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Abstract: With global warming, and internal combustion engine emissions as the main global non-
industrial emissions, how to further optimize the power performance and emissions of internal
combustion engines (ICEs) has become a top priority. Since the internal combustion engine is a
complex nonlinear system, it is often difficult to optimize engine performance from a certain factor of
the internal combustion engine, and the various parameters of the internal combustion engine are
coupled with each other and affect each other. Moreover, traditional experimental methods including
3D simulation or bench testing are very time consuming or expensive, which largely affects the
development of engines and the speed of product updates. Machine learning algorithms are currently
receiving a lot of attention in various fields, including the internal combustion engine field. In this
study, an artificial neural network (ANN) model was built to predict three types of indicators (power,
emissions, and combustion phasing) together, including 50% combustion crank angle (CA50), carbon
monoxide (CO), unburned hydrocarbons (UHC), nitrogen oxides (NOx), indicated mean effective
pressure (IMEP), and indicated thermal efficiency (ITE). The goal of this work was to verify that
only one machine learning model can combine power, emissions, and phase metrics together for
prediction. The predicted results showed that all coefficients of determination (R2) were larger than
0.97 with a relatively small RMSE, indicating that it is possible to build a predictive model with three
types of parameters (power, emissions, phase) as outputs based on only one ANN model. Most
importantly, when optimizing the powertrain control strategy of a hybrid vehicle, only a surrogate
model can help establish the relationship between the input and output parameters of the whole
engine, which is the need of the future research. Overall, this study demonstrated that it is feasible to
integrate three types of combustion-related parameters in a single machine learning model.

Keywords: machine learning; artificial neural network; gasoline engine; efficiency; emission

1. Introduction

The rapid development of the automobile industry has greatly contributed to the
economic development and modernization of China but at the same time has also brought
about energy supply tension and environmental pollution problems [1,2]. Therefore, the
development of efficient and low-pollution advanced combustion technology has become
the main goal of the internal combustion engine industry and researchers [3,4]. Meanwhile,
the decarbonized energy revolution requires innovation in various powertrains such as
gas turbine combustor [5,6] and advanced engine technologies such as in-cylinder thermal
barrier coatings [7,8]. It needs different kinds of alternative fuels (i.e., biofuel [9,10], natural
gas [11,12], and ethanol [13,14]). So much work needs a fast and effective tool to enhance
research and development efficiency [15,16]. Nowadays, engine research and development
are mainly based on 3D CFD simulations and bench tests, but they are time consuming or
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expensive [17,18]. Machine learning is one highly effective method to improve the speed
of product development and has been used in various fields, such as building [19,20],
energy [21,22], environment [23,24], and geography [25]. The previous results showed that
the predictions of ML models were good and better accelerated the progress of research in
various fields [26,27]. In addition, artificial intelligence-based engine system optimization
has a promising future in significantly improving engine performance, while it also provides
a basis for improving traditional model-based-design (MBD) [28,29]. Hence, the application
of machine models into the engine field is to help further improve the efficiency of engine
development [30,31].

Table 1 shows that researchers have used different machine learning algorithms to
make predictions of the relevant parameters of the engine, and the results indicated that
the overall predictive performance of the machine learning algorithms are good. However,
there may be cases where a certain algorithm is not applicable under certain operating
conditions; for example, the KNN algorithm does not predict well in the case of uneven
samples [32]. In addition, most studies have applied ANN to predict engine response
and essentially to predict one particular class of parameters, such as power, emissions,
or combustion characteristics, individually [33,34]. This was probably because the basic
units of ANN are neurons that can better describe the parameters related to chain chemical
reactions, and combustion parameters fall into this category [35,36]. An ANN model
can be widely used in different areas since support vector regression (SVR) requires very
high computational cost and the random forest (RF) model cannot forecast responses
well for the boundary data [37,38]. Hence, in this paper, the ANN model is chosen to
predict the relevant parameters of the engine [39]. Meanwhile, it can be found that the
literature on the integration of these three types of parameters into a single ML model
for prediction is limited. However, only one surrogate model is requested to replace the
whole engine combustion characteristics (including efficiency and emissions) inside the
powertrain design software (such as ADVISOR), which is used to optimize the powertrain
control strategy of the hybrid vehicle in the future work. Therefore, the purpose of study
was to demonstrate that it is feasible to integrate the three types of parameters into a single
ANN model and evaluate ML model predictive performance with statistical indicators.

Table 1. Various algorithms for engine responses prediction.

References Algorithm Output Main Conclusions

[40] ANN, GBDT, RF, SVR Exhaust gas temperature (EGT) ANN is most appropriate for predicting EGT but is more
complex for hyperparameter tuning.

[32] K-nearest Phase Based on the unevenly distributed training set, the KNN
model does not predict well.

[41] ANN Peak pressure rise The ANN model can predict the relationship between
pressure-based parameters and key control variables.

[42] BDT IMEP The BDT model did not perform so well for low load
operating conditions.

[43] ANN Fuel lubricity The proposed neuron network can predict the lubricity
well, using other diesel fuel properties as inputs.

[44] ANN Emissions BP neural network can be used to predict emissions with
the cetane number as the input parameter.

[45] ANN Emissions ANN can be used for engine exhaust emissions modeling.

[46] ANN NOx The ANN model is a good tool for NOx prediction if speed
and torque are used as input parameters.

[47] ANN Torque, BSFC
The ANN model is very accurate for power class parameter
prediction, and the prediction performance and accuracy

are very good.

[48] Neuron network Thermodynamic properties The gas thermodynamics properties can be evaluated with
Elman neural network.

In this study, a single artificial neural network (ANN) was applied to predict three types
of engine metrics (power, emission, and phase) together, including CA50, CO, HC, NOx, IMEP,
and ITE, using speed, intake pressure, and spark timing as input parameters. The learning
effect of the nonlinear relationship between the input and output parameters of this correlation
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model was also evaluated under different operating conditions. The main statistical metrics R2

and RMSE were used to evaluate the model prediction performance [49,50]. Most importantly,
the results indicated that it is possible to integrate the three types of parameters into one ANN
model for prediction, which demonstrated that it is feasible to simulate the input–output
relationship of multiple classes of engine parameters using only one surrogate model [51,52].

The rest of the paper is as follows: Section 2 contains a description of the numerical
modeling, test operating conditions, the introduction of the principle of the ANN model,
the way of dividing the dataset, and the description of statistical indicators; Section 3
showed the predictive performance of the ANN model and discussed the results. Section 4
summarized the work of this paper and stated the main conclusions.

2. Materials and Methods

A single-cylinder gasoline engine with spark ignition (SI) and port fuel injection (PFI)
was used to obtain experimental data. A validated one-dimensional (1D) CFD model was
built based on GT-power 2016 software, which can simulate the engine responses under
various operating conditions. The engine has a compression ratio of 9.5, a connecting rod
length of 175 mm, and a bore and stroke of approximately 86 mm. More details can be
found in Table 2, and the CFD model is shown in Figure 1. In addition, ref. [31] provides
details of 1D model calibration. As mentioned in the “Introduction” part, the CA50 (50%
energy released crank angle), carbon monoxide (CO), unburned hydrocarbons (UHC),
nitrogen oxides (NOx), indicated mean effective pressure (IMEP), and indicated thermal
efficiency (ITE) were recorded based on the CFD model. The six parameters included
three classes indicators (i.e., power, emissions, and combustion phasing). In total, about
2000 sets of data were collected with the input parameters ST, speed, and torque (changed
by intake pressure) to establish the ANN model used to predict engine responses. The
inlet pressure has six different sets of values ranging from 0.5 to 1, and the distribution is
equally spaced. For the engine speed selection, the range of variation is 1000–4000 rpm,
with a total of 16 different sets of values and an interval of 200 rpm. Since the MBT of the
engine is different under each operating condition, the selected spark timing range should
include all MBTs for all operating conditions to ensure predictive accuracy, so the spark
timing range was selected larger, ranging from −40 to 0 CA ATDC.

Table 2. Engine specifications.

Research Type Single-Cylinder

Cycle 4-stroke SI PFI
Valves per cylinder 2

Bore [mm] × Stroke [mm] 86 × 86.07
Intake valve opens/closes 9 CAD BTDC/84 CAD ABDC

Exhaust valve opens/closes 55 CAD BBDC/38 CAD ATDC
Connecting rod length [mm] 175

Piston cup diameter [mm] 80
Piston cup depth [mm] 5

Wrist pin to crank offset [mm] 1
Compression ratio 9.5

TDC clearance height [mm] 1

Artificial neural networks are adaptive nonlinear dynamic systems consisting of a
large number of simple basic components—neurons interconnected [19]. They can classify
the data through the network’s own memory and analysis, and the accuracy of the model
prediction results can be guaranteed through correlation processing. Moreover, the unique
structure of neural network, adaptive learning, memory and strong error tolerance and
robustness make it widely used in the field of engine prediction. The neural network can be
combined with the engine condition monitoring system, which can improve itself according
to the change information in real time as the monitoring system information is updated
to ensure the accuracy of prediction. At the same time, it is suitable for the complexity of
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the engine working environment; it can not only analyze the change pattern of past engine
performance parameters but also consider the external environment of the engine working
and various related factors affecting the engine.

Figure 1. One-dimensional (1D) CFD model of single spark ignition engine.

The internal combustion engine is a complex nonlinear system where the in-cylinder
combustion is influenced by the combination of various factors (e.g., atmospheric pressure,
valve timing, temperature, humidity), which also determine the engine power, emissions,
and combustion phasing. Therefore, the research and application of neural network in
the engine field has great potential. Neural network has self-learning ability, which can
summarize the law from a large amount of data. In this study, a Levenberg–Marquardt
back propagation (BP) neural network, which has been proven to be effective in predicting
the relevant parameters of the engine in ref [53], was used for predicting the performance
and emissions of a spark ignition engine. For the ANN model, the parameters are updated
using the fastest gradient descent method, i.e., the parameters are updated in the opposite
direction of the gradient, in a certain step size, so that the evaluation function reaches a
minimal value. The process of building the ML model was mainly based on the neural
network toolbox of MATLAB 2016, and the training epochs and learning rate of ANN
model were set to 1000 and 0.001, respectively.

Among the many factors that affect the performance of neural networks, the structure
has a significant impact on the prediction results. Therefore, in order to select a suitable
ANN network structure, the R2 and RMSE based on three kinds of ANN structures (3-7-6,
3-7-7-6, 3-5-5-6) are compared in this study. The specific statistical values based on various
neural network structures are shown in Tables 3 and 4. The lowest R2 based on the 3-7-7-6
neural network structure ANN is ≈0.98, which is better than several other structures, and
the RMSE is smaller for almost all metrics compared to other structures. Therefore, we
choose the 3-7-7-6 ANN structure to predict engine responses due to its better generalization
capability under the operating conditions investigated in this study.

The approximately 2000 sets of data generated based on the 1D CFD model were
divided into two datasets. A randomly selected 80% of the data was used as the training
dataset to train the ANN model on various parameters; then, the remaining 20% of points
were used as the validation set, which could be used to validate the predictive performance
of the ML model with these unseen data. Moreover, it can be used to judge if the established
ML was overfitted based on the comparison with the evaluation metrics of the training
set [54]. This division way of the dataset has been proved to be suitable [55]. When
optimizing the powertrain control strategy of a hybrid vehicle, only one surrogate model
is needed to establish the relationship between the input and output parameters of the
entire engine, which is a future need. Therefore, in this paper, all three types of engine-
related parameters (power, emission, phase) are predicted based on an ANN model to
build predictions.
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Table 3. The R2 coefficient and RMSE calculated for the training dataset based on the different
structures of the ANN model.

ANN Structure 3-7-6 3-7-7-6 3-5-5-6

R2 (CA50) 0.9956 0.9977 0.9907
R2 (CO emissions) 0.9499 0.9828 0.9687
R2 (HC emissions) 0.9751 0.9936 0.9755

R2 (NOx emissions) 0.9650 0.9899 0.9316
R2 (IMEP) 0.9838 0.9892 0.9923
R2 (ITE) 0.9755 0.9914 0.9829

RMSE (CA50) 0.8637 0.8353 1.2378
RMSE (CO emissions) 1.8098 1.0507 1.4158
RMSE (HC emissions) 0.7102 0.4659 0.7029

RMSE (NOx emissions) 2.3187 1.3946 3.2367
RMSE (IMEP) 0.2991 0.3060 0.2063
RMSE (ITE) 0.5168 0.3225 0.4264

Table 4. The R2 coefficient and RMSE calculated for the validation dataset based on the different
structures of the ANN model.

ANN Structure 3-7-6 3-7-7-6 3-5-5-6

R2 (CA50) 0.9955 0.9978 0.9907
R2 (CO emissions) 0.9462 0.9796 0.9719
R2 (HC emissions) 0.9652 0.9878 0.9647

R2 (NOx emissions) 0.9475 0.9807 0.9138
R2 (IMEP) 0.9822 0.9875 0.9913
R2 (ITE) 0.9724 0.9916 0.9860

RMSE (CA50) 0.8931 0.8436 1.2541
RMSE (CO emissions) 1.8429 1.1291 1.3253
RMSE (HC emissions) 0.8997 0.6428 0.9041

RMSE (NOx emissions) 3.0659 2.0126 3.9147
RMSE (IMEP) 0.3057 0.3102 0.2131
RMSE (ITE) 0.5688 0.3330 0.3999

To further evaluate the extent to which the trained machine learning model learns the
internal combustion law of the engine, 165 steady-state points including different operating
conditions were applied in this study. Of these points, 60% (99/165) were used to test how
well the ANN model learns the patterns of engine output parameters with ST, 29% (48/165)
were used to test whether the ANN model is able to learn the intrinsic patterns between
speed and engine related parameters at different loads, and 11% (18/165) of the testing
dataset was used to evaluate whether the ANN model is good at predicting the intrinsic
connection of engine output parameters with load at low, medium, and high engine speeds.

For the evaluation metrics, the coefficient of determination (R2) and root mean square
error (RMSE) are used to measure the predictive performance of the ML model for these
three types of metrics. If R2 is close-to-unity, the RMSE value is quite small, which indicates
that the model can better learn some patterns within the data. The detailed formulas for
this can be found in Equations (1)–(4), supported by reference [56].

The sum of squared residuals (SSres) and sum of squares due to error (SStot) are
defined as follows:

SSres =
n

∑
i=1

(y(i) − y)
2

(1)

SStot =
n

∑
i=1

(y(i) − y)
2

(2)
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The coefficient of determination is defined as follows:

R2 = 1 − SSres

SStot
(3)

The root mean square error is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(y(i) − ŷ(i))2 (4)

where ŷ(i) is the forecasted result of the ANN model; y represents the average value of
the validated data; y(i) are the data generated based on the corrected 1D model; and n
represents the number of data.

To illustrate the structure of this paper in further detail, a flow chart was created to
show the logical structure of the entire paper. More details can be found in Figure 2. The
future needs of the power system lead to the purpose of this paper; next, we explain the
ML modeling process of this paper.

Figure 2. The overall flow chart of the work.



Processes 2022, 10, 204 7 of 20

The following sections describe and analyze the predicted results based on the ANN
model, which can verify that only one ANN model can predict three classes of indicators
well with sufficient data.

3. Results and Discussions

This section presents the prediction performance of three classes of parameters (in-
cluding CA50, CO, UHC, NOx, IMEP, and ITE) based on the one ANN model for engine
power, emission, and phase.

Figure 3 shows the comparison between the prediction results of the ANN-based
model for three types of parameters (power, emission, combustion phasing) and the true
values, which can be used to evaluate the predictive performance of the ML model by
R2 and RMSE. In addition, it can be found that all the black points are close to the red
dashed line at 45 degrees, which indicates that the trained ANN model has good prediction
performance and the predicted results agree with the actual values. In addition, the
R2 values based on the ANN model for the parameters CA50, carbon monoxide (CO),
unburned hydrocarbons (UHC), nitrogen oxides (NOx), IMEP, and ITE are 0.9977, 0.9828,
0.9936, 0.9899, 0.9892, and 0.9914, respectively, and the RMSE values are 0.8353 1.0507,
0.4659, 1.3946, 0.3060, and 0.3225. R2 characterizes the extent to which the regression
equation explains the variation in the dependent variable, and RMSE represents the model
prediction error, which is the average difference between the actual and predicted outcome
values. Basically, R2 values greater than 0.98 and very small RMSE values represent that
the training dataset is well trained for the model, and the ANN model learns the internal
relationships between the relevant parameters of the training dataset well.

Figure 4 shows the comparison between the three types of metric parameters (power,
emission, and phase) predicted by the ANN model and the validation dataset and the
actual data measured. This is a performance validation of the trained ML model with some
unseen data. The prediction performance of the ML model is evaluated mainly based on the
statistical metrics R2 and RMSE. The six predicted parameters CA50, CO, UHC, NOx, IMEP,
and ITE correspond to R2 of 0.9978, 0.9796, 0.9878, 0.9807, 0.9875, and 0.9916, respectively,
and RMSE of 0.8436, 1.1291, 0.6428, 2.0126, 0.3102, and 0.3330. It can be found that the R2

of the validation set is also basically around 0.98, which is similar to the R2 of the training
set. Meanwhile, the RMSE is larger compared to the RMSE of the training set, which is
understandable because the validation set is tested with unseen data. Overall, since the R2

and RMSE of the validation set are similar to those of the training set, this indicates that
there is no overfitting in building the ML model. Whereas overfitting is usually caused by
noisy datasets, this paper uses data generated by a modified 1D CFD model without noise.
In addition, by measuring the distance between the black points and the red dashed line,
it can be seen that basically, the black points on each plot are located near the red dashed
line. The results show that the machine learning model developed in this paper is able to
predict three types of parameters (power, emission, and phase) simultaneously and with
good prediction results. This indicates that in future hybrid vehicle powertrain design,
only one ANN model can be used instead of the whole engine model to predict these three
combustion-related parameters with good results.

The previous two figures showed that an ANN model can be used to predict a total
of six parameters for three types of engine metrics, including CA50, CO, UHC, NOx,
IMEP, and ITE. The predicted results showed agreement with actual values, as evidenced
by the relatively small prediction errors. It is interesting to evaluate the effect of small
prediction errors on the prediction performance of ML models on engine combustion laws.
This section considers the learning of internal combustion laws by the ML model for five
operating conditions: the variation pattern of the predicted indexes with ST at different
speeds under low, medium, and high loads; the variation of the predicted parameters with
speed at different loads and with loads at different speeds when ST = −20 CAD ATDC. The
typical results were chosen and shown in Figures 5–9. By comparing the predicted results
and the true values with the variation pattern of a certain input parameter (i.e., speed,
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intake pressure, and ST), it can be used to assess how well the ML model understands the
input–output nonlinear relationship.

Figure 3. Comparison of ANN predicted performance and emissions with actual value for the
training dataset: (a) CA50, (b) CO, (c) UHC, (d) NOx, (e) IMEP, (f) ITE.
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Figure 4. Comparison of ANN predicted performance and emissions with actual value for the
validation dataset: (a) CA50, (b) CO, (c) UHC, (d) NOx, (e) IMEP, (f) ITE.
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Figure 5. Comparison of ANN model predicted performance and emissions with calibrated data
under low load for the steady test dataset: spark timing effects: (a) CA50, (b) CO, (c) UHC, (d) NOx,
(e) IMEP, (f) ITE.
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Figure 6. Comparison of ANN model predicted performance and emissions with calibrated data
under medium load for the steady test dataset: spark timing effects: (a) CA50, (b) CO, (c) UHC,
(d) NOx, (e) IMEP, (f) ITE.
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Figure 7. Comparison of ANN model predicted performance and emissions with calibrated data
under high load for the steady test dataset: spark timing effects: (a) CA50, (b) CO, (c) UHC, (d) NOx,
(e) IMEP, (f) ITE.
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Figure 8. Comparison of ANN model predicted performance and emissions with calibrated data
at the spark timing = −20 CA ATDC for the steady test dataset: speed effects: (a) CA50, (b) CO,
(c) UHC, (d) NOx, (e) IMEP, (f) ITE.
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Figure 9. Comparison of ANN model predicted performance and emissions with calibrated data at
the spark timing = −20 CA ATDC for the steady test dataset: load effects: (a) CA50, (b) CO, (c) UHC,
(d) NOx, (e) IMEP, (f) ITE.
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Figure 5 shows the pattern of the effect of spark timing on power, emission, and phase
metrics at low load, low to medium-high engine speed, which includes actual values and
predicted results based on the ANN model. As expected, CA50 is retarded with the delay
of ST in Figure 5a because of the delayed ignition time [57]. The SI engines investigated
in this study fit this pattern. It is also noteworthy that the CA50 curves at medium and
high speeds are highly overlapping, while the curves at low speeds are relatively advanced.
This is because as the engine speed increases, the combustion duration corresponds to a
longer crankshaft angle, which leads to a delay in CA50. Figure 4b shows the amount of
CO production at low load with the variation of spark timing at different speeds, the trend
of which can be explained by MBT. According to references [57], MBT is defined as the
optimum spark timing, which lies approximately between −20 and −1 CAD ATDC in the
range of 1000 to 4000 rpm. Higher engine speeds need to be matched with a more advanced
MBT [57]. The combustion efficiency is improved when ST is delayed from −40 to 0 CAD
ATDC close to MBT, which is supported by reference [57]. As a result, CO emissions,
which are products of incomplete combustion, decrease with the increase in combustion
efficiency. In addition, the CO emissions at medium and high speeds increase significantly
and relatively because the injected fuel increases while the combustion efficiency is similar,
resulting in more incomplete combustion generation. It is also worth noting that CO
emissions are greater at medium speeds than at high speeds when ST is before −12 CAD
ATDC, while after that, the relationship is reversed. This is because CO emissions are
influenced by the interaction of fuel injection and combustion efficiency. At delayed ST,
the increase in fuel injection is the dominant factor leading to CO emissions, while at early
ST, the deterioration in combustion leads to more CO emissions. This could be the result
of higher in-cylinder pressure pressing unburned hydrocarbons into the crevices. For the
IMEP and ITE trends, the main reason is the presence of MBT. Overall, Figure 5 shows that
the ANN predicted engine combustion pattern basically matches the black line represented
by the actual values, which indicates that the intrinsic relationship between input and
output at low load can be integrated inside an ANN model with good prediction.

Figure 6 shows the predicted values of each metric based on the ANN model as well
as the true values of the six parameters that are integrated in the output responses of an
ML model. It can be found that the overall prediction trend is good, and for the CA50
and emission indicators, the ANN model predicts the trend accurately. However, for the
power parameters, the prediction is not as accurate, but the trend is more or less the same.
It can be seen from Figure 6 that the combustion performance of the engine is improved
as the spark timing is adjusted toward MBT (maximum braking torque). Thus, with the
delayed spark timing, CO production decreases before MBT and increases after MBT at
medium and high engine speeds. At low speed, where MBT is delayed, CO can be found
to decrease with the delay in spark timing. This is because the lower the engine speed,
the MBT will be delayed. As can be seen in Figure 6f, the high efficiency zone is located
in the medium to high-speed zone under medium load, which is in accordance with the
combustion law [57]. In addition, for a particular speed and torque, NOx decreases with
the delayed spark timing, which is due to the later ignition time reducing the in-cylinder
pressure and temperature. Overall, the ANN model is relatively accurate in predicting
the combustion laws, but there is some predicted error in the absolute value of the power
parameter prediction.

Figure 7 shows the comparison of the predicted values of the three types of parameters,
power, emission, and phase, based on the machine learning model with the actual data
at high load. The general trend of the three types of parameters (power, emission, and
phase) with spark timing at high load is similar to that of Figures 5 and 6, and the peaks of
both IMEP and ITE increase further [57]. Figure 7a shows that at the same speed, CA50
gradually increases with the delay in spark timing, as expected in reference [57]. As seen in
Figure 7e, the increased piston motion speed and faster airflow at higher speeds leads to a
decrease in the residual exhaust gas coefficient and an increase in the intake volume. The
combined effect of these factors leads to an increase in fuel injected mass, since IMEP is an
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indicator parameter for the amount of work per cycle and thus an increase in IMEP. It is
worth noting that the ANN model is very accurate in predicting CA50 and emissions. For
IMEP and ITE, it is accurate at low and medium speeds, but for high speeds, the specific
values of IMEP and ITE are not accurate. Overall, at high loads, the trends predicted
by the ANN model are similar to the trends of the actual values. Moreover, as seen in
Figure 7, the red dashed and black solid lines largely overlap. This indicates that it is
feasible to predict these three metrics (power, emission, and phase) based on only one ANN
model. Therefore, the ML model can be used as an analytical tool for future combustion
and may help in multi-dimensional simulation and deepening the development process of
low-carbon engines.

Figure 8 shows the comparison of the predicted results with the calibration data
for different engine loads at spark timing = −20 CA ATDC. It can be found that the
predictions of IMEP and ITE at high speed and high torque are somewhat deviated, which
correspond to the results in Figure 7e. It can be seen from Figure 8f that the enhanced airflow
motion accelerates the flame propagation speed and improves the combustion efficiency
as the engine speed increases. However, the duration of combustion corresponding to the
crankshaft angle also lengthens, which indicates a deterioration in the level of constant
volume combustion. This explains the slope of the indicated thermal efficiency slowing
down as the engine speed increases. The CA50, which is an indicator of the in-cylinder
combustion rate, is also consistent with this pattern. When combustion efficiencies are
similar, there is a trade-off between UHC and CO. As expected, CO generally tends to
increase as unburned hydrocarbons decrease, because the two metrics together represent
the degree of incomplete combustion. More interestingly, at ST = −20CA ATDC, the
specific value of CA50 predicted by ANN fluctuates somewhat with engine speed, which is
probably because the range of CA50 fluctuation is relatively small with engine speed. From
Figures 5–7, it can be seen that the fluctuation range of CA50 is about −20 to 30 CA ATDC,
so the absolute error of prediction is relatively small compared to the whole fluctuation
range of CA50. The prediction of the trend of the six indicators based on an ANN model
is acceptable, at least for the operating conditions of ST = −20 CA ATDC. Therefore, the
ANN model prediction results can be used as a combustion analysis tool as well as an aid
to low-carbon engine development.

Figure 9 shows the effect of engine load on combustion, emission, and power metrics
at different engine speeds with spark timing = 20 CA ATDC. Figure 9a shows the curves of
CA50 versus intake pressure at different engine speeds, where intake pressure is a common
engine load indicator. Since the differences in CA50, emissions, IMEP, and ITE at different
engine speeds have been analyzed, the next discussion of Figure 9 will focus on the effect
of intake pressure. According to reference [57], lower loads correspond to lower volumetric
efficiency and larger residual gas coefficients, as well as lower temperatures, which lead
to a degradation of combustion. This explains the delay in CA50 with increasing intake
pressure, as well as the reduction in CO and UHC emissions and the increase in thermal
efficiency, since combustion performance is the main factor determining the engine output
responses. Furthermore, it can be observed that the predicted engine power, emission,
and phase trends are consistent with the actual values. Therefore, the performance of the
trained machine learning model is acceptable considering the intrinsic linkage aspect of the
load–output relationship.

Overall, all the obtained results suggest that it is quite possible to integrate three
types of parameters (mainly determined by combustion) into one ANN model. Further
evaluation of the accuracy of this algorithm for predicting results will be considered for
noisy data in future work.

4. Summary and Conclusions

Basically, most researchers predict engine efficiency, emissions, or phasing alone,
and some of them forecast two classes of the parameters based on ML models in the
existing literature. Due to the requirements of future vehicle integration, only one CPU is
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usually needed to control the whole vehicle, so it is necessary if only one ANN model is
needed to predict these three types of parameters. However, the literature is limited for
predicting three classes of metrics (including power, emissions, and combustion phasing
indicators) based on one ANN model. In this paper, a 3-7-7-6 ANN model was established
to verify whether three types of parameters (mainly determined by combustion) can be
integrated into one ANN model, using spark timing, speed, and torque as inputs. In
addition, the statistical parameters including R2 and RMSE were used to evaluate the
predictive performance based on the ML model. The major findings were as follows:

1. In order to achieve better prediction results, this study compared the prediction results
of three different ANN model structures (including 3-7-6, 3-7-7-6, and 3-5-5-6), and
the results showed that among these three prediction results, the lowest R2 of the
prediction results of 3-7-7-6 basically remained around ≈0.98, which was higher than
the R2 of the other two ANN models. Almost metrics predicted less RMSE values than
those of the other two structures, which indicates that a 3-7-7-6 neuron network can
achieve the better prediction results for each parameter (including power, emission,
and phasing indicators).

2. Using three types of variables (including six parameters) as output parameters and
spark timing, speed, and intake pressure as input indicators with one ANN model,
this can achieve good prediction results with close-to-unity R2 and relatively small
RMSE. In the future, the whole vehicle only needs one controller in the optimization
of powertrain system control strategies, and the results indicated the integration
is possible.

3. For the testing dataset, the ANN model can learn the trends between inputs and engine
responses, which indicates that ANN can learn some internal intrinsic connections,
which may be because some parameters of the chain chemical reaction can be learned
by ANN. Therefore, the future ML model can be used to assist the engine design in
the future.

Overall, ≈2000 sets of noise-free data provided by a validated 1D model were gener-
ated to train the model, and the results show that the ML model can be used to assist in
engine design and development. The neural network algorithm must be updated again
whenever the engine boundary parameters (e.g., valve timing changes, compression ratio
changes) are changed during the design of the powertrain. In the future, more advanced
neuron networks can be trained on noisy data, and the related prediction performance of
ANN compared with other ML models (i.e., SVM, RF, GBDT) can be considered.
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Abbreviations
1D One-Dimensional
ATDC After Top Dead Center
ANN Artificial Neural Network
BDT Boosted Decision Tree
BP Back Propagation
BSFC Brake Specific Fuel Consumption
CAD Crank Angle Degree
CA50 50% Burned Crank Angle
CFD Computational Fluid Dynamics
CO Carbon Monoxide
EGT Exhaust Gas Temperature
ICEs Internal Combustion Engines
IMEP Indicated Mean Effective Pressure
ITE Indicated Thermal Efficiency
MBD Model-Based Design
MBT Maximum Brake Torque
ML Machine Learning
NOx Nitrogen Oxides
R2 Coefficient of Determination
RF Random Forest
RMSE Root Mean Squared Error
SI Spark Ignition
SSres Sum of Squares Due to Regression
SStot Sum of squares Due to Error
ST Spark Timing
SVR Support Vector Regression
UHC Unburned Hydrocarbons
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