogas; chemostat; maintenance; operating diagram; optimization;
productivity; stability

MSC: 34D20; 34H20; 65K10; 92C75

1. Introduction

Anaerobic digestion (AD) is a well known and established technology for treating
waste in the methanisation of sewage sludge from wastewater treatment plants. AD enables
the water industry to treat waste water as a resource for generating energy and recovering
valuable by-products. In the context of renewable energy, it has now become an attractive
alternative to fossil carbon [1]. AD is a complex biological process in which organic material
is converted into biogas (methane) in an environment without oxygen [2–6]. One of its
main disadvantages is its sensitivity to disturbances, which can lead to instability problems,
in addition to a decrease in the biogas production rate [7]. Indeed, the conditions and
technological parameters characterising the methane fermentation process include many
parameters: hydraulic retention time, organic loading rate, anaerobic sludge concentration
in the bioreactor, substrate dewatering, organic matter content, substrate dosage, mixing
method and frequency, temperature, and many others.

When the experimenter does not have a mechanistic mathematical model of the
process being studied, one method for selecting the best conditions for biogas production
is to carry out multi-variant tests and select the most efficient variants and then optimise
them and develop a mathematical model. This first approach is presented in [8–10]. On the
other hand, when the experimenter has a model of the process being studied and knows or
has identified its biological parameters, a good way to optimise biogas production is to look
for the optimal flow rate of the bioreactor that produces the most biogas. This approach
is presented in [11–21]. Therefore, mechanistic mathematical models are a good basis for
monitoring and developing control strategies to optimise the operation of such processes.
The present paper is a contribution to this second approach to the problem: we assume
that we know a mechanistic mathematical model of the process and that we have already
identified its biological parameters, and then we look to the best operating conditions for
biogas production.
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However, having a model of AD is not that easy. Indeed, the complexity of AD has
motivated the development of mechanistic mathematical models, such as the widely used
Anaerobic Digestion Model Model No. 1 (ADM1) [2]. This model has a large number of
state variables and parameters. It is impossible to obtain an analytical characterization of
the steady states and to describe the operating diagram (OD), that is to say, to identify the
asymptotic behaviour of existing steady states as a function of the operating parameters
(substrate inflow concentrations and dilution rate). To the author’s knowledge, only
numerical investigations are available [3]. Therefore, although ADM1 is a complex model
that is widely accepted as a common platform for AD process modelling and simulation,
it has a large number of parameters and states that hinder its analytic study. Due to the
analytic intractability of the full ADM1, progress has been made towards the construction
of simpler models that preserve biological meaning. The simplest model of the chemostat
with only one biological reaction, where one substrate is consumed by one microorganism,
is well understood [22–24]. However a one-step model is too simple to encapsulate the
essence of AD.

More realistic models of AD are two-step models. An important contribution to the
modelling of AD as a two-step is the model presented in [25], hereafter denoted as the AM2
model and studied in [15,26]. It has been shown that under some circumstances, this very
simple two-step model is able to adequately capture the main dynamical behaviour of the
full ADM1 [27,28]. AM2 is a four-dimensional system of ordinary differential equations
and takes acidogenesis and methanogenesis into consideration. In the first step, the organic
substrate is consumed by the acidogenic bacteria and produces a substrate, the Volatile
Fatty Acids (VFA), while in the second step, the methanogenic population consumes VFA
and produces biogas.

Another interesting simple AD model, with eight state variables, was considered
in [21,29,30]. This model takes into consideration acidogenesis, acetogenesis, and methano-
genesis. We also mention the mathematical model considered in [31], which also added the
hydrolysis step in the model. It is also worth mentioning the models of AD that include the
evolution of biogas and hydrogen [32–34].

The problem of optimising biogas production for one-step AD models is studied
in [13,14] and for the AM2 model in [11,15–18]. This problem is also analysed in [21,31,35],
where models with more steps for AD are considered.

The OD of a model has operating parameters as its coordinates, and the various
regions defined within it correspond to qualitatively different asymptotic behaviours. The
operating parameters are the input concentrations of substrates and the flow rate. We
call them operating parameters, although they are not always under the control of the
experimenter. Indeed, in most practical cases, one can at best store material upstream and
control the flow rate. The concentration of the input substrate is rarely a control parameter.
However, this parameter is known to the experimenter and is not of the same nature as
the biological parameters, on which the experimenter can only act with great difficulty.
In most of the results, we will assume that the input concentration of substrate is fixed,
and we want to determine the corresponding optimal flow rate. Apart from the operating
parameters, which can vary, all other parameters have biological meaning and are fitted
using experimental data from ecological and/or biological observations of organisms and
substrates. When the biological parameters are determined, it is then easy to plot the
operating diagram and thus have a prediction of the behaviour of the system as a function
of the operating parameters.

The OD is then the bifurcation diagram that shows how the system behaves when we
vary the operating (control) parameters. This diagram shows how extensive the parameter
region is, where some asymptotic behaviours occur. This bifurcation diagram is very useful
to understand the model from both the mathematical and biological points of view. Its
importance for bioreactors was emphasized in [36]. This diagram is often constructed both
in the biological literature [15,29,35–38] and the mathematical literature [3,21,30,39–44].
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In the present work, we consider the one-step model and the AM2 model, and we give
the best operating conditions for biogas production, that is to say, we give the subset of the
OD corresponding to the maximal flow rate of the biogas. This set of the best operating
conditions in the OD indicates to the experimenter how to choose the operating condition
such that the system produces the maximum of biogas. The surprising result for AM2 is
that the optimal steady state can involve the extinction of the acidogenic bacteria [11]. This
property was also observed for more complex models [21,31]. We address this problem and
fully describe the operating conditions under which this situation is encountered. Another
very important phenomenon, which was observed in [35], is that the best biogas produced
is sometimes obtained for operating parameters for which the system has bistability. This
issue is also addressed, and the set of operating parameters for which the system may be in
such a situation is fully described.

The paper is organized as follows. In Section 2, we describe the one-step and two-step
models of AD that are studied in this paper. We give the steady states of the models and
their biogas flow rate or productivity. We state the problems of optimisation that will be
considered later. The results for one-step models are given in Section 3.1. The particular case
when the biomass mortality is neglected is considered in Section 3.1.8, and applications to
various growth functions that were considered in the literature are given in Appendix A.5.
The results for two-step models are listed in Section 3.2, and the applications of our theory
to the classical AM2 model are emphasized in Section 3.2.4. We discuss and compare our
results with the results of the existing literature in Section 3.3. Finally, Sections 4 and 5
draw some discussions, conclusions, and perspectives. The proofs and supplementary
information are given in Appendixes A and B.

2. Materials and Methods

We consider a continuous stirred-tank reactor (CSTR), also called a bioreactor or a
chemostat, where a single population of micro-organisms is growing on a single limiting
substrate. We also consider the more complex situation where this population produces
a substrate which is itself consumed by a second population. The limiting substrate is
fed into the culture vessel with a constant concentration at flow rate Q. The culture
medium is withdrawn at the same flow rate Q so that the culture volume V in the vessel is
kept constant.

The dilution rate D is defined as D = Q/V and is the inverse of the residence time.
We will take into account that the residence time of the liquid (culture medium) in the
bioreactor may be shorter than that of the solids (micro-organisms), which is common
in bioreactors.

We also take maintenance into account. Consumption of energy for all processes other
than growth is called maintenance. In situations where microbial cells are located in a
favourable environment, maintenance can often be neglected. In other situations, however,
a significant portion of the energy-yielding substrate that could be used for growth is
consumed for maintenance [45]. In the ADM1 model and also in some simple models of
AD, maintenance is taken into account as decay [2,37,38,43,44].

It is assumed that the other required substrates are provided in excess, that the culture
medium is perfectly mixed and that the environmental conditions (temperature and pH)
are regulated at appropriate constant values.

2.1. One-Step Models

Although the one-step model is too simple to encapsulate the essence of AD, it is
useful for the understanding of some basic facts concerning optimization of biogas in
bioreactors. Consider a one-step model of the form:

kS r−→ X + k1CH4 (1)
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where one substrate S is consumed by one micro-organism X and produces biogas with reac-
tion rate r = µ(S)X, where µ is the growth function and k and k1 are pseudo-stoichiometric
coefficients. Let D be the dilution rate and Sin the concentrations of input substrate. The
dynamical equations of the model are [22–24,46,47]

Ṡ = D
(
Sin − S

)
− kµ(S)X

Ẋ = (µ(S)− D1)X
(2)

where D1, the removal rate of the micro-organisms, takes the form

D1 = αD + a, (3)

where a is the decay term corresponding to maintenance effects and α ∈ (0, 1] is a parameter
allowing us to decouple the Hydraulic Retention Time, HRT = 1/D and the Solid Retention
Time SRT = 1/(αD). The stoichiometric coefficient k1 in (1) appears in the mathematical
equations of the model when we consider the biogas flow rate; see Section 2.1.2. The
stoichiometric coefficient k can be reduced to 1; see Appendix A.1. However, since the
stoichiometric coefficient has its own importance for the biologist, and since our aim is to
give the biologist a useful tool for the best operating conditions of the chemostat model,
we do not make this reduction and we present the results in the original model (2). The
mathematical analysis of (2) is well-known [22,24]. For the convenience of the reader, we
recall in this paper the main results and state them using the OD; see Appendix A.2.

2.1.1. Steady States

We assume that µ is not necessarily monotonic, i.e., that the inhibition by substrate S
can be taken into account in the model. We make now the following hypothesis.

Hypothesis 1. The function µ is C1 and satisfies µ(0) = 0, and there exists Sm ∈ (0,+∞], such
that µ′(S) > 0 for 0 < S < Sm. If Sm < +∞, then, in addition, µ′(S) < 0 for S > Sm.

The case Sm = +∞ corresponds to an increasing function. This case is called the
Monod case, since it is satisfied by the usual Monod growth function

µ(S) = mS
K+S . (4)

The case Sm < +∞ corresponds to an increasing and then decreasing function and
models the inhibition by the substrate at high concentrations. This case is called the Haldane
case, since it is satisfied by the usual Haldane growth function

µ(S) = mS
K+S+S2/Ki

. (5)

We need to define the break-even concentrations:

Definition 1. When Sm = +∞, the break-even concentration λ(D) is the unique solution of
equation µ(S) = D. It is defined for D < µ(+∞). When Sm < +∞, there can be two break-
even concentrations λ(D) and λ̄(D). They are the solutions of equation µ(S) = D, such that
λ(D) < Sm < λ̄(D). The first one is defined for 0 < D < µ(Sm). The second one is defined
for µ(+∞) < D < µ(Sm). They have the same limit value λ(Dm) = λ̄(Dm) for Dm = µ(Sm).
If D > µ(Sm), by convention we let λ(D) = +∞ and λ̄(D) = +∞.

Besides the washout steady state F0 = (Sin, 0), (2) has the positive steady states

F1 =
(

λ(D1), D
kD1

(
Sin − λ(D1)

))
, F2 =

(
λ̄(D1), D

kD1

(
Sin − λ̄(D1)

))
. (6)
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When Sm = +∞, only F1 exists. The conditions of existence an stability of the steady
state, together with the OD of (2), are given in Appendix A.2. Note that F1 is stable
whenever its exists, while F2 is unstable whenever its exists.

2.1.2. Steady State Optimization of Biogas Production

The biogas is simply a product of the biological reactions and it has no feedback on
the dynamical Equation (2). The biogas flow rate, denoted by GCH4 , is proportional to the
microbial activity, as proposed in [46,48–50]:

GCH4 = k1µ(S∗)X∗ (7)

where (S∗, X∗) is a steady state of (2). Let us denote by Gi, the rate of production of biogas,
defined by (7), and evaluated at steady state Fi, i = 0, 1, 2. One has G0 = 0, and using the
components of the steady states F1 and F2 given in (6), G1 and G2 are given by

G1
(

D, Sin) = k1
k D
(
Sin − λ(αD + a)

)
for Sin ≥ λ(αD + a),

G2
(

D, Sin) = k1
k D
(
Sin − λ̄(αD + a)

)
for Sin ≥ λ̄(αD + a).

(8)

Our aim is to determine the set of operating conditions for which the biogas pro-
duction is maximal. We consider the biogas flow rate G2 corresponding to the unstable
equilibrium F2 because we do not know if this flow rate is always lower than that of the
stable equilibrium F1. If it was possible that, for some operating condition D and Sin,
G2
(

D, Sin) > G1
(

D, Sin), then the problem of the stabilization of the reactor at its unstable
steady state F2 by using some feedback control would have been an interesting challenge.
However, this possibility is excluded, as stated in the following remark.

Remark 1. Note that G2 is defined if and only if Sin ≥ λ̄(αD + a). Since λ̄(αD + a) > λ(αD +
a), G1 is also defined and we have G1(D, Sin) > G2(D, Sin).

Hence, the operating conditions D and Sin which produce the maximum of biogas are
obtained by the maximization of G1

(
D, Sin).

Problem 1. Determine the set of operating conditions for which G1 is maximal.

2.1.3. Steady State Optimization of Biomass Production

AD is used because it allows material to be degraded without producing too much
biomass, which is a good thing because in the environmental field we do not really know
what to do with the sludge produced. If we want to produce biomass, it is rather in
biotechnologies such as pharmaceuticals or food processing that we should be looking.
Let us forget about AD for a moment and assume that the industrial goal of the process
is the production of micro-organisms. When a continuous culture system is viewed as a
production process, its performance may be judged by the quantity of bacteria produced,
which is called the productivity of biomass. The total output from a continuous culture
unit in the steady state is equal to the product of flow rate and concentration of organisms.
Therefore, the productivity of (2) at steady state (S∗, X∗) is given by [20,47]

P = QX∗ (9)

where Q = VD is the flow rate, and V is the volume of the CSTR. Let us denote by Pi,
the productivity evaluated at steady state Fi, i = 0, 1, 2. One has P0 = 0 and using the
components of the steady states F1 and F2, given in (6), P1 and P2 are given by

P1
(

D, Sin) = VD2

k(αD+a)

(
Sin − λ(αD + a)

)
for Sin ≥ λ(αD + a),

P2
(

D, Sin) = VD2

k(αD+a)

(
Sin − λ̄(αD + a)

)
for Sin ≥ λ̄(αD + a).

(10)
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Our aim is to determine the set of operating conditions for which the productivity is
maximal. Note that, as for the biogas flow rate, the productivity at F1 is greater the the
productivity at F2: P1(D, Sin) > P2(D, Sin). Hence, the operating conditions D and Sin that
maximize productivity are obtained by maximizing P1

(
D, Sin).

Problem 2. Determine the set of operating conditions for which P1 is maximal.

2.1.4. The Case without Mortality

Note that when a = 0, we have

G1
(

D, Sin) = k1
k D
(
Sin − λ(αD)

)
, G2

(
D, Sin) = k1

k D
(
Sin − λ̄(αD)

)
,

P1
(

D, Sin) = V
kα D

(
Sin − λ(αD)

)
, P2

(
D, Sin) = V

kα D
(
Sin − λ̄(αD)

)
.

Therefore, Gi and Pi, i = 1, 2 are proportional. Hence, we can make the following
remark.

Remark 2. When a = 0, optimizing P1, given by (10), is the same as optimizing G1, given by (8);
that is, Problems 1 and 2 have the same solution. However, this is no longer true when a > 0.

For increasing functions (i.e., Sm = +∞), in the case a = 0, the equivalent Problems 1
and 2 have been solved in [51]; in the case a > 0, Problem 1 has been solved in [52] and
Problem 2 in [53]. In Sections 3.1.1 and 3.1.5, we will give the solutions to these problems
in the more general case where the growth function µ satisfies the Hypothesis 1 and is not
necessarily monotonic.

2.2. Two-Step Models

We consider the general two-step model with a cascade of two biological reactions,
where one substrate S1 is consumed by one microorganism X1 (acidogenic bacteria, in the
AM2 model), to produce a product S2 that serves as the main limiting substrate for a second
microorganism X2 (methanogenic bacteria in the AM2 model) as schematically represented
by the following reaction scheme (see [25]):

k1S1
r1−→ X1 + k2S2, k3S2

r2−→ X2 + k4CH4 (11)

where r1 = µ1(S1)X1 and r2 = µ2(S2)X2 are the kinetics of the reactions and ki, i = 1, . . . , 4
are pseudo-stoichiometric coefficients. In fact, biological reactions also produce CO2; see
Equations (1) and (2) in [25]. However, since in this section we are only interested in the
biogas production, we do not focus on the CO2 production. Let D be the dilution rate and
Sin

1 and Sin
2 the concentrations of input substrates S1 and S2, respectively. The dynamical

equations of the model take the form:

Ṡ1 = D
(
Sin

1 − S1
)
− k1µ1(S1)X1,

Ẋ1 = (µ1(S1)− D1)X1,
Ṡ2 = D

(
Sin

2 − S2
)
+ k2µ1(S1)X1 − k3µ2(S2)X2,

Ẋ2 = (µ2(S2)− D2)X2,

(12)

where, as in (3), the removal rates of the micro-organisms D1 and D2 take the form

Di = αiD + ai, i = 1, 2, (13)

where αi ∈ (0, 1], i = 1, 2, is a parameter allowing us to decouple the HRT and the SRT.
This decoupling is necessary when considering technology such as systems where biomass
is fixed onto supports (as in fixed or fluidized bed reactors) or still retained in the system
by membranes such as in MBRs (Membrane Bioreactors); see [54,55]. The model (12) is an
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extension of the AM2 model presented in [25], with α1 = α2, a1 = a2 = 0, and kinetics µ1
and µ2 of Monod and Haldane types, respectively.

The pseudo-stoichiometric coefficients ki in (12) can be reduced to 1; see Appendix B.1.
However, since these coefficients have their own importance for the biologist and since
our aim is to discuss the best operating conditions, we do not make this reduction and we
present the results in the original model (12). The model has a cascade structure which
renders its analysis easy. We give in Appendix B.3 the main results on the existence and
stability of the steady states of (12), and we express them using the OD.

2.2.1. Steady States

We consider (12) with general kinetics functions µ1 and µ2, satisfying the following
qualitative properties:

Hypothesis 2. The function µ1 is C1, µ1(0) = 0, µ′1(S1) > 0 for S1 > 0. Let m1 = µ1(+∞).

Hypothesis 3. The function µ2 is C1, µ2(0) = 0, µ2(+∞) = 0, and there exists Sm
2 > 0 such

that µ′2(S2) > 0 for 0 < S2 < Sm
2 , and µ′2(S2) < 0 for S2 > Sm

2 .

We consider the break-even concentrations as stated in Definition 1. The growth
function µ1 admits only one break-even concentration, denoted λ1, while the growth
function µ2 admits two break-even concentrations, which will be denoted λ2 and λ̄2. We
summarize in Table 1 the definitions of these break-even concentrations, together with two
auxiliary functions that are used in the description of the biogas flow-rates at steady states
of (12).

Table 1. Break-even concentrations and auxiliary functions.

λ1(D) is the unique solution of equation µ1(S1) = D, for D < m1

λ2(D) < λ̄2(D) are the solutions of equation µ2(S2) = D, for D < µ2(Sm
2 )

λ(0) = 0, λ̄2(0) = +∞ and λ(D) = λ̄2(D) for D = µ2(Sm
2 )

H1(D) = λ2(D2) +
k2
k1

λ1(D1),
H2(D) = λ̄2(D2) +

k2
k1

λ1(D1)

The system (12) can have up to six steady states, denoted Eij, where i = 0, 1 and
j = 0, 1, 2. The components of the steady states are given in Table A3. The existence and
stability conditions of the steady states of (12) are given in Appendix B.3. Note that E11 is
stable whenever it exists, while E01 is stable if and only if it exists and E11 does not exist.
Moreover the steady states E02 and E12 are unstable whenever they exist.

2.2.2. Steady State Optimization of Biogas Production

As in the one-step model, the biogas is simply a product of the biological reactions
and it has no feedback on the dynamical Equation (12). As we noticed in (7), the mass flow
of the methane production, denoted by GCH4 , is proportional to the microbial activity (see
Equation (12) in [25]):

GCH4 = k4µ2(S2)X2.

Let us denote by Gij the production of biogas at steady states Eij for i = 0, 1 and
j = 0, 1, 2. Using the components of the steady states given in Table A3, it is seen that
G00 = G10 = 0 and Gij for i = 0, 1 and j = 1, 2 are defined as in Table 2.
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Table 2. The biogas production at steady state Eij, i = 0, 1, j = 1, 2; λ2(D), λ̄2(D) and Hj(D), j = 1, 2,
are defined in Table 1.

Biogas Production Domain of Definition

G01

(
D, Sin

2

)
= k4

k3
D
(

Sin
2 − λ2(D2)

)
λ2(D2) ≤ Sin

2

G02

(
D, Sin

2

)
= k4

k3
D
(

Sin
2 − λ̄2(D2)

)
λ̄2(D2) ≤ Sin

2

G11

(
D, Sin

1 , Sin
2

)
= k4

k3
D
(

Sin
2 + k2

k1
Sin

1 − H1(D)
)

λ1(D1) ≤ Sin
1 , H1(D) ≤ Sin

2 + k2
k1

Sin
1

G12

(
D, Sin

1 , Sin
2

)
= k4

k3
D
(

Sin
2 + k2

k1
Sin

1 − H2(D)
)

λ1(D1) ≤ Sin
1 , H2(D) ≤ Sin

2 + k2
k1

Sin
1

Our aim is to find set of operating conditions for which the flow rate of biogas is
maximal.

Remark 3. We always have G01 > G02 and G11 > G12; see Section 3.2.1.

Hence, the operating conditions D, Sin
1 , and Sin

2 , which produce the maximum of
biogas, are obtained by the maximization of G01

(
D, Sin

2
)

or G11
(

D, Sin
1 , Sin

2
)
. The main

problem is then to compare the maximum of biogas production G11 at E11, where both
species are present, with the maximum of biogas production G01 at E01 where species
X1 is extinct and species X2 is present. Surprisingly, the optimal biogas production does
not always occur at E11, as was noticed by [11,21,31]. Therefore we have to solve the
following problem.

Problem 3. Determine the sets of operating conditions, for which G01 and G11 are maximal.
Compare the maximum of G01 to that of G11.

3. Results
3.1. One-Step Models

The OD of the one-step model (2) is described in Appendix A.2.

3.1.1. Best Operating Conditions for Biogas Production

Let G1 defined by (8) and Sin fixed. Our aim is to maximize the function D 7→
G1(D, Sin). Note that this function is proportional to the function G defined by

G(D) = D(Sin − λ(αD + a)). (14)

The function G is depending on the parameter Sin. It is defined for D ∈ I(Sin), where
the interval I(Sin) is given by

I(Sin) =

{ [
0, δ(Sin)

]
if Sin < Sm

[0, δ(Sm)] if Sin ≥ Sm
with δ(S) = µ(S)−a

α (15)

The function G1 has an absolute maximum if G has one and this maximum is reached
at the same point where G reaches its maximum. By the Extreme Value Theorem, since G is
continuous on the closed interval I(Sin), it must attain a maximum. Let us consider the set
of arguments of the maximum of G, denoted by g(Sin) and defined by

g(Sin) = argmax
D∈I(Sin)

G :=
{

D∗ ∈ I(Sin) : G(D) ≤ G(D∗) for all D ∈ I(Sin)
}

. (16)

To obtain the maximum value of G(D), we differentiate (14) with respect to D, and
we solve the equation G′(D) = 0. The derivative of G is given by

G′(D) = Sin − γ(D)
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where γ is defined by
γ(D) = λ(αD + a) + αDλ′(αD + a). (17)

Remark 4. Since µ(λ(D)) = D, we have λ′(D) = 1/µ′(λ(D)). Therefore the function γ is
written

γ(D) = λ(αD + a) + αD
µ′(λ(αD+a)) .

We have the following result

Proposition 1. Let D∗ ∈ g(Sin). We have Sin = γ(D∗), where γ is defined by (17).

Proof. The proof is given in Appendix A.3.1.

Therefore, the curve
Γ =

{
(D, Sin) : Sin = γ(D)

}
(18)

of SOP contains the operating conditions for which G1 is maximal.
In Figure 1, we plot the Γ curve in the OD of (2). We have shown a curve Γ, which is the

graph of an increasing function. However, this does not always happen; see Appendix A.5.5.
When Γ is not increasing, there may be several maxima of the biogas flow. In Section 3.1.3,
we give sufficient conditions for the maximum to be unique. Since λ′(D) > 0, we deduce
that γ(D) > λ(αD + a) for D > 0. On the other hand,

γ(0) = λ(a), and lim
D→δ(Sm)

γ(D) = +∞.

From these properties we deduce the following remark.

(a) The Monod case (b) The Haldane case

Γ

D0

Sin

λ(a)

J1

J0

Λ

D0

Sin

λ(a)

Λ1Λ2

Λ

J1

J2

J0
Γ

Dc δ(Sm)

Sm

Sc

Figure 1. The OD of (2). The curve Γ is the set of best operating conditions.

Remark 5. If Sm = +∞, the curve Γ is contained in the region J1 (the green region) of the OD,
see Figure 1a. If Sm < +∞, Γ is contained in J1 ∪ J2 (the green and pink regions), and, since
µ′(Sm) = 0, the vertical line Λ1 is an asymptote of Γ, see Figure 1b. Note that in the Haldane case
(Sm < ∞), the curve Γ enters in the bistability region J2 at point (Dc, Sc).

3.1.2. How to Determine the Maximum of Biogas Production

From Proposition 1, to obtain g(Sin), we must solve the equation Sin = γ(D). However,
this equation can be complicated to solve because γ(D) is itself defined by λ(D), which
is the solution of the equation µ(S) = D. We have at our disposal another description of
g(Sin). Indeed, we can write

G(D) = 1
α H(λ(αD + a)), (19)
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where H is defined by

H(S) = (µ(S)− a)(Sin − S), for λ(a) ≤ S ≤ Sin (20)

From (19), it is deduced that the absolute maximum of G corresponds to the absolute
maximum of H and vice versa. To obtain the maximum value of H(S), we differentiate H
with respect to S and we solve the equation H′(S) = 0. The derivative of H is given by

H′(S) = µ′(S)(Sin − S)− µ(S) + a.

Hence, H′(S) = 0 if and only if Sin = η(S), where η(S) is defined by

η(S) = S + µ(S)−a
µ′(S) for S ≥ λ(a). (21)

We have the following result.

Proposition 2. Let S∗ be the maximum of H on (λ(a), Sin). Let D∗ = µ(S∗)−a
α . Then D∗ ∈

g(Sin). Moreover, we have Sin = η(S∗), where η is defined by (21).

Proof. The proof is given in Appendix A.3.2.

Remark 6. With the first method, we must first solve the equation µ(S) = D to obtain λ(D)
and then solve the equation γ(D) = Sin to obtain the optimal D∗ ∈ g(Sin). With the second
method, we simply solve the equation η(S) = Sin to get the maximum S∗ and then take D∗ =
µ(S∗)−a

α ∈ g(Sin).

3.1.3. Uniqueness of the Maximum

Hypothesis 1 is not enough to guarantee that the biogas flow rate admits a unique
global maximum; see Appendix A.5.5. We make the following hypothesis.

Hypothesis 4. For all Sin > 0, g(Sin), defined by (16), has a unique element, which is denoted by
D∗G(S

in).

From Proposition 1 we deduce then the answer to Problem 1: assume that Hypotheses 1
and 4 are satisfied. Then, the set of best operating conditions for biogas production of (2) is
the curve Γ of SOP defined by:

Γ =
{
(D, Sin) : Sin = γ(D)

}
=
{
(D, Sin) : D = D∗G(S

in)
}

. (22)

From Propositions 1 and 2, it is deduced that Hypothesis 4 is satisfied when the
equations

Sin = γ(D) or Sin = η(S)

have a unique solution. A sufficient condition for this is that the functions γ(D) and η(S)
are increasing. The following result gives sufficient conditions for Hypothesis 4 to be valid.

Lemma 1. Assume that Hypothesis 1 is satisfied and, in addition, µ is C2. The following conditions
are equivalent

1. γ′ > 0 on
(

0, µ(Sm)−a
α

)
.

2. (µ− a)µ′′ < 2(µ′)2 on (λ(a), Sm).

3.
(

1
µ−a

)′′
> 0 on (λ(a), Sm).

4. η′ > 0 on (λ(a), Sm).
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If these equivalent conditions are satisfied, then Hypothesis 4 is satisfied. If µ′′ < 0 on
(λ(a), Sm), then the conditions are satisfied.

Proof. The proof is given in Appendix A.3.3.

3.1.4. Best Operating Conditions

We first analyse the Monod case (Sm = ∞). We show in Figure 2 the set Γ of best
operating conditions and we describe how to use this set to obtain practically the maximum
of biogas production. Let Sin be fixed. The intersections of Γ and Λ with the horizontal line
where Sin is kept constant define the values D∗G(S

in), defined in Hypothesis 4, and δ(Sin) =
µ(Sin)−a

α , defined by (15), see Figure 2a. The function D 7→ G1
(

D, Sin) is defined on
[0, δ(Sin)] and attains its maximum G∗(Sin) for D = D∗G(S

in); see Figure 2b.

(a) (b)

D0

Sin

Sin

λ(a)

D∗
G(Sin) δ(Sin)

Λ

Γ

D

y

D∗
G(Sin) δ(Sin)

G∗(Sin)

y=G1(D,S
in)

Figure 2. The best operating conditions of biogas flow rate for the Monod case. (a): The curve Γ in
SOP shows the optimal value D∗G(S

in). (b): The function D 7→ G1(D, Sin) is defined on [0, δ(Sin)],
and attains its maximum, G∗(Sin), for D = D∗G(S

in).

In the Haldane case (Sm < ∞), the description is a little more complicated. If Sin

is fixed, the function D 7→ G1
(

D, Sin) attains its maximum G∗1 (S
in) for D = D∗G(S

in),
obtained by taking the intersection of Γ with the horizontal line where Sin is kept constant,
as it is seen in Figure 3. However, there exist two threshold values Sc and Sm, depicted in
Figure 1b. If Sin ≤ Sm, only G1 is defined (see Figure 3a) while G1 and G2 are both defined
when Sin > Sm (see Figure 3b,c). On the other hand, if Sin > Sc, then the dilution rate
D∗G
(
Sin), which maximises biogas production, corresponds to the bistability mode of the

chemostat; see Figure 3c. More precisely, we make the following remark.

Remark 7. Assume that Hypotheses 1 and 4 hold. Let D = Dc be the unique solution to equation
γ(D) = λ̄(αD + a). Let Sc = γ(Dc).

• If Sin < Sc then for the operating parameters Sin and D = D∗G(S
in), F1 is GAS.

• If Sin > Sc then for the operating parameters Sin and D = D∗G(S
in), F0 and F1 are both stable.

Indeed, since γ is increasing and λ̄ is decreasing, curves Γ and Λ2 have a unique inter-
section point (Dc, Sc); see Figure 1b. The OD shows that if Sin < Sc then

(
D∗G(S

in), Sin) ∈
J1, that is to say, the best operating conditions are in the green region J1, where F1 is GAS
and if Sin > Sc, then

(
D∗G(S

in), Sin) ∈ J2; that is to say, the best operating conditions are in
the pink region J2 of bistability of F0 and F1.
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(a) 0 < Sin < Sm (b) Sm < Sin < Sinc (c) Sinc < Sin

D D D

D D D

Sin Sin Sin

y y y

J1

J2

J0

J1

J2

J0

J1

J2

J0

Γ Γ Γ
Sin

D∗
G

(
Sin
)

δ
(
Sin
)

Sin

D∗
G

(
Sin
)↗
δ
(
Sin
)

x ↖
δ(Sm)

Sin

δ
(
Sin
)
D∗

G

(
Sin
)

x ↖
δ(Sm)

G∗
1(S

in)

D∗
G

(
Sin
)

δ
(
Sin
)

G∗
1(S

in)

D∗
G

(
Sin
)↗
δ
(
Sin
)

x ↖
δ(Sm)

G∗
1(S

in)

δ
(
Sin
)
D∗

G

(
Sin
)

x ↖
δ(Sm)

y=G1(D,Sin)

y=G1(D,Sin)

y=G2(D,Sin)

y=G1(D,Sin)

y=G2(D,Sin)

Figure 3. The set of best operating conditions Γ (in red) shows the optimal dilution rate D∗G(S
in)

corresponding to three typical values of Sin.

Figure 3 shows three typical values of Sin and the corresponding optimal dilution rates
D∗G(S

in). The corresponding biogas productions are depicted in the same figure. The main
results are summarized as follows:

• If Sin < Sm, the biogas production G1(D, Sin) is defined for D ∈
[
0, δ(Sin)

]
; see

Figure 3a.
• If Sin > Sm, the biogas production G1(D, Sin) is defined for D ∈ [0, δ(Sm)], and the

biogas production G2(D, Sin) is defined for D ∈
[
δ(Sin), δ(Sm)

]
; see Figure 3b,c.

• If Sin < Sc, and the chemostat is operated at the optimal dilution rate D∗G
(
Sin), then

the system converges towards the positive steady state F1 giving the maximum of
biogas; see Figure 3a,b.

• If Sin > Sc and the chemostat is operated at the optimal dilution rate D∗G
(
Sin), then,

according to the initial condition, the system converges either to the positive steady
state F1, giving maximum biogas, or the washout steady state F0, with no biogas
production; see Figure 3c.

3.1.5. Best Operating Conditions for Biomass Production

Let P1 be defined by (10) and Sin fixed. Our aim is to maximise the function D 7→
P1(D, Sin). Note that this function is proportional to the function P : D 7→ p(D) defined by

P(D) = D2

αD+a
(
Sin − λ(αD + a)

)
, for D ∈ I(Sin) (23)

where I(Sin) is defined by (15). Therefore P1 has an absolute maximum if P has one and
this maximum is reached at the same point where P reaches its maximum. As in the case of
the biogas flow rate, we consider the arguments of the maximum of P

p(Sin) = argmax
D∈I(Sin)

p :=
{

D∗ ∈ I(Sin) : P(D) ≤ P(D∗) for all D ∈ I(Sin)
}

. (24)

To obtain the maximum value of P(D), we differentiate (23) with respect to D, and we
solve the equation P′(D) = 0. The derivative of P is given by

P′(D) = D(αD+2a)
(αD+a)2

(
Sin − π(D)

)
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where π is defined by

π(D) = λ(αD + a) + αD(αD+a)
αD+2a λ′(αD + a). (25)

Remark 8. Using λ′(D) = 1/µ′(λ(D)), the function π can be written

π(D) = λ(αD + a) + αD(αD+a)
(αD+2a)µ′(λ(αD+a)) .

We have the following result

Proposition 3. Let D∗ ∈ p(Sin). We have Sin = π(D∗), where π is defined by (25).

Proof. The proof is given in Appendix A.4.1.

Therefore, the curve
Π =

{
(D, Sin) : Sin = π(D)

}
(26)

of SOP contains the operating conditions for which P1 is maximal. In Figure 4, this set is
shown in the OD depicted in Figure 1, together with the set Γ. Note that if a > 0, then

λ(αD + a) < π(D) < γ(D). (27)

Therefore, curve Π is above curve Λ and below curve Γ; see Figure 4.

(a) The Monod case (b) The Haldane case

D0

Sin

λ(a)

J1

J0

Λ

Γ

Π

D0

Sin

J1

J2

Λ1Λ2

Λ

J0
Γ

Π

↗
D∗

G(Sin)
↖

D∗
P (Sin)

↗
D∗

P (Sin)
↖

D∗
G(Sin)

Sin

Sin

Figure 4. The curves Γ (in red) and Π (in blue).

3.1.6. How to Determine the Maximum of Biomass Production?

From Proposition 3, to obtain p(Sin) we must solve the equation Sin = π(D), which
can be difficult to solve. We have at our disposal another description of p(Sin). We can
write

P(D) = 1
α2 Q(λ(αD + a)), (28)

where Q is defined by

Q(S) = (µ(S)−a)2

µ(S) (Sin − S), for λ(a) ≤ S ≤ Sin (29)

From (28), it is deduced that the absolute maximum of P corresponds to the absolute
maximum of Q and vice versa. To obtain the maximum value of Q(S), we differentiate Q
with respect to S, and we solve the equation Q′(S) = 0. The derivative of Q is given by

Q′(S) = (µ(S)−a)(µ(S)+a)µ′(S)
(µ(S))2

(
Sin − S

)
− (µ(S)−a)2

µ(S) .
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Hence, Q′(S) = 0 if and only if Sin = ρ(S), where ρ(S) is defined by

ρ(S) = S + (µ(S)−a)µ(S)
(µ(S)+a)µ′(S) , for S ≥ λ(a). (30)

More precisely, we have the following result.

Proposition 4. Let S∗ be the maximum of p on (λ(a), Sin). Then D∗ = µ(S∗)−a
α . We have

D∗ ∈ p(Sin). Moreover, we have Sin = ρ(S∗), where ρ is defined by (30).

Proof. The proof is given in Appendix A.4.2.

Remark 9. With the first method we must first solve the equation µ(S) = D to obtain λ(D),
and then solve the equation π(D) = Sin to obtain the optimal D∗ ∈ p(Sin). With the second
method, we simply solve the equation ρ(S) = Sin to get the maximum S∗ and then take D∗ =
µ(S∗)−a

α ∈ p(Sin).

3.1.7. Uniqueness of the Maximum

Hypothesis 1 is not enough to guarantee that the biomass productivity admits a unique
global maximum; see Appendix A.5.5. We make the following hypothesis.

Hypothesis 5. For all Sin > 0, p(Sin), defined by (24), has a unique element, which is denoted by
D∗P(S

in).

From Proposition 3, we obtain the answer to Problem 2: Assume that Hypotheses 1
and 5 hold. Then, the set of best operating conditions for the productivity of (2) is the curve
Π of SOP defined by:

Π =
{
(D, Sin) : Sin = π(D)

}
=
{
(D, Sin) : D = D∗P(S

in)
}

. (31)

From (27), we deduce that if a > 0, then D∗G(S
in) < D∗P(S

in); see Figure 4.
From Propositions 3 and 4, it is deduced that the uniqueness of D∗P(S

in) is guaranteed
when the equations

Sin = π(D) or Sin = ρ(S)

have a unique solution. A sufficient condition for this is that the functions π(D) and ρ(S)
are increasing. The following result gives sufficient conditions for Hypothesis 5 to be valid.

Lemma 2. Assume that Hypothesis 1 is satisfied and, in addition, µ is C2. The following conditions
are equivalent

1. π′ > 0 on
(

0, µ(Sm)−a
α

)
.

2. (µ−a)(µ+a)
µ+2a µ′′ < 2(µ′)2 on (λ(a), Sm).

3. ρ′ > 0 on (λ(a), Sm).

If these equivalent conditions are satisfied, then Hypothesis 5 is satisfied. If µ′′ < 0 on (λ(a), Sm)

or
(

1
µ−a

)′′
> 0 on (λ(a), Sm), then the conditions are satisfied.

Proof. The proof is given in Appendix A.4.3.

3.1.8. The Case without Mortality

The functions γ, H, and η, defined by (17), (20), and (21), respectively, that were used
for the optimization of the biogas flow rate G are summarized in Table 3. Note that the
functions G and H are related by formula (19). Similarly, the functions π, Q, and ρ, defined
by (25), (29) and (30), respectively, which were used for the optimization of the productivity
P, are summarized in Table 3. Note that the functions P and Q are related by formula (28).
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Table 3. The functions γ, H and η used for the optimization of the biogas flow rate G. The functions
π, Q and ρ used for the optimization of the productivity P. Note that G(D) = 1

α H(λ(αD + a)) and
P(D) = 1

α Q(λ(αD + a)).

Biogas Production Biomass Productivity

G(D) = D(Sin − λ(αD + a)) P(D) = D2

αD+a (S
in − λ(αD + a))

γ(D) = λ(αD + a) + αDλ′(αD + a) π(D) = λ(αD + a) + αD(αD+a)
αD+2a λ′(αD + a)

H(S) = (µ(S)− a)(Sin − S) Q(S) = (µ(S)−a)2

µ(S) (Sin − S)

η(S) = S +
µ(S)−a

µ′(S) ρ(S) = S +
(µ(S)−a)µ(S)
(µ(S)+a)µ′(S)

Biogas Production = Biomass Productivity (a = 0)

G(D) = αP(D) = D(Sin − λ(αD))
γ(D) = π(D) = λ(αD) + αDλ′(αD)
H(S) = Q(S) = µ(S)(Sin − S)
η(S) = ρ(S) = S +

µ(S)
µ′(S)

Table 3 shows that in the case without mortality, one has G = αP, γ = π, H = Q, and
η = ρ. Hence, if a = 0, we have D∗G(S

in) = D∗P(S
in). In the following, this value is referred

to as D∗(Sin). Therefore, for the optimization of the biogas flow rate or the productivity of
the biomass, a first method consists in solving the equation

λ(αD) + αDλ′(αD) = Sin.

to obtain the optimal value of the dilution rate D∗(Sin). The second method consists in
solving the equation

η(S) = Sin, where η(S) := S + µ(S)
µ′(S) (32)

to get the maximum S∗(Sin) and then take D∗(Sin) = 1
α µ
(
S∗(Sin)

)
. Hence, without loss of

generality, one can put α = 1 and solve Equation (32) or equation

γ(D) = Sin, where γ(D) := λ(D) + Dλ′(D). (33)

The results of Lemmas 1 and 2 become the same in the case that a = 0. We summarize
them below, in this special case.

Lemma 3. Assume that Hypothesis 1 is satisfied and, in addition µ is C2. The following conditions
are equivalent

1. γ′ > 0 on (0, µ(Sm)), where γ is defined in (33).
2. µµ′′ < 2(µ′)2 on (0, Sm).

3.
(

1
µ

)′′
> 0 on (0, Sm).

4. η′ > 0 on (0, Sm), where η is defined in (32).

If these equivalent conditions are satisfied, then each of Equations (32) and (33) has a unique
solution; i.e., Hypothesis 4 is satisfied. If µ′′ < 0 on (0, Sm), then the conditions are satisfied.

In Appendix A.5, we apply the preceding results to various growth functions that
were considered in the literature.

3.2. Two-Step Models

The steady state and their stability of the two-step model (12) are given in Appendix B.2,
and the OD is described in Appendix B.3.
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3.2.1. Comparison of Biogas Flow Rates

Recall that E11 is stable whenever it exists; E01 can be stable but is unstable whenever
E11 exists, and E02 and E12 are unstable whenever they exist. Is it possible that for some
operating condition D, Sin

1 , and Sin
2 , the biogas production at an unstable steady state is

greater than at a stable one? This possibility is excluded, as is stated in the following result.

Proposition 5.

• For all operating conditions D and Sin
2 where G02 is defined, then G01 is also defined,

and G01
(

D, Sin
2
)
> G02

(
D, Sin

2
)
.

• For all operating conditions D, Sin
1 and Sin

2 where G12 is defined, then G11 is also defined,
and G11

(
D, Sin

1 , Sin
2
)
> G12

(
D, Sin

1 , Sin
2
)
.

• For all operating conditions D, Sin
1 and Sin

2 where G01 and G11 are both defined, we have
G11
(

D, Sin
1 , Sin

2
)
> G01

(
D, Sin

2
)
.

Proof. The proof is given in Appendix B.5.1.

This result shows that G01 > G02 and G11 > G12, which justifies Remark 3. Therefore,
in Problem 3, we can restrict our attention to the maximisation of G01 and G11. The result
also shows that when E11 and E01 are both defined, then we have G11 > G01. Table A6
shows that both E11 and E01 exist simultaneously only in regions I6, I7, and I8, and that in
this case E11 is stable while E01 is unstable. However, it is possible for one to be defined
without the other being defined, as shown in Table A6. Indeed, in the regions I1 and I2,
E01 exists and is stable, while E11 does not exist and in the regions I4 and I5, E11 exists and
is stable, while E01 does not exist. Therefore, the maximum of G11 and G01 can be obtained
for different values of the dilution rate D, and the last part of Problem 3 is to fix Sin

1 and Sin
2

and compare
max

D
G01(D, Sin

2 ) and max
D

G11(D, Sin
1 , Sin

2 ).

3.2.2. Best Operating Conditions for G01 and G11

Let us fix the operating parameters Sin
1 and Sin

2 . We restrict our attention to the case
a1 = a2 = 0 and α1 = α2 = α, which was considered in [11]. The general case can be
considered without added difficulty. Our aim is to compute the values of D for which the
functions

D 7→ G01
(

D, Sin
2
)

and D 7→ G11
(

D, Sin
1 , Sin

2
)

reach their maxima. These functions are proportional to the functions

G0(D) = D
(

Sin
2 − λ2(αD)

)
(34)

G1(D) = D
(

Sin
2 + k2

k1
Sin

1 − λ2(αD)− k2
k1

λ1(αD)
)

(35)

respectively, where λ1 and λ2 are defined in Table 1. Therefore, G01 has an absolute
maximum if G0 has one, and this maximum is reached at the same point where G0 reaches
its maximum. Similarly, G11 has an absolute maximum if G1 has one, and this maximum is
reached at the same point where G1 reaches its maximum. To obtain the maximum of G0,
we differentiate G0 with respect to D. The derivative is given by

G′0(D) = Sin
2 − γ2(αD)

where γ2 is defined by
γ2(D) = λ2(D) + Dλ′2(D). (36)

Similarly, the derivative of G1 is given by

G′1(D) = Sin
2 − γ2(αD) + k2

k1

(
Sin

1 − γ1(αD)
)
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where γ1 is defined by
γ1(D) = λ1(D) + Dλ′1(D). (37)

Remark 10. Using λ′1(D) = 1/µ′1(λ1(D)) and λ′2(D) = 1/µ′2(λ2(D)), the functions γ2 and
γ1 can be written

γ2(D) = λ2(D) + D
µ′2(λ2(D))

, γ1(D) = λ1(D) + D
µ′1(λ1(D))

.

We make the following assumptions:

Hypothesis 6. The function γ2 : I2 → (0 + ∞), defined on I2 = (0, µ2(Sm
2 )) by (36), is C1, and

for all D ∈ I2 we have γ′2(D) > 0.

Hypothesis 7. The function µ1 : I1 → (0 + ∞), defined on I1 = (0, m1) by (37), is C1 and for
all D ∈ I1 we have γ′1(D) > 0.

If Hypothesis 6 is satisfied, then the function γ2 is invertible, and for each Sin
2 , the

equation
Sin

2 = γ2(αD) (38)

has a unique solution, denoted

D∗0
(
Sin

2
)
= 1

α γ−1
2 (Sin

2 ), (39)

where γ−1
2 is the inverse function of γ2. On the other hand, if Hypotheses 6 and 7 are

satisfied, the function γ2 +
k2
k1

γ1 is C1 and increasing, since it is the sum of two increasing
functions. Therefore, for each Sin

1 and Sin
2 , the equation

Sin
2 + k2

k1
Sin

1 = γ2(αD) + k2
k1

γ1(αD) (40)

has a unique solution, denoted

D∗1
(
Sin

1 , Sin
2
)
= 1

α γ−1
(

Sin
2 + k2

k1
Sin

1

)
, (41)

where γ−1 is the inverse function of γ := γ2 +
k2
k1

γ1.
The following result gives the answer to the first part of Problem 3.

Proposition 6. Assume that Hypotheses 2, 3, 6, and 7 are satisfied. Then G01
(

D, Sin
2
)

reaches its
maximum at D∗0

(
Sin

2
)
, defined by (39) and G11

(
D, Sin

2 , Sin
2
)

reaches its maximum at the right-hand
end of its defining interval, or at D∗1

(
Sin

1 , Sin
2
)
, defined by (41).

Proof. The proof is given in Appendix B.5.2.

The set of best operating conditions for biogas production at E01 is the surface Γ0 of
SOP, defined by:

Γ0 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = γ2(αD)
}
=
{
(D, Sin

1 , Sin
2 ) : D = D∗0

(
Sin

2
)}

(42)

It is the set of operating conditions that produce the maximum of G01. The set of best
operating conditions for biogas production at E11 is the surface Γ1 of SOP, defined by:

Γ1 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = γ(αD)

}
=
{
(D, Sin

1 , Sin
2 ) : D = D∗1

(
Sin

1 , Sin
2
)}

(43)

This is the set of operating conditions which produce the maximum of G11.
We plot the sets Γ0 and Γ1 in the 2-dimensional ODs in the (D, Sin

1 )-plane shown in
Figure 5. Since Sin

2 is fixed, the set Γ0, in blue in the figures, is the vertical line D = D∗0 (S
in
2 ),
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while Γ1, in red in the figures, is the curve of equation Sin
1 = k1

k2

(
γ(αD)− Sin

2
)
. Let Sin

1 and
Sin

2 be fixed. Consider the OD for which Sin
2 is equal to the fixed value considered and look

for the intersections of Γ0 and Γ1 with the horizontal line where Sin
1 is kept constant at the

fixed value considered. The abscissas of these intersections are the optimal dilution rates
D∗0
(
Sin

2
)

and D∗1
(
Sin

2
)

defined by (39) and (41), respectively.

(a) Sin
2 = 0 (b) Sin

2 = 15

(c) Sin
2 = Sm

2 ≈ 48.741 (d) Sin
2 = 150

Sin
1 Sin

1

Sin
1 Sin

1

D D

D D

I0 I0

I0 I0

I1↘

I1↘ I1↘ I2←

I3 I3

I3 I3

I4

I4

I5 I5

I6

I6 I6

I7→

I7 I7 I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ4 Λ4

Λ5 Λ5

Λ5 Λ5

Λ6 Λ6

Λ6 Λ6

Γ1 Γ1

Γ1

Γ1←

Γ0

Γ0

Γ0→

Figure 5. The 2-dimensional OD in
(

D, Sin
1

)
, obtained by cuts at Sin

2 constant of the 3-dimensional
OD shown in Figure A6. The curve Γ1, in red, is the set of maximisation of G11. The vertical line Γ0,
in blue, is the set of maximisation of G01.

Remark 11. As for the one-step model with a Haldane type growth function, shown in Figure 1b,
there exists a threshold value Sc

1 corresponding to the intersection point (Dc, Sc
1) of curves Γ1 and

Λ5, such that, if Sin
1 > Sc

1, then the best operating point lies in the bistability pink region; see
Figure 6a. The value D = Dc is the solution of equation

λ̄2(αD) = λ2(αD) + αDλ′2(αD) + k2
k1

αDλ′1(αD), (44)

which gives the abscissa of the point of intersection of Γ1 and Λ5, and Sc
1 is given by

Sc
1 = λ1(αDc) + k1

k2

(
λ̄2(αDc)− Sin

2
)
.
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(a) The threshold Sc
1 (b) The thresholds S0

1 and S1
1 (c) Biogas flows G01 and G11

Sin
1 Sin

1 y

D D D

Sc
1

S0
1

S1
1

P 0

P 1

Dc D1 D0 D1 D0

Λ1Λ5 Γ1Γ0 Γ1 Γ0

Λ1

y = G01(D,Sin
2 )

y = G11(D,S0
1 , S

in
2 )

← y = G11(D,S1
1 , S

in
2 )

Figure 6. (a): The point (Dc, Sc
1) = Γ1 ∩ Λ5. (b): A zoom showing the points P0 = Γ0 ∩ Λ1 and

P1 = Γ1 ∩ Λ1. (c): The function D 7→ G01(D, Sin
2 ) in blue and the functions D 7→ G11(D, Sin

1 , Sin
2 ),

in red, for Sin
1 = S0

1 and Sin
1 = S1

1.

3.2.3. The Maximum of G01 Can Be Larger than the Maximum of G11

In addition to the threshold Sc
1, Figures 5 and 6 show two other thresholds obtained by

considering the intersection of the Γ0 and Γ1 curves with the Λ1 curve. We depict in Figure 6
a typical situation and show in a zoom the points of intersection. Let P0 = (D0, S0

1) be the
point of intersection of Γ0 with Λ1; see Figure 6b. If Sin

1 = S0
1, then the productivity G11 is

defined for 0 ≤ D ≤ D0 and reaches its maximum for some D∗1 (S
0
1, Sin

2 ) < D0. Moreover,
we have

max
D

G01(D, Sin
2 ) = G01(D0, Sin

2 ) = G11(D0, S0
1, Sin

2 ).

Therefore, see Figure 6c, we have

max
D

G11(D, S0
1, Sin

2 ) > max
D

G01(D, Sin
2 ).

Since the function Sin
1 7→ G11(D, Sin

1 , Sin
2 ) is increasing, the same result is true for any

Sin
1 > S0

1. Note that S0
1 depends on Sin

2 and is a solution of the set of equations

Sin
1 = λ1(αD), Sin

2 = γ2(αD)

which give the point of intersection of Λ1 and Γ0. Therefore, (S0
1, Sin

2 ) belongs to the curve

Σ0 =
{
(Sin

1 , Sin
2 ) : Sin

2 = γ2
(
µ1
(
Sin

1
))}

. (45)

Similarly, let P1 = (D1, S1
1) be the point of intersection of the curves Γ1 and Λ1; see

Figure 6b. If Sin
1 = S1

1 then the productivity G11 is defined for 0 ≤ D ≤ D1 and reaches its
maximum for D = D1. Since D1 < D0, we have (see Figure 6c),

G11(D1, S1
1, Sin

2 ) = G01(D1, Sin
2 ) < G01(D0, Sin

2 ).

Therefore,
max

D
G11(D, S1

1, Sin
2 ) < max

D
G01(D, Sin

2 ).

The same result is true for any Sin
1 < S1

1, because the function Sin
1 7→ G11(D, Sin

1 , Sin
2 ) is

increasing. Note that S1
1 depends on Sin

2 and is a solution to the set of equations

Sin
1 = λ1(αD), Sin

2 + k2
k1

Sin
1 = γ2(αD) + k2

k1
γ1(αD),

which give the point of intersection of Λ1 and Γ1. Therefore (S1
1, Sin

2 ) belongs to the curve

Σ1 =
{
(Sin

1 , Sin
2 ) : Sin

2 = σ1(Sin
1 )
}

, where σ1(Sin
1 ) = γ2

(
µ1
(
Sin

1
))

+ k2
k1

µ1(Sin
1 )

µ′1(Sin
1 )

. (46)
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The curves Σ0 and Σ1 are illustrated in Figure 7b. We have the following result.

Proposition 7. Let Σ0 and Σ1 be the curves of the (Sin
1 , Sin

2 ) plane defined by (45) and (46),
respectively. If (Sin

1 , Sin
2 ) is at the right of Σ0, then we have

max
D

G11(D, S1
1, Sin

2 ) > max
D

G01(D, Sin
2 ).

If the function µ1/µ′1 is increasing and (Sin
1 , Sin

2 ) is at the left of Σ1, then we have

max
D

G11(D, S1
1, Sin

2 ) < max
D

G01(D, Sin
2 ).

Proof. The proof is given is Appendix B.5.3.

(a) The curve Σ (b) The curves Σ, Σ0 and Σ1

Σ

Sin
1

Sin
2

Sin
1

Sin
2

Σ1

Σ0

Σ

Figure 7. To the left of the curve Σ we have max
D

G01 > max
D

G11 and to its right we have max
D

G01 <

max
D

G11.

Now, we give the curve Σ lying between the Σ0 and Σ1 curves, such that the maximum
of biogas flow rate is obtained for E01 at the left of Σ and for E11 at the right of Σ; see
Figure 7a. We need the following hypothesis.

Hypothesis 8. We assume that the function φ defined by φ(D) = D2λ′2(D) is increasing.

Therefore, φ has an inverse function φ−1 defined by D = φ−1(B) if and only if D is the
solution to equation φ(D) = B. Consider the curve Σ defined by the parametric equations

Sin
2 = γ2(∆(D)), Sin

1 = γ1(αD) + k1
k2
(γ2(αD)− γ2(∆(D))) (47)

where ∆(D) is defined by

∆(D) := φ−1
(

α2D2
(

λ′2(αD) + k2
k1

λ′1(αD)
))

. (48)

The following result gives the answer to the second part of Problem 3.

Proposition 8. Assume that Hypothesis 8 is satisfied and, in addition, the curve C defined by the
parametric Equation (47) is the graph of an increasing function Sin

2 7→ Sin
1 . Then it is the subset of

the (Sin
1 , Sin

2 ) plane, where

max
D

G01(D, Sin
2 ) = max

D
G11(D, Sin

1 , Sin
2 ). (49)

To the left of C, we have max
D

G01 > max
D

G11 and to its right, we have max
D

G01 < max
D

G11.
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Proof. The proof is given in Appendix B.5.4.

Remark 12. By combining the result of Remark 11 with that of Proposition 8, we deduce that the
curve Σ and the straight line C defined by

C :=
{
(Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 < γ2(αDc) + k2

k1
γ1(αDc)

}
,

where D = Dc is the solution of Equation (44), divide the plane (Sin
1 , Sin

2 ) into three regions:

R0 :=
{
(Sin

1 , Sin
2 ) lies to the left of Σ

}

R1 :=
{
(Sin

1 , Sin
2 ) lies to the right of Σ and to the left of C

}

R2 :=
{
(Sin

1 , Sin
2 ) lies to the right of Σ and C

}
.

In the regionR0, we have maxD G10 > maxD G11. In the regionR1, we have maxD G10 <
maxD G11, and the optimal dilution rate corresponds to the global asymptotic stability of E11. In the
regionR2, we also have maxD G10 < maxD G11, but the optimal dilution rate corresponds to the
bistability of E11 and E10.

Since the steady state E10 does not produce biogas, if the bioreactor is operated in
theR2 region, care should be taken to initialise it in the basin of attraction of E11 and not
in the basin of E10. The regions are illustrated in Figure 8a, obtained with the parameter
values given in Table A8. Let us illustrate the behaviour of G01(D, Sin

2 ) and G11(D, Sin
1 , Sin

2 ),
as functions of D, for the operating points ok ∈ Rk, k = 0, 1, 2, shown in Figure 8a. Figure 8b
shows the OD in the (D, Sin

1 ) plane and Sin
2 = 15. The horizontal lines Sin

1 = 1.5, 10, and
50, corresponding to the points o0 = (1.5, 15), o1 = (10, 15), and o2 = (50, 15), respectively,
give the optimal dilution rates. For o0, the maximum of the biogas flow is obtained for E01;
see Figure 8c. For o1, the maximum of the biogas flow is obtained for E11, and E11 is GAS;
see Figure 8d. For o2, the maximum of the biogas flow is obtained for E11, but E11 is only
LAS; see Figure 8e.

(a) The regions R0, R1 and R2 (b) The operating diagram for Sin
2 = 15

(c) Sin
1 = 1.5 (d) Sin

1 = 10 (e) Sin
1 = 50

Sin
2

Sin
1

y y y

Sin
1 D

D D D

↓
o0

o1 o2

R0 R1 R2

Γ1Γ0

Λ1Λ5 Λ2 Λ6

Λ4

Sin
1 = 1.5

Sin
1 = 10

Sin
1 = 50

y = G01(D, 15)

y = G01(D, 15)

y = G01(D, 15)
y = G11(D, 50, 15)

y = G12(D, 50, 15)

y = G11(D, 10, 15)

← y = G11(D, 1.5, 15)

Figure 8. The biogas flow rates D 7→ G01(D, Sin
2 ) in blue, D 7→ G11(D, Sin

1 , Sin
2 ) in red, and D 7→

G12(D, Sin
1 , Sin

2 ) in dashed red, corresponding to the operating points (c) o0 = (1.5, 15), (d) o1 =

(10, 15) and (e) o2 = (50, 15). The flow rate biogas of a stable steady state is drawn in bold, while it is
drawn in dashed line when the steady state is unstable.
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3.2.4. Applications to the Classical AM2 Model

The dynamical equations of the model are

Ṡ1 = D
(
Sin

1 − S1
)
− k1µ1(S1)X1,

Ẋ1 = (µ1(S1)− αD)X1,
Ṡ2 = D

(
Sin

2 − S2
)
+ k2µ1(S1)X1 − k3µ2(S2)X2,

Ẋ2 = (µ2(S2)− αD)X2,

(50)

where the kinetics µ1 and µ2 are given by

µ1(S1) =
m1S1

K1+S1
, µ2(S2) =

m2S2
K2+S2+S2

2/Ki
, (51)

For the Monod and Haldane functions, Hypotheses 2 and 3 are satisfied and the
break-even concentrations can be calculated explicitly. For the convenience of the reader
we summarize in Table 4 the expressions of the break even concentrations and the auxiliary
functions that are needed in the description of the results. The OD in the three dimensional
SOP, corresponding to the biological value parameters given in Table A8 is shown in
Figure A6 of the Appendix. The two-dimensional diagrams in the (D, Sin

1 ) plane, where Sin
2

is kept constant, are depicted in Figure A7. The two-dimensional diagrams in the (Sin
1 , Sin

2 )
plane, where D is kept constant, are depicted in Figure A8.

Table 4. Auxiliary function in the classical AM2 model.

µ1(S1) = m1S1
K1+S1

λ1(D) = DK1
m1−D , Defined for 0 ≤ D < m1 = µ1(+∞)

µ2(S2) = m2S2
K2+S2+S2

2/Ki
, Sm

2 =
√

K2Ki, µ2
(
Sm

2
)
= m2

1+2
√

K2/Ki

λ2(D) =
(m2−D)−

√
(m2−D)−4D2K2/Ki

2D Ki, Defined for 0 < D ≤ µ2(Sm
2 )

λ̄2(D) =
(m2−D)+

√
(m2−D)2−4D2K2/Ki

2D Ki Defined for 0 < D ≤ µ2(Sm
2 )

γ1(D) = λ1(D) + Dλ′1(D), Defined for D < m1

γ2(D) = λ2(D) + Dλ′2(D), Defined for D < µ2(Sm
2 )

γ(D) = γ2(D) + k2
k1

γ1(D) Defined for D < min(m1, µ2(Sm
2 ))

Since µ′′1 < 0 and µ′′2 < 0 on (0, Sm
2 ), from Lemma 3 we deduce that γ′1 > 0 and γ′2 > 0.

Therefore Hypotheses 6 and 7 are satisfied. From Proposition 6, we deduce that the curves
Γ0 and Γ1, defined by (42) and (43) are the sets of best operating conditions for G01 and G11,
respectively. These sets are shown in Figure 5, for some of the ODs depicted in Figure A7.

On the other hand, since λ′′2 > 0, we deduce that φ′ > 0, where φ(D) = D2λ′2(D).
Hence Hypothesis 8 is satisfied. The inverse function of φ can be computed explicitly. We
have

φ−1(B) = m2
(m2Ki+2B)

√
BK2Ki(m2Ki+B)−(m2Ki+B)Ki B

K2m2
2K2

i +(4K2−Ki)(m2Ki+B)B

Note that the function µ1/µ′1 is increasing. Therefore, the result of Proposition 7 is
true. Straightforward computation shows that the curve Σ is increasing. Hence, the result
of Proposition 8 is true. The curve Σ of the (Sin

1 , Sin
2 )-plane,

max
D

G01(D, Sin
2 ) = max

D
G11(D, Sin

1 , Sin
2 ),

and the curves Σ0 and Σ1 are shown in Figure 7. Finally the regionsR0,R1, andR2 and the
behaviour of the biogas flow rates D 7→ G01(D, Sin

2 ) and D 7→ G11(D, Sin
1 , Sin

2 ) are depicted
in Figure 8 for three operating points oj ∈ Rj, j = 0, 1, 2.
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3.3. Relationship with Previous Results

The OD of the one-step model is well known in the existing literature [22,36]. In these
references, the dilution rate is shown on the vertical axis, and the input substrate concen-
tration is shown on the horizontal axis. In this paper, we have reversed the axes, because,
as we then consider the biogas flow rate, or productivity, as a function of the dilution rate,
it is interesting to have the dilution rate on the horizontal axis in all graphs.

In practical applications, when maximising biogas or biomass production, the substrate
concentration Sin is given and the optimal dilution rate D∗(Sin), depending on Sin, that
maximises biogas or biomass production must be determined. For the Monod function,
the formula giving the optimal dilution appears in several reference books; see for example
Formula (13.70) in [12] or Formula (6.83) in [19]. For the Monod and Haldane functions, it
appears in [20,21] and were used for the optimization of bioreactors by extremum seeking.
The approach used here is to try to directly exploit the equation of which the optimal D is a
solution and to represent its solutions in the OD. To the best of our knowledge, the set of
best operating conditions for biogas or bimass production have only recently been drawn in
the OD [51–53]. In these papers the main problem is to consider the optimisation of biogas
flow rate or biomass productivity in the serial chemostat and to compare the performances
of the serial chemostat with a single chemostat of the same total volume.

In the case without biomass mortality, the mathematical analysis of the two-step model
was given in [15], in the case α = 1, and in [26] in the case α ≤ 1. The OD was given in [42].
Here we have extended these results to the case including mortality. The maximization of
biogas flow for this model has been well studied in [11]. For example, the curves Σ0 and Σ1
were described( see Figure 4 in [11]), where the curves are called C2 and C3, respectively.
The existence of the curve Σ was predicted; see Remark 7 in [11]. However, neither its
analytical equation nor its numerical representation was given in [11]. Note that the curves
Σ0 and Σ1 have vertical asymptotes; see Figure 7. We deduce that the curve Σ also has
one. Therefore, the regionR0 is not wide. That is to say, for an Sin

2 as large as one wants,
it is enough that Sin

1 exceeds a certain threshold, corresponding to the vertical asymptote,
for the system to be in theR1 orR2 region.

The representation of the set of optimal operating conditions in the OD, as well as its
use to deduce the various properties of biogas production, is not found in the existing
literature. In particular, the identification of the threshold at which the system will operate
in a bistability regime is new and answers practical questions of great interest for bioreac-
tors and their management. These questions are related to the so-called stability criteria
named “overloading tolerance” or “destabilization risk index” [26,56]. This index alerts the
experimenter as soon as the system approaches a regime of bistability. Bistability in the
model occurs when the unstable steady states E02 or E12 exist. For example, although the
steady state E12 is unstable, if it exists, its existence completely changes the functioning
of the system. Indeed, in this case, the steady state E10, of washout of the methanogenic
bacteria (without biogas production), becomes stable, and the positive steady state E11
loses its global stability. This important issue is not addressed in [11], where the authors
do not consider the steady states E02 and E12. They justify their disregard by the fact that
these steady states are unstable, that their biogas flow rate is lower than the biogas flow
rate of the associated steady states E01 and E11, and also because according to them their
conditions of existence are the same as those of the steady states E01 and E11; see Section 3
in [11]. The first two reasons are of course correct, but the third is not. Indeed, E11 can exist
without E12 existing. On the other hand, when E12 exists, E11 must also exist, and we have
the phenomenon of bistability of E10 and E11. In this paper, we considered all steady states,
which allowed us to highlight the important region of bistability (coloured in pink in the
figures) and thus to provide a valuable tool for the experimenter to avoid monitoring the
system in this region, or at least to be very careful if he should do so.
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4. Discussion

In this paper, we have determined the set of operating parameters that optimise
the biogas flow in simple AD models. We have represented these sets in the OD of the
model. This representation allowed us to obtain a simple graphic visualisation of the
optimal operating conditions. It also allows direct discovery of the properties of these
optimal conditions.

To illustrate the simplicity with which the properties appear in the OD, let us consider
the case with inhibition by the substrate when its concentration is high (Haldane function).
It is well known that when the inflowing substrate concentration of the bioreactor is high,
the system presents bistability, with a risk of convergence towards the washout steady state.
It is natural then to ask whether operating conditions that maximise the biogas flow can
lead to this bistability situation. This phenomenon was already observed, using the OD,
in a more complex system [35]. The main result of this paper is to address this problem and
to give a complete answer in one-step and two-steps models. Although we have an explicit
formula for the optimal dilution rate as a function of the substrate input concentration, this
formula does not allow us to easily determine whether or not the system is in the instability
zone. On the other hand, drawing the set of optimal conditions in the OD immediately
shows that this set enters the bistability zone and allows to find the critical threshold of the
substrate input concentration at which the system will operate in the instability zone; see
the threshold Sc in Figure 1b. This shows the value of the OD in understanding the model.

The contribution of the OD to the understanding of the system’s behaviour is even
more spectacular in the case of the AM2 model. In this case, there are three operating
parameters, and the OD must be represented in the plane formed by two of them by fixing
the third. The role of this third parameter is described by a series of diagrams. The sets of
optimal operating conditions are surfaces in the space of the three operating parameters,
whose traces in the two dimensional ODs are curves. It is immediately apparent whether
these curves fall within the areas where the system behaviour may be at risk and the
thresholds can be easily found. Three regions can then be determined in the plane of the
concentrations of the two input substrates. In one of the regions, the maximum biogas flow
rate of the steady state where both acidogenic and methanogenic bacteria are present is
reached for a value of the dilution ratio for which the acidogenic bacteria are washed out.
In a second region, the maximum is reached for a value of the dilution rate for which the
positive steady state is GAS. In a third region, the maximum is reached for a value of the
dilution rate for which the system presents à bistability behaviour; see Figure 8. These
regions have not been identified in the existing literature.

Some figures in this paper (see Figures 1–4, 6, A4, and A5) are made without gradu-
ations on the axes because they represent generic situations where the growth functions
verify our general hypothesis and the biological parameters are not specified. However,
in practice, to construct an OD, one fixes the growth functions and biological parameters
and then draws the curves separating the regions of the OD. Indeed, the OD is a tool for the
experimenter who knows the biological parameter values of the model he is considering,
and then plots its OD. We do that in Appendix A.5 for some classical growth functions;
see Figures A1–A3. See also Figures 5, 7 and 8 in Section 3.2, for the AM2 model, whose
biological parameters are given in Table A8. See also Figures A6–A8 in the Appendix B.

Another result obtained with the help of the OD of a two-step model is worth men-
tioning here. It was shown in [42,57] that under certain circumstances, increasing the
dilution rate can globally stabilize two-step biological systems. This kind of surprising and
unexpected result was obtained also for a two-step model where the first reaction has a
Contois kinetics instead of a Monod one [58]. These studies have shown how unexpected
properties can be discovered and studied by analysing the OD of the model. Our findings
in this paper are a further illustration of the relevance of the OD in the study of one-step
and two-step models.

The two-step models of the form (12) present a commensalistic relationship between
microorganisms. For definitions and complementary information on commensalism,
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the reader may consult [59]. Methanogenic bacteria use for their growth the product
of the acidogenic bacteria, but acidogenic bacteria are not affected by the growth of the
methanogenic bacteria. More complex models are those studied in [38–40,43], which
present a syntrophic relationship between the micro organisms: the first population is
affected by the growth of the second population. For more details and information on
commensalism and syntrophy, the reader is referred to [40,43,59–64] and the references
therein. The ODs of some of these models are well understood; see [38–40,43]. Studying
the biogas or biomass production for these more complex and more realistic models of AD
is a challenging question. It is the subject for future research directions. The determination
of the OD and the optimal productivity of synthetic microbial communities considered
in [65] is also an interesting question that deserves further attention.

5. Conclusions

In this work, we considered one-step and two-step simple models of AD which are
able to adequately capture the main dynamical behaviour of the full ADM1 and have
the advantage that a complete analysis for the existence and local stability of their steady
states is available. These models have been validated on real data. We considered that the
biological parameters of the models have been calibrated on the data. Therefore, the OD
of the model can be constructed, and the results can be illustrated in the OD. The best
operating conditions for biogas production or biomass production are obtained as subsets
of the OD.

For a one-step model, the set Γ of best operating conditions for biogas production is
described as a curve of equation Sin = γ(D); see Figure 2 for the Monod case and Figure 3
for the Haldane case. These curves permit the optimal dilution D∗G(S

in) for which the
biogas production is maximal to be obtained graphically and easily. The explicit expression
for D∗G(S

in) is not always available, and even when it is known, see Appendix A.5. On the
other hand, the graphical visualisation of D∗G(S

in) in the OD allows us to predict the
behaviour of the system when it is operated at this optimal dilution rate, as illustrated in
Figures 2 and 3 and A1–A3.

When there are no maintenance terms included in the model, it is known that biogas
production and biomass production are given by the same expressions. Therefore, the max-
imum of these quantities is obtained for the same operating conditions. However, when
maintenance is included in the model, the subsets of best operating conditions for biogas
production and biomass production are not the same; see Figure 4.

For a two-step model, we obtain two subsets, Γ0 and Γ1, of maximal biogas production,
corresponding to the steady states E01 and E11, respectively; see Figure 5. The steady
state E01 corresponds to the washout of the first biomass, while E11 corresponds to the
persistence of the two populations. For certain operating conditions, the biogas production
of E01 can be higher than that of E11. We have determined the set of values for the input
substrate concentrations for which this occurs; see Figure 7. We have identified two other
subsets of operating conditions in which the system behaves in different ways; see Figure 8.
In one set the optimal dilution rate corresponds to an operating regime where the system
is functioning at a GAS steady state, while, in the second, there is bistability. It may be
in the experimenter’s interest to run the system with operating parameters that give rise
to bistability, since the biogas flow rate is then greater. However, they must be careful
to initialise it in the basin of attraction of the steady state E11, because otherwise it may
converge towards the steady state E10, which does not produce biogas.

Our findings illustrate how the OD is a useful tool for the understanding of the be-
haviour of one-step and two-step models. The OD can be constructed once the biological
parameters of the model are fixed. It can also be constructed qualitatively, without spec-
ifying the values of the biological parameters. It is therefore a powerful tool for the
mathematical analysis of a model when the growth functions are not specified. It is also
a tool that allows us to answer important and natural questions that we might not have
asked ourselves without this tool. Therefore, the OD allows new interesting questions to
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be asked and answered about the model. When studying any problem concerning the
chemostat, it is useful to represent the results obtained in the OD. This gives a very clear
overview of the system and its operating modes. In this paper, we have illustrated the
effectiveness of this approach in the study of the maximisation of the biogas flow rate and
the productivity of the biomass.
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AD Anaerobic Digestion
ADM1 The IWA Anaerobic Digestion Model No 1, see [2]
AM2 Anaerobic Digestion Model of [25]
CSTR Continuous Stirred Tank Reactor or Bioreactor, or Chemostat
GAS Globally Asymptotically Stable
HRT Hydraulic Retention Time
LAS Locally Asymptotically Stable
MBR Membrane Bioreactor
OD Operating Diagram
SOP Set of Operating Parameters
SRT Solid Retention Time
U Unstable
VFA Volatile Fatty Acids

Appendix A. One-Step Model

Appendix A.1. Model Reduction

We consider the chemostat model (2). It is usual in mathematical theory [22,24] to
make the change of variable x = kX, which transforms (2) into

Ṡ = D
(
Sin − S

)
− µ(S)x

ẋ = (µ(S)− D1)x

Therefore, the stoichiometric coefficient k can be reduced to 1 in (2).

Appendix A.2. The Operating Diagram of the One-Step Model

In order to construct the OD of (2), one needs to determine and compute the boundaries
of the regions of the diagram, i.e., to compute the parameter values at which a qualitative
change in the dynamic behaviour of (2) occurs. For (2), these boundaries are the curves

Λ =
{(

D, Sin) : Sin = λ(αD + a)
}

,
Λ2 =

{(
D, Sin) : Sin = λ̄(αD + a)

}
,

Λ1 =
{(

D, Sin) : αD + a = µ(Sm) and Sin ≥ Sm}
(A1)

http://www.inrae.fr/treasure
http://www.inrae.fr/treasure
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These curves separate the Set of Operating Parameters (SOP)

SOP =
{
(D, Sin) : D ≥ 0 and Sin ≥ 0

}
,

in three regions, denoted J0, J1, and J2, corresponding to different behaviours of (2),
as depicted in Table A1.

Table A1. Existence and stability of steady states of (2) in the three regions of the operating space.
The last column shows the color in which the region is depicted in the OD shown in Figures 1–4 and
A1–A3.

Region F0 F1 F2 Color

J0 =
{(

D, Sin
)

: Sin ≤ λ(αD + a)
}

GAS Yellow

J1 =
{(

D, Sin
)

: λ(αD + a) < Sin ≤ λ̄(αD + a)
}

U GAS Green

J2 =
{(

D, Sin
)

: Sin > λ̄(αD + a)
}

LAS LAS U Pink

GAS, LAS, and U mean that the steady state is Globally Asymptotically Stable, Locally
Asymptotically Stable, or Unstable, respectively. No letter means that the steady state does
not exist in the region. Note that

Λ ∪Λ2 =
{(

D, Sin) : D = µ(Sin)−a
α

}
.

We plot in Figure 1 the curves Λ, Λ1, and Λ2 in SOP and the regions delimited by these
curves. This figure, together with Table A1, is the OD of (2). This diagram is well known
in the literature [22,36]. When Sm = +∞, then only Λ exists (Λ1 = Λ2 = ∅). In this
case, the OD contains only the regions J0 and J1. The main difference between Figure 1a,
obtained for the Monod case (Sm = +∞), and Figure 1b, obtained for the Haldane case
(Sm < +∞), is the appearance of the region of bistability J2. In this region, both steady
states F0 and F1 are LAS and the asymptotic behaviour of a solution depends on its initial
condition. If the initial condition belongs to the basin of attraction of F0, then the species
X is washed out from the chemostat. If the initial condition belongs to the basin of
attraction of F1, then, when t → +∞, the concentration X(t) of the species tends to
X∗ = D

kD1

(
Sin − λ(D1)

)
. The green region J1 is the “target” operating regions, as it

corresponds to the global stability of the steady state, where the species survive. The pink
region J2 corresponds to the bistability of F0 (no biogas production) and F1 (with biogas
production). If the chemostat is operated in the region J2, then, for a good operation of the
system, its state at start up should correspond to the convergence toward F1 rather than F0.

Appendix A.3. Maximization of Biogas Production

Appendix A.3.1. Proof of Proposition 1

The function G defined by (14) is C1 on the interior of I(Sin) and its derivative is given
by

G′(D) = Sin − γ(D),

where γ is defined by (17). Therefore, if g(Sin) is in the interior of I(Sin), by Fermat’s
theorem, any point D∗ ∈ g(Sin) is a critical point of G; i.e., G′(D∗) = 0, which is equivalent
to Sin = γ(D∗). The proof of the proposition is complete if we prove that the set g(Sin) is

in the interior of I(Sin). If Sin < Sm, then G is defined for 0 ≤ D ≤ δ, where δ = µ(Sin)−a
α , is

positive if 0 < D < δ and satisfies G(0) = 0 and

G(δ) = δ(Sin − λ(αδ + a)) = δ(Sin − λ(µ(Sin))) = δ(Sin − Sin) = 0.
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Therefore, the maximum cannot be attained in 0 or δ. Similarly if Sm < +∞ and
Sin ≥ Sm, then G is defined for 0 ≤ D ≤ δ, where δ = µ(Sm)−a

α , is positive if 0 < D < δ and
satisfies G(0) = 0 and

G(δ) = δ(Sin − λ(αδ + a)) = δ(Sin − λ(µ(Sm))) = δ(Sin − Sm) ≥ 0.

Moreover, if Sin > Sm, we have

lim
D→µ(Sm)

λ′(D) = +∞.

Hence,
lim
D→δ

G′(D) = −∞.

Therefore, the maximum cannot be attained in 0 or δ and g(Sin) is in the interior of
I(Sin).

Appendix A.3.2. Proof of Proposition 2

Since H(λ(a)) = H(Sin) = 0 and H(S) > 0 for λ(a) < S < Sin, the maximum of
H is attained at a point S∗ ∈ (λ(a), Sin). By Fermat’s theorem, S∗ is a critical point of H;
i.e., H′(S∗) = 0. We have

G′(D) = H′(λ(αD + a))λ′(αD + a).

Hence, H has a maximum at S∗ if and only if G has a maximum at D∗ = µ(S∗)−a
α . The

derivative of H is given by

H′(S) = µ′(S)(Sin − S)− µ(S) + a.

Hence, H′(S) = 0 if and only if Sin = η(S), where η is defined by (21). From H′(S∗) =
0, it is deduced that Sin = η(S∗).

Appendix A.3.3. Proof of Lemma 1

If µ is C2, so is λ and the derivative of γ is given by

γ′(D) = 2αλ′(αD + a) + α2Dλ′′(αD + a).

Using µ(λ(D)) = D, we have

λ′(D) = 1
µ′(λ(D))

and λ′′(D) = − µ′′(λ(D))λ′(D)

(µ′(λ(D)))2 . (A2)

Hence,

γ′(D) = αλ′(αD + a)
(

2− αDµ′′(λ(αD+a))
(µ′(λ(αD+a)))2

)
.

Since λ′ > 0 it is deduced that γ′(D) > 0 if and only if for all D ∈ (0, δ(Sm)),

αDµ′′(λ(αD + a)) < 2
(
µ′(λ(αD + a))

)2.

Using the change of variable S = λ(αD + a), this condition is equivalent to: for all
S ∈ (λ(a), Sm),

(µ(S)− a)µ′′(S) < 2
(
µ′(S)

)2.

Therefore (1)⇔ (2). Moreover, we have

(
1

µ−a

)′
= − µ′

(µ−a)2 ,
(

1
µ−a

)′′
= 2(µ′)2−(µ−a)µ′′

(µ−a)3 .
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Hence, (1/(µ− a))′′ > 0 if and only if (µ− a)µ′′ < 2(µ′)2. Therefore (2)⇔ (3). The
derivative of η is given by

η′(S) = 2− (µ(S)−a)µ′′(S)
(µ′(S))2 .

Therefore (2)⇔ (4). If µ′′ < 0 on (0, Sm), then since µ′ > 0 on (λ(a), Sm), the condi-
tion (µ(S)− a)µ′′(S) < (µ′(S))2 is obviously satisfied.

Appendix A.4. Maximization of Biomass Production

Appendix A.4.1. Proof of Proposition 3

The function P defined by (23) is C1 on the interior of I(Sin), and its derivative is
given by

P′(D) = D(αD+2a)
(αD+a)2

(
Sin − π(D)

)
,

where π is defined by (25). Therefore, if the set p(Sin) is in the interior of I(Sin), by Fermat’s
theorem, any point D∗ ∈ p(Sin) is a critical point of P; i.e., P′(D∗) = 0, which is equivalent
to Sin = π(D∗). The proof that p(Sin) is in the interior of I(Sin) is the same as the proof
that g(Sin) is in the interior of I(Sin) given in Appendix A.3.1.

Appendix A.4.2. Proof of Proposition 4

Since Q(λ(a)) = Q(Sin) = 0 and Q(S) > 0 for λ(a) < S < Sin, the maximum of
Q is attained at a point S∗ ∈ (λ(a), Sin). By Fermat’s theorem, S∗ is a critical point of Q,
i.e., Q′(S∗) = 0. We have

P′(D) = 1
α Q′(λ(αD + a))λ′(αD + a)

Hence, Q has a maximum at S∗ if and only if P has a maximum at D∗ = µ(S∗)−a
α .

Moreover, Q′(S) = 0 if and only if Sin = ρ(S), where η is defined by (30). From Q′(S∗) = 0,
it is deduced that Sin = ρ(S∗).

Appendix A.4.3. Proof of Lemma 2

If µ is C2, so is λ, and the derivative of π is given by

π′(D) = α αD+a
αD+2a

(
2(αD+3a)

αD+2a λ′(αD + a) + αDλ′′(αD + a)
)

.

Using (A2), we have

π′(D) = α αD+a
αD+2a λ′(αD + a)

(
2(αD+3a)

αD+2a −
αDµ′′(λ(αD+a))
(µ′(λ(αD+a)))2

)
.

Since λ′ > 0 it is deduced that π′(D) > 0 if and only if for all D ∈ (0, δ(Sm)),

αD αD+2a
αD+3a µ′′(λ(αD + a)) < 2(µ′(λ(αD + a)))2.

Using the change of variable S = λ(αD + a), this condition is equivalent to the
following: for all S ∈ λ(a)0, Sm),

(µ(S)−a)(µ(S)+a)
µ(S)+2a µ′′(S) < 2(µ′(S))2.

Therefore, (1)⇔ (2). The derivative of ρ is given by

ρ′(S) = µ(S)
(µ(S)+a)2(µ′(S))2

(
2(µ(S) + 2a)(µ′(S))2 − (µ(S)− a)(µ(S) + a)µ′′(S)

)
.
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Therefore (2) ⇔ (3). If µ′′ < 0 on (λ(a), Sm), then, since µ′ > 0 on (λ(a), Sm),
the condition (µ(S)− a)µ′′(S) < (µ′(S))2 is obviously satisfied. Moreover, we have seen

in Lemma 1 that if the condition
(

1
µ−a

)′′
(S) > 0 holds, then we have

(µ(S)− a)µ′′(S) < 2(µ′(S))2.

Therefore, we have

(µ(S)−a)(µ(S)+a)
µ(S)+2a µ′′(S) < (µ(S)− a)µ′′(S) < 2(µ′(S))2,

which is the condition 2 in the lemma.

Appendix A.5. Applications to Some Usual Growth Functions

For simplicity, we restrict our attention to the case where α = 1 and a = 0. In this case,
D∗(Sin) is obtained by solving Equation (33). One can also solve Equation (32), to get the
maximum S∗(Sin), and then take

D∗(Sin) = µ(S∗(Sin)). (A3)

Appendix A.5.1. Monod Growth Rate

This growth function is given by (4). This function satisfies Hypothesis 1 with Sm =
+∞. Since µ′′ < 0, using Lemma 3, we obtain that Hypothesis 4 is satisfied. Straightforward
computations show that

λ(D) = DK
m−D , γ(D) = DK(2m−D)

(m−D)2 , η(S) = S2/K + 2S.

Hence, S∗(Sin), the (unique) solution of equation Sin = η(S), and D∗(Sin) are given by

S∗(Sin) =
√

K2 + KSin − K, D∗(Sin) = µ(S∗(Sin)) = m
(

1−
√

K
K+Sin

)
.

This formula for D∗(Sin) is well known in the literature; see for example [12,19,20].
In Figure A1a, we show the OD, together with the set of best operating conditions Γ and the
biogas flow rate G(D, Sin), with Sin = 10, for the Monod growth function (4), with m = 1
and K = 5. This figure shows how the optimal dilution rate D∗(Sin) can be graphically
determined. Although we have an explicit formula for D∗(Sin), this graphical construction
can be very useful as it allows the dilution rate that the experimenter should choose to
optimise the biogas flow rate to be visualised in the OD.

Appendix A.5.2. Hill Growth Rate

This growth function is given by

µ(S) = mSp

Kp+Sp , p ≥ 1. (A4)

This function satisfies Hypothesis 1 with Sm = +∞. Moreover, we have

(
1
µ

)′′
(S) = p(p+1)Kp

mSp+2 .

Hence, (1/µ)′′ > 0, and using Lemma 3, we obtain that Hypothesis 4 is satisfied.
Notice that for p > 1, the Hill function (A4) is not concave on (0,+∞). Straightforward
computations show that

λ(D) =
(

D
m−D

) 1
p K, γ(D) =

(
D

m−D

)1/p (p+1)m−pD
p(m−D)

K, η(S) = K−pSp+1+(p+1)S
p .
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Hence, S∗(Sin), the (unique) solution of equation Sin = η(S) is the positive solution of
equation

K−pSp+1 + (p + 1)S− pSin = 0.

One has explicit formulas for S∗(Sin) when p = 1 (the Monod case) and p = 2

S∗(Sin) =
(

K2Sin +
√

K6 + K4(Sin)2
)1/3

− K2
(

K2Sin+
√

K6+K4(Sin)2
)1/3 if p = 2.

We can deduce also the explicit expression of D∗(Sin), the (unique) solution to equation
Sin = γ(D) by using (A3). This example illustrates the fact that the second method is much
more practicable than the first one, since the direct resolution of equation Sin = γ(D) is
not easy.

In Figure A1b, we show the OD, together with the set of best operating conditions
Γ and the biogas flow rate G(D, Sin), with Sin = 10, for the Hill growth function (A4),
with p = 2, m = 1 and K = 5. This figure shows how the optimal dilution rate D∗(Sin)
can be graphically determined. This graphical construction is very useful as it allows the
dilution rate that the experimenter should choose to optimise the biogas flow rate to be
visualised in the OD. Indeed, the above explicit formula for S∗(Sin), and hence for D∗(Sin),
is not very informative. Moreover, for p > 2, we do not have an explicit formula for
D∗(Sin), whereas the graphical construction can be done for any p.

(a) µ(S) = S
5+S (b) µ(S) = S2

52+S2 (c) µ(S) = e−5/S

D D D

D D D

Sin Sin Sin

y y y

J1

J0

J1

J0

J1

J0
Λ

Λ Λ
Γ

Γ Γ

Sin

D∗
(
Sin

)
µ
(
Sin

)

Sin

D∗
(
Sin

)
µ
(
Sin

)

Sin

D∗
(
Sin

)
µ(Sin)

D∗
(
Sin

)
µ
(
Sin

)
D∗

(
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)
µ
(
Sin

)
µ
(
Sin

)
D∗

(
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)
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y=G(D,Sin)

y=G(D,Sin)

Figure A1. The set of best operating conditions Γ (in Red) shows the optimal dilution rate D∗(Sin)

for three increasing growth functions and Sin = 10, a = 0, α = 1.

Appendix A.5.3. Desmond–Le Quéméner and Bouchez Growth Rate

This growth function is given by [66]

µ(S) = me−k/S. (A5)

This function satisfies Hypothesis 1 with Sm = +∞. Moreover, we have

(
1
µ

)′′
(S) = k

mS3

(
2 + k

S

)
ek/S.
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Hence, (1/µ)′′ > 0, and using Lemma 3, we obtain that Hypothesis 4 is satisfied.
Notice that the function (A5) is not concave on (0,+∞). Straightforward computations
show that

λ(D) = k
ln(m/D)

, γ(D) = k
ln(m/D)

(
1 + 1

ln(m/D)

)
, η(S) = S + S2

k .

Therefore

S∗(Sin) =
√

k2+4kSin−k
2 and D∗(Sin) = µ

(
S∗(Sin)

)
= me−

√
k2+4kSin+k

2Sin .

In Figure A1c, we show the OD, together with the set of best operating conditions Γ
and the biogas flow rate G(D, Sin), with Sin = 10, for the growth function (A5), with m = 1
and k = 5. This figure shows how the optimal dilution rate D∗(Sin) can be graphically
determined. Although we have an explicit formula for D∗(Sin), this graphical construction
can be very useful as it allows visualising in the OD the dilution rate that the experimenter
chooses to optimise the biogas flow rate.

Appendix A.5.4. Haldane Growth Rate

This growth function is given by (5). It satisfies Hypothesis 1, with

Sm =
√

KKi and maxS≥0 µ(S) = µ(Sm) = m
1+2
√

K/Ki
.

Since µ′′(S) < 0 on (0, Sm), using Lemma 3, we obtain that Hypothesis 4 is satisfied.
We have

λ(D) = m−D−
√

∆
2D Ki =

2D
m−D+

√
∆

K, λ̄(D) = m−D+
√

∆
2D Ki,

where ∆ = (m− D)2 − 4D2K/Ki, defined for 0 ≤ D ≤ µ(Sm). Note that ∆ tends toward
(m− D)2 when Ki → +∞. Hence λ(D) → DK

m−D and λ̄(D) → +∞. We find the case of
Monod. Straightforward calculations show that

γ(D) = 2DK(2m−D+4DK/Ki)

∆+(m−D+4DK/Ki)
√

∆
, η(S) = (2K+S)KiS

KKi−S2 .

The solution of Sin = η(S) is given by

S∗(Sin) =

√
KKi((K+Sin)Ki+(Sin)2)−KKi

Ki+Sin .

Hence, D∗(Sin), the solution of Sin = γ(D), is given by (A3), i.e.,

D∗(Sin) = µ(S∗(Sin)) =
m(Ki+Sin)(

√
KKi((K+Sin)Ki+(Sin)2)−KKi)

2K((K+Sin)Ki+(Sin)2)+(Ki+Sin−2K)
√

KKi((K+Sin)Ki+(Sin)2)
.

These formulas for S∗(Sin) and D∗(Sin) are known in the literature [20]. Note that the
equation Sin = γ(D) is equivalent to an algebraic quadratic equation of degree two which
can be solved explicitly. We obtain the formula

D∗(Sin) =





m
(

Ki
Ki−4K −

Ki+2Sin

Ki−4K

√
KKi

(K+Sin)Ki+(Sin)2

)
if Ki 6= 4K,

m Sin(4K+Sin)
2(2K+Sin)2 if Ki = 4K.

Note that when Ki → +∞, then D∗(Sin)→ m
(

1−
√

K
K+Sin

)
. We find the case of Monod.

On the other hand, equation γ(D) = λ̄(D) is equivalent to the third-degree polynomial
equation:

(4K− Ki)
2D3 + 3mKi(4K− Ki)D2 + 3m2Ki(Ki − K)D−m3K2

i = 0.
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Therefore Dc, considered in Remark 7, is the unique positive solution of this equation
and can be computed explicitly. Let us illustrate the results of Section 3.1.4 in the particular
case of the Haldane function given by m = 1, K = 5, and Ki = 5. The OD and the set Γ
of best operating conditions are depicted in Figure A2. The biogas flow is shown for five
values of Sin. The curves Γ and Λ2 intersect at (Dc, Sc) = (0.293, 9.397). If Sin > Sc, then
the optimal dilution rate D∗

(
Sin) corresponds to the bistability region (pink region) J2.

Depending on the initial condition, the system can go to the washout of the species with no
biogas production, or its persistence, with maximal biogas production.

D

y

y = G1(D,Sin)

y = G2(D,Sin)

Sin=12

Sin=Sc

Sin=7

Sin=Sm

Sin=3

D

Sin

Sin=12

Sin=Sc

Sin=7

Sin=Sm

Sin=3

J1

J2

J0

Λ2 Λ1

Λ
Γ

Figure A2. The set of optimal biogas production for the Haldane function (5), with m = 1, K = 5,
Ki = 5. We have Sm = 5, Dc = 0.293, and Sc = 9.397.

Appendix A.5.5. An Example with Two Maxima

It is known that Hypothesis 1 is not enough to guarantee that the biogas flow rate
admits a unique global maximum (Hypothesis 4); see Figure 5.1 in [14]. Even if the function
f is increasing, it is possible that the biogas flow rates have two maxima. For example,
consider the function

µ(S) = mS6+S
K6+S6+S , with m = 2, K6 = 0.1,

which is obtained from the Hill function (A4) (with p = 6) by adding S to the numerator
and denominator. This function is increasing; see Figure A3a. However, for some values of
Sin, the biogas flow rate has three local extrema; see Figure A3d. Numerical exploration
shows that the the set of arguments of the maximum of G is as follows

g(Sin) =





0.705 if Sin = 1
{0.786, 1.277} if Sin = 1.7625

1.475 if Sin = 2.1

This behaviour is consistent with the plot of the curve Γ; see Figure A3c. The function
η is given by:

η(S) = S + µ(S)
µ′(S) = S + (S+mS6)(K6+S+S6)

K6+5(m−1)S6+6K6mS5 .

The plot of this function shows that it is not increasing; see Figure A3b. Therefore,
from Lemma 3, we can easily predict that the function γ is not increasing, as depicted in
Figure A3c. Hence, Hypothesis 4 is not satisfied.
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(a) Growth function (b) Function η

(c) The curve Γ (d) Biogas flow rate y = G(D,Sin)

S

y

y = µ(S)

S

y

y = η(S)

D

Sin

J1

J0

Γ

Λ

D

y

Sin = 1.7625

Sin = 2.1

Sin = 1

Figure A3. An increasing growth function with two maxima of the biogas flow rate.

Appendix B. Two-Step Models

Appendix B.1. Model Reduction

The linear change of variables

s1 =
k2

k1
S1, x1 = k2X1, s2 = S2, x2 = k3X2

transforms (12) into

ṡ1 = D
(
sin

1 − s1
)
− f1(s1)x1,

ẋ1 = ( f1(s1)− D1)x1,
ṡ2 = D

(
sin

2 − s2
)
+ f1(s1)x1 − f2(s2)x2,

ẋ2 = ( f2(s2)− D2)x2,

(A6)

where
sin

1 = k2
k1

Sin
1 , sin

2 = Sin
1 , f1(s1) = µ1

(
k1
k2

s1

)
, f2(s2) = µ2(s2)

Therefore, the stoichiometric coefficients ki, i = 1, 2, 3 are reduced to 1. However,
as explained in Section 2.2, we do not work with the reduced model (A6) and we present
the results in the original model (12).

Appendix B.2. The Steady States of a Two-Step Model

The model (12) has a cascade structure, which renders its mathematical analysis
easy. There is no additional difficulty compared to the case considered in [26] in which
α1 = α2 = α and a1 = a2 = 0. We recall that the break-even concentrations were defined in
Table 1. We summarize in Table A2 the definitions of some additional auxiliary functions
that are used in the description of the steady states of (12).
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Table A2. Auxiliary functions. The functions λ1, λ2, and λ̄2 and Hi, i = 1, 2 are defined in Table 1.

Sin∗
2

(
D, Sin

1 , Sin
2

)
= Sin

2 + k2
k1

(
Sin

1 − λ1(D1)
)

X∗1
(

D, Sin
1

)
= D

k1D1

(
Sin

1 − λ1(αD)
)

X21

(
D, Sin

2

)
= D

k3D2

(
Sin

2 − λ2(D2)
)

X22

(
D, Sin

2

)
= D

k3D2

(
Sin

2 − λ̄2(D2)
)

X∗2i

(
D, Sin

1 , Sin
2

)
= D

k3D2

(
Sin

2 + k2
k1

Sin
1 − Hi(D)

)
, i = 1, 2

The system (12) can have up to six steady states, denoted Eij, where i = 0, 1 and
j = 0, 1, 2. The convention used is as follows: if i = 0, it means that X1 = 0 and if i = 1, then
X1 > 0. Similarly, if j = 0, it means that X2 = 0 and if j = 1, 2, then X2 > 0. It should be
noticed that E00, where X1 = 0 and X2 = 0, is the washout steady state where acidogenic
and methanogenic bacteria are extinct; E0i, i = 1, 2, where X1 = 0 and X2 > 0, is the steady
state of washout of acidogenic bacteria, while methanogenic bacteria are maintained; E10,
where X1 > 0 and X2 = 0 is the steady state of washout of methanogenic bacteria, while
acidogenic bacteria are maintained; E1i, i = 1, 2, where X1 > 0 and X2 > 0 is the steady
state of coexistence of acidogenic and methanogenic bacteria. The components of the steady
states are given in Table A3.

Table A3. The steady states of (12). The functions λ1, λ2, and λ̄2 are defined in Table 1. The functions
Sin∗

2 , X∗1 , X2i and X∗2i, i = 1, 2 are defined in Table A2.

S1 S2 X1 X2

E00 Sin
1 Sin

2 0 0
E01 Sin

1 λ2(D2) 0 X21

(
D, Sin

2

)

E02 Sin
1 λ̄2(D2) 0 X22

(
D, Sin

2

)

E10 λ1(D1) Sin∗
2

(
D, Sin

1 , Sin
2

)
X∗1
(

D, Sin
1

)
0

E11 λ1(D1) λ2(D2) X∗1
(

D, Sin
1

)
X∗21

(
D, Sin

1 , Sin
2

)

E12 λ1(D1) λ̄2(D2) X∗1
(

D, Sin
1

)
X∗22

(
D, Sin

1 , Sin
2

)

Table A4. Necessary and sufficient conditions for the existence and stability of steady states of (12).
The functions λ1, λ2, λ̄2, and Hi, i = 1, 2 are defined in Table 1.

Existence Conditions Stability Conditions

E00 Always exists Sin
1 < λ1(D1) and Sin

2 /∈
[
λ2(D2), λ̄2(D2)

]

E01 Sin
2 > λ2(D2) Sin

1 < λ1(D1)
E02 Sin

2 > λ̄2(D2) Unstable if it exists
E10 Sin

1 > λ1(D1) Sin
2 + k2

k1
Sin

1 /∈ [H1(D), H2(D)]

E11 Sin
1 > λ1(D1) and Sin

2 + k2
k1

Sin
1 > H1(D) Stable if it exists

E12 Sin
1 > λ1(αD) and Sin

2 + k2
k1

Sin
1 > H2(D) Unstable if it exists
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Table A5. The surfaces Λi, i = 1 · · · 6 and the regions Ik, k = 0 · · · 8.

Λ1 =
{
(D, Sin

1 , Sin
2 ) : Sin

1 = λ1(D1) := λ1(α1D + a1)
}

Λ2 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = λ2(D2) := λ2(α2D + a2)
}

Λ3 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = λ̄2(D2) := λ̄2(α2D + a2)
}

Λ4 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = H1(D)

}

Λ5 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = H2(D)

}

Λ6 =
{
(D, Sin

1 , Sin
2 ) : D = δ2 := µ2(Sm

2 )−a2
α2

}
,

I0 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D1) and Sin
2 < λ2(D2)

}

I1 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D1) and λ2(D2)<Sin
2 ≤ λ̄2(D2)

}

I2 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D2) and Sin
2 > λ̄2(D2)

}

I3 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1) and Sin
2 + k2

k1
Sin

1 < H1(D)
}

I4 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 ≤λ2(D2) and H1(D)< Sin

2 + k2
k1

Sin
1 ≤H2(D)

}

I5 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 ≤λ2(D2) and Sin

2 + k2
k1

Sin
1 >H2(D)

}

I6 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 >λ2(D2) and Sin

2 + k2
k1

Sin
1 ≤H2(D)

}

I7 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), λ2(D2) < Sin
2 ≤ λ̄2(D2) and Sin

2 + k2
k1

Sin
1 >H2(D)

}

I8 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1) and Sin
2 > λ̄2(D2)

}

Appendix B.3. Operating Diagram

In order to construct the OD of (12), one needs to determine and compute the bound-
aries of the regions of the diagram, i.e., to compute the parameter values at which a
qualitative change in the dynamic behaviour of (12) occurs. These boundaries are six
surfaces, denoted Λi, k = 1 . . . 6, in the Set of Operating Parameters (SOP)

SOP =
{
(D, Sin

1 , Sin
2 ) : D ≥ 0, Sin

1 ≥ 0 and Sin
2 ≥ 0

}
.

These surfaces separate SOP in nine regions, denoted Ik, k = 0, . . . , 8. These regions
correspond to the system behaviour shown in Table A6.

Table A6. Existence and stability of steady states of (12) in the nine regions of the operating space.
The last column shows the color in which the region is depicted in Figures 5, 6, 8, A4, A5, A7, and A8.

Region E00 E01 E02 E10 E11 E12 Color

I0 GAS Red
I1 U GAS Blue
I2 LAS LAS U Cyan
I3 U GAS Yellow
I4 U U GAS Green
I5 U LAS LAS U Pink
I6 U U U GAS Green
I7 U U LAS LAS U Pink
I8 U U U LAS LAS U Pink

The definitions of the surfaces Λi and the regions Ik are given in Table A5. We plot in
Figure A6 these surfaces with the biological parameters fixed as in Table A8. Since it is not
easy to visualize regions in the three-dimensional operating parameters space, D and Sin

1
are used as coordinates of the OD, while Sin

2 is kept constant. The effects of Sin
2 are shown

in a series of operating diagrams; see Figures 5 and A7.
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Remark A1. In Figures 5, 6, 8, A4, A5, A7, and A8, presenting ODs, a region is coloured
according to the colour in Table A6. Each colour corresponds to different asymptotic behaviour:

• Red for the washout of both species; that is, the steady state E00 is globally asymptotically
stable (GAS), which occurs in region I0.

• Blue for the washout of acidogenic bacteria while methanogenic bacteria are maintained; that
is, the steady state E01 is GAS, which occurs in region I1.

• Cyan for the bistability of E00 and E01, which are both (locally) stable. This behaviour occurs
in region I1. Depending on the initial condition, the system can go to the washout of both
species or the washout of only the acidogenic bacteria.

• Yellow for the washout of methanogenic bacteria while acidogenic bacteria are maintained; that
is the steady state E10 is GAS, which occurs in region I3.

• Green for the global asymptotic stability of the positive steady state E11; which occurs in I4 and
I6. These regions differ only by the existence, in the second region, of the unstable boundary
steady state E01.

• Pink for the bistability of E10 and E11, which are both locally asymptotically stable. This
behaviour occurs in regions I5, I7, and I8. These regions differ only by the possible existence
of the unstable boundary steady states E01 or E02. Depending on the initial condition, the
system can go to the washout of methanogenic bacteria or the coexistence of both species.

Appendix B.3.1. Operating Diagram in (Sin
1 , Sin

2 ) Where D Is Kept Constant

The fact that there are nine regions is easily seen when considering the sections of SOP
through a plane (Sin

1 , Sin
2 ) where D is kept constant. Let us denote

δ1 = m1−a1
α1

, δ2 =
µ2(Sm

2 )−a2
α2

(A7)

The surface Λ1 is defined for D < δ1, the surfaces Λ2 and Λ3 are defined for D < δ2,
and the surfaces Λ4 and Λ5 are defined for D < min(δ1, δ2), where δ1 and δ2 are given
by (A7). The intersections of the surfaces Λi, i = 1 . . . 5, with a plane where D is kept
constant are straight lines: vertical line for Λ1, horizontal lines for Λ2 and Λ3, and oblique
lines forΛ4 and Λ5; see Figure A4. We consider in this figure the case δ1 > δ2. This case
corresponds to the situation where α1 = α2, a1 = a2, and

µ2(Sm) = max
S2≥0

µ2(S2) < max
S1≥0

µ1(S1) = µ1(+∞),

which is most likely to occur in a real model. The case δ1 ≤ δ2 is similar; see [42]. Since the
curves are straight lines, the nine regions of the OD are easy to picture. The regions are
coloured according to the colours in Table A6. This table gives the system behaviour in the
nine regions.

Figure A4 shows the following features. For 0 < D < δ2, all regions exist; see
Figure A4a. For increasing D, the vertical line Λ1 moves to the right and tends towards
the vertical line defined by Sin

1 = λ1(αδ2 + a1). At the same time, the horizontal lines Λ2
and Λ3 move towards each other and tend toward the horizontal line defined by Sin

2 = Sm
2 ,

so that the regions I1, I4, I6, and I7 shrink and disappear; see Figure A4b. For D = δ2,
the OD changes dramatically, since regions I1, I4, I6, and I7 shrink and disappear; see
Figure A4b, obtained for D < δ2 and D ≈ δ2. For D > δ2 and D ≈ δ2, regions I0, I3 invade
the whole operating plane, so that regions I2, I5, and I8 also disappear; see Figure A4c. For
δ2 < D < δ1, only regions I0 and I3 appear; see Figures A4d. For increasing D, the vertical
line Λ1 moves to the right and tends towards infinity, so that, for D ≥ δ1, only region I0
appears.

In Figure A4, the axes are not graduated, because the figure corresponds to a general
case where the growth functions µ1 and µ2 verify Hypotheses 2 and 3 and the biological
parameters are not specified. The intersections of the OD with planes where D is constant
provide an easy way to see that the OD contains nine regions. However, as we are interested
in this paper in the biogas flow rate as a function of D, it is preferable to have ODs that
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include D as a coordinate and in which, for example, Sin
2 is fixed. We describe these

diagrams in the following section.

(a) 0 < D < δ2 (b) D ≈ δ2, D < δ2

(c) D ≈ δ2, D > δ2 (d) δ2 < D < δ1

Sin
2 Sin

2

Sin
2 Sin

2

Sin
1 Sin

1

Sin
1 Sin

1

I0
I0

I0 I0

I1

I2

I2

I3
I3

I3 I3

I4 I5
I5

I6 I7

I8

I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ2 ≈ Λ3

Λ4 Λ5 Λ4 ≈ Λ5

Figure A4. The 2-dimensional OD in
(

Sin
1 , Sin

2

)
, obtained by cuts at the D constant of the 3-

dimensional OD of (12), where δ1 and δ2 are given by (A7). If D ≥ δ1, the region I0 invades
the whole plane.

Appendix B.3.2. Operating Diagram in (D, Sin
1 ) Where Sin

2 Is Kept Constant

Since we want to plot the intersections of the regions Jk with a
(

D, Sin
1
)
-plane, where

Sin
2 is kept constant, we must determine the intersections of the surfaces Λi with this plane.

These intersections are the curves whose equations are given in Table A7.

Table A7. Intersections of Λk with a
(

D, Sin
1

)
-plane, where Sin

2 is kept constant.

Λ1 Curve of function Sin
1 = λ1(α1D + a1) or D =

µ1(Sin
1 )−a1
α1

Λ2 Vertical line D =
µ2(Sin

2 )−a2

α2
or Sin

2 = λ2(α2D + a2), if Sin
2 ≤ Sm

2

Λ3 Vertical line D =
µ2(Sin

2 )−a2

α2
or Sin

2 = λ̄2(α2D + a2), if Sin
2 ≥ Sm

2
Λ4 Curve of function Sin

1 = k1
k2

(
H1(D)− Sin

2

)
restricted to Sin

1 > λ1(α1D + a1)

Λ5 Curve of function Sin
1 = k1

k2

(
H2(D)− Sin

2

)
restricted to Sin

1 > λ1(α1D + a1)

Λ6 Vertical line D =
µ2(Sm

2 )−a2
α2

or Sm
2 = λ2(α2D + a2) = λ̄2(α2D + a2)

From the equations of curves Λ4 and Λ4 and using the λ2 < λ̄2, we see that the curve
Λ5 is above the curve Λ4, which is itself above the curve Λ1. Note that Λ1 and Λ4 are
increasing, while Λ5 is not necessarily increasing, since H2(D) is the sum of the increasing
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function k2
k1

λ1(α1D + a1) and the decreasing function λ̄2(α2D + a2). In Figure A5, we have
depicted the curves in the particular case where the curve Λ5 is decreasing. The general
case is left to the reader. It is similar to the case (B) and (C) considered in [42].

(a) Sin
2 = 0 (b) 0 < Sin

2 < Sm
2

(c) Sin
2 = Sm

2 (d) Sin
2 > Sm

2

Sin
1 Sin

1

Sin
1 Sin

1

D D

D D

I0 I0

I0 I0

I1↘

I1↘ I1↘ I2←

I3 I3

I3 I3

I4

I4

I5 I5

I6

I6 I6

I7→

I7 I7 I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ4 Λ4

Λ5 Λ5

Λ5 Λ5

Λ6 Λ6

Λ6 Λ6

Figure A5. The 2-dimensional OD in
(

D, Sin
1

)
obtained by cuts at the Sin

2 constant of the 3-
dimensional OD of (12).

From the equations of the curves given in Table A7, we deduce that if 0 ≤ Sin
2 ≤ Sm

2 ,
then curves Λ4, Λ5 and Λ6 intersect at point

Λ4 ∩Λ5 ∩Λ6 =
{(

δ2, k1
k2
(Sm

2 − Sin
2 ) + λ1(α1δ2 + a1)

)}
,

while curves Λ1, Λ2 and Λ4 intersect at point

Λ1 ∩Λ2 ∩Λ4 =
{(

δ(Sin
2 ), λ1(α1δ(Sin

2 ) + a1
)}

, where δ(Sin
2 ) =

µ2(Sin
2 )−a2
α2

;

see Figure A5a,b. Similarly, if Sin
2 = Sm

2 , then

Λ2 = Λ3 = Λ6 and Λ1 ∩Λ5 ∩Λ6 = {(δ2, λ1(α1δ2 + a1))};

see Figure A5c, and if Sin
2 > Sm

2 , then

Λ1 ∩Λ3 ∩Λ5 =
{(

δ(Sin
2 ), λ1(α1δ(Sin

2 ) + a1

)}
, Λ1 ∩Λ6 = {(δ2, λ1(α1δ2 + a1))};
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see Figure A5d. Therefore, the curves intersect as depicted in Figure A5, where the regions
are coloured according to the colours in Table A6. This figure shows the following features:
For Sin

2 = 0, only the regions I0, I3, I4, and I5 exist; see Figure A5a. For 0 < Sin
2 < Sm

2 ,
the curve Λ2 appears, giving birth to I1, I6, and I7 regions; see Figure A5b. For increasing
Sin

2 , Λ4, and Λ5 curves are translated downwards, while the vertical line Λ2 moves to the
right and tends towards the vertical line Λ6, as Sin

2 tends to Sm
2 . For Sin

2 = SM
2 , the curve

Λ4 disappears, while Λ2 becomes equal to Λ6, so that I4 and I5 regions have disappeared;
see Figure A5c. For Sin

2 > Sm
2 , the curve Λ3 appears, giving birth to I2 and I8 regions; see

Figure A5d. For increasing Sin
2 , the vertical line Λ3 moves to the left, while the Λ5 curve is

translated downwards.

Appendix B.4. The Operating Diagram to the AM2 Model

In this section, we show the ODs of the model (50,51), with the biological parameter
values given in Table A8. These parameter values can be found in Tables III and V of [25].
These values have been also used by [11]. The OD in the three-dimensional SOP is shown in
Figure A6. The two-dimensional diagrams in the (D, Sin

1 ) planes where Sin
2 is kept constant

are depicted in Figure A7. The two-dimensional diagrams in the (Sin
1 , Sin

2 ) planes where D
is kept constant are depicted in Figure A8.

(a) (b)

(c) (d)

D D

D D

S1in S1in

S1in S1in

S2in S2in

S2in S2in

Figure A6. The surfaces Λ1 (in Blue), Λ2 and Λ3 (in Green), Λ4 and Λ5 (in Red), and Λ6 (in
Yellow), defined in Table A5 separate the 3-dimensional operating space

(
D, Sin

1 , Sin
2

)
in 9 regions Ik,

k = 0, · · · , 8. Front (a), rear (b), left (c), and right (d) view of the surfaces Λi. The biological parameter
values are given in Table A8.
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(a) Sin
2 = 0 (b) Sin

2 = 5 (c) Sin
2 = 15

(d) Sin
2 = Sm

2 = 48.741 (e) Sin
2 = 150 (f) Sin

2 = 300

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

D D D

D D D

I0 I0 I0

I0 I0 I0

I1↘ I1↘

I1↘ I1↘ I1↘←I2 ←I2

I3 I3 I3

I3 I3 I3

I4 I4 I4

I5 I5 I5

I6 I6

I6 I6 I6

I7→

I7
I7 I7I8 I8

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ4 Λ4 Λ4

Λ2 Λ2Λ5 Λ5 Λ5Λ6 Λ6 Λ6

Λ5 Λ3Λ5 Λ3 Λ5Λ6 Λ6 Λ6

Figure A7. The 2-dimensional OD in
(

D, Sin
1

)
, obtained by cuts at Sin

2 constant of the 3-dimensional
OD shown in Figure A6.

(a) D = 0.92 (b) D = 0.96 (c) D = 1

(d) D = 1.05 (e) D = 1.07185121 (f) D = 1.07185122

(g) D = 1.5 (h) D = 2 (i) D ≥ 2.4

Sin
2 Sin

2 Sin
2

Sin
2 Sin

2 Sin
2

Sin
2 Sin

2 Sin
2

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

I0 I0 I0

I0
I0

I0

I0 I0 I0

I1 I1
I1

I1

I2 I2
I2

I2 I2

I3 I3 I3

I3
I3

I3

I3 I3

I4 I4 I4

I4

I5 I5

I5
I5

I6 I6 I6

I6

I7
I7

I7

I7

I8 I8
I8

I8 I8

Λ2≈Λ3

Λ4≈Λ5

Sm
2

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ2

Λ3

Λ2

Λ3

Λ2

Λ3

Λ4

Λ5
Λ4 Λ5 Λ4 Λ5

Λ4 Λ5

Figure A8. The 2-dimensional OD in
(

Sin
1 , Sin

2

)
, obtained by cuts at D constant of the 3-dimensional

OD shown in Figure A6.
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Table A8. Nominal parameters values, and α = 0, used in Figures 5, 7, 8, A6, A7, and A8.

Parameter m1 K1 m2 K2 KI k1 k2 k3
Unit d−1 g/L d−1 mmol/L mmol/L mmol/g mmol/g

Value 1.2 7.1 0.74 9.28 256 42.14 116.5 268

Appendix B.5. Maximization of Biogas Production

Appendix B.5.1. Proof of Proposition 5

From Table 2, it is seen that G02 is defined if and only if λ̄2(D2) < Sin
2 . Since λ̄2(D2) >

λ2(D2), the results show that G01 is also defined and G01
(

D, Sin
2
)
> G02

(
D, Sin

2
)
. This

proves the first item of the proposition.
From Table 2, it is seen that G12 is defined if and only if H2(D) < Sin

2 + k2
k1

Sin
1 .

Since H2(D) > H1(D), the results show that G11 is also defined and G11
(

D, Sin
1 , Sin

2
)
>

G12
(

D, Sin
1 , Sin

2
)
. This proves the second item of the proposition.

If G11 is defined, then Sin
1 > λ1(D1). Hence,

Sin
2 + k2

k1
Sin

1 − H1(D) = Sin
2 − λ2(D2) +

k2
k1

(
Sin

1 − λ1(D1)
)
> Sin

2 − λ2(D2).

Therefore, if G01 is defined, we have G11
(

D, Sin
1 , Sin

2
)
> G01

(
D, Sin

2
)
. This proves the

third item of the proposition.

Appendix B.5.2. Proof of Proposition 6

The proof follows the same ideas and computations as the proof of Proposition 1. See
Appendix A.3.1 for the details.

Appendix B.5.3. Proof of Proposition 7

Since the functions γ2 and µ1 are increasing, the function Sin
1 7→ γ2

(
µ1
(
Sin

1
))

is increas-
ing. Therefore, the condition Sin

1 > S0
1 is equivalent to the fact that the point (Sin

1 , Sin
2 ) lies

to the right of the curve Σ0. Similarly, if the function µi/µ′1 is increasing, then the function

Sin
1 7→ γ2

(
µ1
(
Sin

1
))

+ k2
k1

µ1(Sin
1 )

µ′1(S
in
1 )

is increasing. Therefore the condition Sin
1 < S1

1 is equivalent to the fact that the point
(Sin

1 , Sin
2 ) lies to the left of the curve Σ1.

Appendix B.5.4. Proof of Proposition 8

Equation (49) is equivalent to the equation

G0(D∗0 (S
in
2 )) = G1(D∗1 (S

in
1 , Sin

2 ))

where D∗0 (S
in
2 ) is the solution to (38) and D∗1 (S

in
1 , Sin

2 ) is the solution to (40). Therefore, using
(34) and (35), we deduce that we need to solve the following system of three equations with
four unknowns Sin

1 , Sin
2 , D0, and D1.

D0

(
Sin

2 − λ2(αD0)
)
= D1

(
Sin

2 + k2
k1

Sin
1 − λ2(αD1)− k2

k1
λ1(αD1)

)
, (A8)

Sin
2 = γ2(αD0), (A9)

Sin
2 + k2

k1
Sin

1 = γ2(αD1) +
k2
k1

γ1(αD1). (A10)

Substituting (A9) and (A10) into (A8), we obtain

D0(γ2(αD0)− λ2(αD0)) = D1

(
γ2(αD1) +

k2
k1

γ1(αD1)− λ2(αD1)− k2
k1

λ1(αD1)
)

.
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Replacing γ2 and γ1 by their expressions (36) and (37), respectively, we obtain

D2
0λ′2(αD0) = D2

1

(
λ′2(αD1) +

k2
k1

λ′1(αD1)
)

.

Therefore, αD0 is a solution to equation

φ(αD0) = α2D2
1

(
λ′2(αD1) +

k2
k1

λ′1(αD1)
)

,

where φ is as in Hypothesis (8). Using this hypothesis, we obtain αD0 = ∆(D1), where ∆ is
given by (48). Substituting in (A9) and (A10), we obtain

Sin
2 = γ2(∆(D1)), γ2(∆(D1)) +

k2
k1

Sin
1 = γ2(αD1) +

k2
k1

γ1(αD1).

These equations show that the point (Sin
1 , Sin

2 ) belongs to the curve C, defined by
equations (47). The system formed by the three Equations (A8)–(A10) shows that the
reciprocal is also true, i.e., any point on curve C is a point where maxD G0 = maxD G1.
Since the partial derivative of G1 with respect to Sin

1 is positive, we see that we have
maxD G1 > maxD G0 to the right of curve C.
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